Skip to main content

Advertisement

Log in

Fractional Modeling in Action: a Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials

  • Reviews
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

Modeling of phenomena such as anomalous transport via fractional-order differential equations has been established as an effective alternative to partial differential equations, due to the inherent ability to describe large-scale behavior with greater efficiency than fully resolved classical models. In this review article, we first provide a broad overview of fractional-order derivatives with a clear emphasis on the stochastic processes that underlie their use. We then survey three exemplary application areas — subsurface transport, turbulence, and anomalous materials — in which fractional-order differential equations provide accurate and predictive models. For each area, we report on the evidence of anomalous behavior that justifies the use of fractional-order models, and survey both foundational models as well as more expressive state-of-the-art models. We also propose avenues for future research, including more advanced and physically sound models, as well as tools for calibration and discovery of fractional-order models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Notes

  1. While the word “anomalous” means “not normal”, Klafter and Sokolov [2] and Sancho et al. [268] point out the widespread nature of anomalous diffusion with the statement “anomalous is normal!”.

  2. Another frequently used discrete random walk that leads to Brownian motion simply involves steps of fixed length to the left or right with probability 1/2 each; see Lawler [269]. In the long-time limit, all such discrete walks that draw increments from a finite-variance distribution lead to Brownian motion, due to the central limit theorem [44]

  3. Several parametrizations of the \(\alpha\)-stable characteristic function exist. The parametrization Eq. (7) is due to Samorodnitsky and Taqqu [270]. See Nolan [45, 271] for discussions of alternate forms.

  4. Special cases are \(\alpha = 2\) corresponding to the normal distribution, \(\alpha = 1\) and \(\gamma = 0\) corresponding to the Cauchy distribution, and \(\alpha = 1/2\) and \(\gamma = 1\) corresponding to the Lévy distribution.

  5. The definition of \(\tau\) in terms of D is an example of a right-continuous inverse of an increasing function. Paths of D, thought of as functions of t, are nondecreasing, so that each path of \(\tau\) constructed in this way is a continuous-from-the-right inverse of the parent path of D used to construct it.

  6. This equation was also derived by Scher and Lax [272, 273] and is referred to as the CTRW equation of Scher and Lax by Klafter and Silbey [126]. Other authors, such as Torrejon and Emelianenko [59] refer to this as the master equation of a CTRW.

  7. A Lévy walk may be compared to a non-standard CTRW in which waiting times prior to jumps are correlated to the jump length, e.g., proportional to the jump length, so that long excursions are penalized by long waiting times. See Zaburdaev et al. [44]

  8. For more recent works and novel definitions of variable-order fractional Laplacians we refer the reader to [63, 65].

  9. The units of D are given by \(\mathrm{L}^\alpha /\mathrm{T}\) where \(\alpha\) is the fractional order, L indicates space and T indicates time.

  10. We refer to [148] for more details regarding the FD-ADE and FFD-ADE models.

References

  1. Klages R, Radons G, MSokolov I (2008) Anomalous transport: Foundations and applications. John Wiley & Sons

  2. Klafter J, Sokolov IM (2005) Anomalous diffusion spreads its wings. Phys World 18(8):29

    Google Scholar 

  3. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58(1):738

    Google Scholar 

  4. West BJ (2016) Fractional calculus view of complexity: Tomorrow’s science. CRC Press

    MATH  Google Scholar 

  5. Wong I, Gardel M, Reichman D, Weeks E, Valentine M, Bausch A, Weitz D (2004) Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys Rev Lett 92

  6. Jaishankar A, McKinley GH (2013) Power-law rheology in the bulk and at the interface: Quasi-properties and fractional constitutive equations. Proc Royal Soc A: Math Phys Eng Sci 469(2149):20120284

    MathSciNet  MATH  Google Scholar 

  7. Jaishankar A, McKinley GH (2014) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788

    Google Scholar 

  8. Meerschaert MM, Sikorskii A (2019) Stochastic models for fractional calculus. de Gruyter

  9. West BJ, Bologna M, Grigolini P (2003) Physics of fractal operators. Springer Verlag, New York, NY

    Google Scholar 

  10. Patnaik S, Semperlotti F (2021) Variable-order fracture mechanics and its application to dynamic fracture. NPJ Comput Mater 7(1):1–8

    Google Scholar 

  11. Patnaik S, Hollkamp JP, Semperlotti F (2020) Applications of variable-order fractional operators: a review. Proc Royal Soc A 476(2234):20190498

    MathSciNet  MATH  Google Scholar 

  12. Zhao X, Sun Z, Karniadakis GE (2015) Second-order approximations for variable order fractional derivatives: Algorithms and applications. J Comput Phys 293:184–200

    MathSciNet  MATH  Google Scholar 

  13. Atanackovic TM, Pilipovic S, Stankovic B, Zorica D (2014) Fractional calculus with applications in mechanics: Vibrations and diffusion processes. John Wiley & Sons

    MATH  Google Scholar 

  14. Fallahgoul H, Focardi S, Fabozzi F (2016) Fractional calculus and fractional processes with applications to financial economics: Theory and application. Academic Press

  15. West BJ (2017) Nature’s patterns and the fractional calculus (Fractional Calculus in Applied Sciences and Engineering). Walter De Gruyter Inc

  16. Sun L, Qiu H, Wu C, Niu J, Hu BX (2020) A review of applications of fractional advection–dispersion equations for anomalous solute transport in surface and subsurface water. WIREs Water 7(4)

  17. Benson D, Wheatcraft S, Meerschaert M (2000) Application of a fractional advection-dispersion equation. Water Resour Res 36(6):1403–1412

    Google Scholar 

  18. Benson D, Schumer R, Meerschaert M, Wheatcraft S (2001) Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp Porous Media 42:211–240

    MathSciNet  Google Scholar 

  19. Levy M, Berkowitz B (2003) Measurement and analysis of non-fickian dispersionin heterogeneous porous media. J Contam Hydrol 64:203–226

    Google Scholar 

  20. Neuman SP, Tartakovsky DM (2009) Perspective on theories of non-Fickian transport in heterogeneous media. Adv Water Resour 32:670–680

    Google Scholar 

  21. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press

    MATH  Google Scholar 

  22. Frisch U, Kolmogorov AN (1995) Turbulence: the legacy of AN Kolmogorov. Cambridge University Press

    Google Scholar 

  23. Davidson PA (2015) Turbulence: an introduction for scientists and engineers. Oxford University Press

    MATH  Google Scholar 

  24. Akhavan-Safaei A, Samiee M, Zayernouri M (2021) Data-driven fractional subgrid-scale modeling for scalar turbulence: a nonlocal LES approach. J Comput Phys 110571

  25. Samiee M, Akhavan-Safaei A, Zayernouri M (2020) A fractional subgrid-scale model for turbulent flows: Theoretical formulation and a priori study. Phys Fluids 32(5)

    Google Scholar 

  26. Zayernouri M (2021) Fractional large eddy simulation (LES) modeling for turbulence. One Nonlocal World Workshop, Opening Event. https://www.youtube.com/watch?v=H9Ung5UmE3A

  27. Zapperi S, Vespignani A, Stanley HE (1997) Plasticity and avalanche behaviour in microfracturing phenomena. Nature 388(6643):658–660

    Google Scholar 

  28. Imbeni V, Kruzic J, Marshall G, Marshall S, Ritchie R (2005) The dentin-enamel junction and the fracture of human teeth. Nat Mater 4(3):229–232

    Google Scholar 

  29. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14(1):23–36

    Google Scholar 

  30. Bonadkar N, Gerum R, Kuhn M, Sporer M, Lippert A, Schneider W, Aifantis K, Fabry B (2016) Mechanical plasticity of cells. Nat Mater 15:1090–1094

    Google Scholar 

  31. Bonamy D, Santucci S, Ponson L (2008) Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition. Phys Rev Lett 101

  32. Bonfanti A, Kaplan JL, Charras G, Kabla AJ (2020) Fractional viscoelastic models for power-law materials. Soft Matter

  33. Richeton T, Weiss J, Louchet F (2005) Breakdown of avalanche critical behaviour in polycrystalline plasticity. Nat Mater 4:465–469

    Google Scholar 

  34. Stamenović D, Rosenblatt N, Montoya-Zavala M, Matthews BD, Hu S, Suki B, Wang N, Ingber DE (2007) Rheological behavior of living cells is timescale-dependent. Biophys J 93(8):L39–L41

    Google Scholar 

  35. Meerschaert MM, Sikorskii A (2011) Stochastic models for fractional calculus, vol 43. Walter de Gruyter

    MATH  Google Scholar 

  36. Rogers LCG, Williams D (1994) Diffusions, Markov processes and martingales: Volume 1, foundations. John Wiley & Sons, Ltd, Chichester 7

  37. Rogers LCG, Williams D (2000) Diffusions, Markov processes and martingales: Volume 2, Itô calculus, vol 2. Cambridge University Press

  38. Bachelier L (1900) Théorie de la spéculation. Annales scientifiques de l’École normale supérieure 17:21–86

    MathSciNet  MATH  Google Scholar 

  39. Einstein A (1905) On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann Phys 17(549–560):208

    Google Scholar 

  40. Von Smoluchowski M (1906) Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Ann Phys 326(14):756–780

    MATH  Google Scholar 

  41. Kloeden PE, Platen E (1992) Stochastic differential equations. In: Numerical Solution of Stochastic Differential Equations, Springer, pp 103–160

  42. Revuz D, Yor M (2013) Continuous martingales and Brownian motion, vol 293. Springer Science & Business Media

  43. Schumer R, Benson D, Meerschaert M, Wheatcraft S (2001) Eulerian derivation of the fractional advection-dispersion equation. J Contam Hydrol 48:69–88

    Google Scholar 

  44. Zaburdaev V, Denisov S, Klafter J (2015) Lévy walks. Rev Mod Phys 87(2):483

    Google Scholar 

  45. Nolan JP (2020) Univariate stable distributions: Models for heavy tailed data. Springer Nature

  46. Cont R, Tankov P (2003) Financial modelling with jump processes. CRC Press

    MATH  Google Scholar 

  47. Adler R, Feldman R, Taqqu M (1998) A practical guide to heavy tails: Statistical techniques and applications. Springer Science & Business Media

  48. Haas M, Pigorsch C (2009) Financial economics, fat-tailed distributions. Encyclopedia Complex Syst Sci 4(1):3404–3435

    Google Scholar 

  49. Meerschaert MM, Scheffler HP (2001) Limit distributions for sums of independent random vectors: Heavy tails in theory and practice, vol 321. John Wiley & Sons

    MATH  Google Scholar 

  50. Lischke A, Pang G, Gulian M, Song F, Glusa C, Zheng X, Mao Z, Cai W, Meerschaert MM, Ainsworth M et al (2020) What is the fractional Laplacian? A comparative review with new results. J Comput Phys 404:109009

    MathSciNet  MATH  Google Scholar 

  51. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: Theory and applications. Gordon and Breach Science Publishers, Switzerland

    MATH  Google Scholar 

  52. Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier

    MATH  Google Scholar 

  53. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier

    MATH  Google Scholar 

  54. Meerschaert MM, Benson DA, Baeumer B (1999) Multidimensional advection and fractional dispersion. Phys Rev E 59(5):5026

    Google Scholar 

  55. Mainardi F (2020) Why the Mittag-Leffler function can be considered the Queen function of the Fractional Calculus? Entropy 22(12):1359

    MathSciNet  Google Scholar 

  56. Mainardi F, Mura A, Pagnini G, Gorenflo R (2007) Sub-diffusion equations of fractional order and their fundamental solutions. In: Mathematical methods in engineering, Springer, pp 23–55

  57. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    MathSciNet  MATH  Google Scholar 

  58. Scalas E, Gorenflo R, Mainardi F (2004) Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys Rev E 69(1)

    MathSciNet  Google Scholar 

  59. Torrejon D, Emelianenko M (2018) Generalized master equations for random walks with time-dependent jump sizes. SIAM J Appl Math 78(3):1330–1349

    MathSciNet  MATH  Google Scholar 

  60. Montroll EW, Weiss GH (1965) Random walks on lattices, ii. J Math Phys 6(2):167–181

    MathSciNet  MATH  Google Scholar 

  61. Sokolov IM, Metzler R (2003) Towards deterministic equations for Lévy walks: The fractional material derivative. Phys Rev E 67(1)

    Google Scholar 

  62. Chen M, Deng W (2015) Discretized fractional substantial calculus. ESAIM: Math Model Num Anal 49(2):373–394

  63. Antil H, Rautenberg CN (2019) Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications. SIAM J Math Anal 51(3):2479–2503

    MathSciNet  MATH  Google Scholar 

  64. Darve E, D’Elia M, Garrappa R, Giusti A, Rubio NL (2021) On the fractional laplacian of variable order. arXiv preprint arXiv:210901060

  65. D’Elia M, Glusa C (2021) A fractional model for anomalous diffusion with increased variability. analysis, algorithms and applications to interface problems. arXiv preprint arXiv:210111765. Accepted in NMPDEs

  66. Razminia A, Dizaji AF, Majd VJ (2012) Solution existence for non-autonomous variable-order fractional differential equations. Math Comput Model 55(3–4):1106–1117

    MathSciNet  MATH  Google Scholar 

  67. Zheng X, Wang H (2020) Wellposedness and regularity of a variable-order space-time fractional diffusion equation. Anal Appl 18(04):615–638

    MathSciNet  MATH  Google Scholar 

  68. Chen YM, Wei YQ, Liu DY, Yu H (2015) Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl Math Lett 46:83–88

    MathSciNet  MATH  Google Scholar 

  69. Schneider R, Reichmann O, Schwab C (2010) Wavelet solution of variable order pseudodifferential equations. Calcolo 47(2):65–101

    MathSciNet  MATH  Google Scholar 

  70. Zeng F, Li C, Liu F, Turner I (2015) Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J Sci Comput 37(1):A55–A78

    MathSciNet  MATH  Google Scholar 

  71. Zheng X, Wang H (2020) An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J Numer Anal 58(1):330–352

    MathSciNet  MATH  Google Scholar 

  72. Zhuang PH, Liu FW, Anh V, Turner I (2009) Numerical methods for the variable-order fractional advection- diffusion equation with a nonlinear source term. SIAM J Numer Anal 47:1760–1781

    MathSciNet  MATH  Google Scholar 

  73. Pang G, Lu L, Karniadakis GE (2019) fPINNs: Fractional physics-informed neural networks. SIAM J Sci Comput 41:A2603–A2626

    MathSciNet  MATH  Google Scholar 

  74. Pang G, D’Elia M, Parks M, Karniadakis GE (2020a) nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications. arXiv:2004.04276

  75. Zheng X, Li Y, Cheng J, Wang H (2020) Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation. J Inverse and Ill Posed Probl, p 000010151520190040

  76. Defterli O, D’Elia M, Du Q, Gunzburger M, Lehoucq R, Meerschaert MM (2015) Fractional diffusion on bounded domains. Fract Calc Appl Anal 18(2):342–360

    MathSciNet  MATH  Google Scholar 

  77. D’Elia M, Gulian M, Olson H, Karniadakis GE (2020b) A unified theory of fractional, nonlocal, and weighted nonlocal vector calculus. arXiv preprint arXiv:200507686

  78. D’Elia M, Gunzburger M (2013) The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput Math App 66(7):1245–1260

    MathSciNet  MATH  Google Scholar 

  79. Du Q, Gunzburger M, Lehoucq R, Zhou K (2012) Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev 54(4):667–696

    MathSciNet  MATH  Google Scholar 

  80. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23(03):493–540

    MathSciNet  MATH  Google Scholar 

  81. Askari E (2008) Peridynamics for multiscale materials modeling. J Phys: Conf Ser, IOP Publishing 125(1):649–654

    Google Scholar 

  82. Silling S (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    MathSciNet  MATH  Google Scholar 

  83. D’Elia M, Tian X, Yu Y (2020d) A physically-consistent, flexible and efficient strategy to convert local boundary conditions into nonlocal volume constraints. SIAM Journal of Scientific Computing To appear

  84. Burkovska O, Glusa C, D’Elia M (2021) An optimization-based approach to parameter learning for fractional type nonlocal models. Comput Math App

  85. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    MathSciNet  MATH  Google Scholar 

  86. Gunzburger M, Lehoucq R (2010) A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model Simul 8(5):1581–1598

    MathSciNet  MATH  Google Scholar 

  87. Almeida R, Pooseh S, Torres DF (2015) Computational methods in the fractional calculus of variations. World Scientific Publishing Company

  88. Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods, vol 3. World Scientific

    MATH  Google Scholar 

  89. Chen S, Shen J, Wang LL (2016) Generalized jacobi functions and their applications to fractional differential equations. Math Comput 85(300):1603–1638

    MathSciNet  MATH  Google Scholar 

  90. D’Elia M, Du Q, Glusa C, Gunzburger M, Tian X, Zhou Z (2020a) Numerical methods for nonlocal and fractional models. Acta Numerica

  91. D’Elia M, Gunzburger M, Vollmann C (2020c) A cookbook for finite element methods for nonlocal problems, including quadrature rules and approximate Euclidean balls. M3AS To appear

  92. Diethelm K, Ford NJ, Freed AD, Luchko Y (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput Methods Appl Mech Eng 194(6–8):743–773

    MathSciNet  MATH  Google Scholar 

  93. Furati KM, Khaliq AQ, Li C, Zayernouri M (2018) Advances on computational fractional partial differential equations preface

  94. Gorenflo R (1997) Fractional calculus: Some numerical methods. Courses and lectures-international centre for mechanical sciences, pp 277–290

  95. Guo B, Pu X, Huang F (2015) Fractional partial differential equations and their numerical solutions. World Scientific

    MATH  Google Scholar 

  96. Li C, Zeng F (2019) Numerical methods for fractional calculus. Chapman and Hall/CRC

  97. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    MathSciNet  MATH  Google Scholar 

  98. Ren H, Zhuang X, Rabczuk T (2020) A nonlocal operator method for solving partial differential equations. Comput Methods Appl Mech Eng 58:112621. https://doi.org/10.1016/j.cma.2019.112621, https://www.sciencedirect.com/science/article/pii/S0045782519305031

  99. Samiee M, Kharazmi E, Meerschaert MM, Zayernouri M (2021) A unified Petrov-Galerkin spectral method and fast solver for distributed-order partial differential equations. Commun Appl Math Comput 3(1):61–90

    MathSciNet  MATH  Google Scholar 

  100. Tarasov VE (2019) Handbook of Fractional Calculus with Applications, vol 5. de Gruyter Boston, Berlin

    Google Scholar 

  101. Rabczuk T, Ren H, Zhuang X (2019) A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput Mater Contin 59(1):31–55

    Google Scholar 

  102. Zayernouri M, Karniadakis GE (2013) Fractional sturm-liouville eigen-problems: Theory and numerical approximation. J Comput Phys 252:495–517

    MathSciNet  MATH  Google Scholar 

  103. Zayernouri M, Ainsworth M, Karniadakis GE (2015) Tempered fractional sturm-liouville eigenproblems. SIAM J Sci Comput 37(4):A1777–A1800

    MathSciNet  MATH  Google Scholar 

  104. Zayernouri M, Wang LL, Shen J, Karniadakis G (2022) Single-/multi-domain spectral methods for fractional ODEs and PDEs. Cambridge University Press (to appear)

  105. Zhou Y, Suzuki JL, Zhang C, Zayernouri M (2020) Implicit-explicit time integration of nonlinear fractional differential equations. Appl Numer Math 156:555–583

    MathSciNet  MATH  Google Scholar 

  106. Lubich C, Schädle A (2002) Fast convolution for nonreflecting boundary conditions. SIAM J Sci Comput 24(1):161–182

    MathSciNet  MATH  Google Scholar 

  107. Yu Y, Perdikaris P, Karniadakis GE (2016) Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J Comput Phys 323:219–242

    MathSciNet  MATH  Google Scholar 

  108. Zeng F, Turner I, Burrage K (2018) A stable fast time-stepping method for fractional integral and derivative operators. J Sci Comput 77(1):283–307

    MathSciNet  MATH  Google Scholar 

  109. Lu X, Pang H, Sun H (2015) Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations. Numer Linear Algebra Appl 22(5):866–882

    MathSciNet  MATH  Google Scholar 

  110. Baffet D, Hesthaven JS (2017) High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J Sci Comput 72(3):1169–1195

    MathSciNet  MATH  Google Scholar 

  111. Li X, Mao Z, Wang N, Song F, Wang H, Karniadakis GE (2020) A fast solver for spectral elements applied to fractional differential equations using hierarchical matrix approximation. Comput Methods Appl Mech Eng 366

    MathSciNet  MATH  Google Scholar 

  112. Xu K, Darve E (2018) Efficient numerical method for models driven by Lévy process via hierarchical matrices. arXiv preprint arXiv:181208324

  113. Zhao X, Hu X, Cai W, Karniadakis GE (2017) Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput Methods Appl Mech Eng 325:56–76

    MathSciNet  MATH  Google Scholar 

  114. Ainsworth M, Glusa C (2017) Aspects of an adaptive finite element method for the fractional laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput Methods Appl Mech Eng 327:4–35

    MathSciNet  MATH  Google Scholar 

  115. Decker DL, Tyler SW (1999) Evaluation of flow and solute transport parameters for heap leach recovery materials. J Environ Qual 28(2):543–555

    Google Scholar 

  116. Erel Y (1998) Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils. Environ Res 78(2):112–117

    Google Scholar 

  117. Matthess G, Bedbur E, Gundermann KO, Loof M, Peters D (1991) Comparative studies of the filtration behavior of bacteria and organic particles in porous groundwater conductors. Fundamentals and methods. Zentralblatt fur Hygiene Umweltmedizin: Int J Hygiene Environ Med 191(1):53–97

  118. Tartakovsky DM (2007) Probabilistic risk analysis in subsurface hydrology. Geophys Res Lett 34:5L05404

  119. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-fickian transport in geological formations as a continuous time random walk. Rev Geophys 44:RG2003

  120. Berkowitz B, Scher H (1995) On characterization of anomalous dispersion in porous and fractured media. Water Resour Res 3(6):1461–1466

    Google Scholar 

  121. Berkowitz B, Scher H (1998) Theory of anomalous chemical transport in random fracture networks. Phys Rev E 57(5):5858–5869

    Google Scholar 

  122. Boano F, Packman AI, Cortis A, Revelli R, Ridolfi L (2007) A continuous time random walk approach to the stream transport of solutes. Water Resour Res 43:W1042510

  123. Dentz M, Berkowitz B (2003) Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour Res 39:11115

    Google Scholar 

  124. Valocchi AJ, Quinodoz HAM (1989) Application of the random walk method to simulate the transport of kinetically adsorbing solutes. Groundw Contamination 185:35–42

    Google Scholar 

  125. Oppenheim I, Shuler KE, Weiss GH (1977) Stochastic processes in chemical physics: the master equation. Cambridge, Mass: MIT Press

  126. Klafter J, Silbey R (1980) Derivation of the continuous-time random-walk equation. Phys Rev Lett 44(2):55

    Google Scholar 

  127. Compte A (1996) Stochastic foundations of fractional dynamics. Phys Rev E 53(4):4191–4193

    Google Scholar 

  128. Giona M, Roman HE (1992) A theory of transport phenomena in disordered systems. Chem Eng J 49:1–10

    Google Scholar 

  129. Meerschaert MM, Benson D, Scheffler HP, Becker-Kern P (2001) Governing equations and solutions of anomalous random walk limits. Phys Rev E 66:060102(R)

    Google Scholar 

  130. Rehfeldt KR, Boggs JM, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. Water Resour Res 28(12):3309–3324

  131. Boggs JM, Beard LM, Long SE, McGee MP (1993) Database for the second macrodispersion experiment (made-2)s. EPRI report TR-102072, Electric Power Resources Institute, Palo Alto, CA

  132. Zhang Y, Lv M (2007) Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water Resour Res 43:W074377

    Google Scholar 

  133. Zhang Y, Papelis C, Young MH, Berli M (2013) Challenges in the application of fractional derivative models in capturing solute transport in porous media: Darcy-scale fractional dispersion and the influence of medium properties. Math Prob Eng pp 1–10

  134. Burns E (1996) Results of 2-dimensional sandbox experiments: Longitudinal dispersivity determination and seawater intrusion of coastal aquifers. Master’s thesis, University of Nevada, Reno

  135. Zhang X, Crawford JW, Deeks LK, Stutter MI, Bengough AG, Young IM (2005) A mass balance based numerical method for the fractional advection-dispersion equation: Theory and application. Water Resour Res 41(7):W07029

    Google Scholar 

  136. Zhou L, Selim H (2003) Application of the fractional advection-dispersion equation in porous media. Soil Sci Soc Am J 67(4):1079–1084

    Google Scholar 

  137. Deng ZQ, Singh V, Bengtsson L (2004) Numerical solution of fractional advection-dispersion equation. J Hydraul Eng 130(5)

  138. Deng ZQ, Bengtsson L, Singh VP (2006) Parameter estimation for fractional dispersion model for rivers. Environ Fluid Mech 6(5):451–475

    Google Scholar 

  139. Deng ZQ, Lima JLD, de Lima MIP, Singh VP (2006) A fractional dispersion model for overland solute transport. Water Resour Res 42(3):W03416

    Google Scholar 

  140. Cushman JH (1991) On diffusion in fractal porous media. Water Resour Res 27(4):643–644

    Google Scholar 

  141. Cushman JH, Hu X, Ginn TR (1994) Nonequilibrium statistical mechanics of preasymptotic dispersion. J Stat Phys 75(5):859–878

    MathSciNet  MATH  Google Scholar 

  142. Dentz M, Tartakovsky DM (2006) Delay mechanisms of non-fickian transport in heterogeneous media. Geophys Res Lett 33(16)

  143. Dentz M, Cortis A, Scher H, Berkowitz B (2004) Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport. Adv Water Resour 27(2):155–173

    Google Scholar 

  144. Schumer R, Benson D, Meerschaert M, Baeumer B (2003) Multiscaling fractional advection-dispersion equations and their solutions. Water Resour Res 39(1):1022–1032

    Google Scholar 

  145. Clarke DD, Meerschaert MM, Wheatcraft SW (2005) Fractal travel time estimates for dispersive contaminantsa. Groundwater 43(3):401–407

    Google Scholar 

  146. Benson DA, Wheatcraft SW, Meerschaert MM (2000) The fractional-order governing equation of Lévy motion. Water Resour Res 36(6):1413–1423

    Google Scholar 

  147. Meerschaert MM, Tadjeran C (2004) Finite difference approximations for fractional advection-dispersion flow equations. J Comput Appl Math 172(1):65–77

    MathSciNet  MATH  Google Scholar 

  148. Kelly JF, Meerschaert MM (2019) The fractional advection-dispersion equation for contaminant transport. De Gruyter Reference, De Gruyter, chapter 6 of Handbook of Fractional Calculus with Applications in Applications in Physics, Part B

  149. Zhang Y, Benson DA, Meerschaert MM, Scheffler HP (2006) On using random walks to solve the space-fractional advection-dispersion equations. J Stat Phys 123(1):89–110

    MathSciNet  MATH  Google Scholar 

  150. Kelly JF, Sankaranarayanan H, Meerschaert MM (2019) Boundary conditions for two-sided fractional diffusion. J Comput Phys 376:1089–1107

    MathSciNet  MATH  Google Scholar 

  151. D’Elia M, Gulian M (2021) Analysis of anisotropic nonlocal diffusion models: Well-posedness of fractional problems for anomalous transport. arXiv preprint arXiv:210104289

  152. Zaslavsky G (1994) Fractional kinetic equation for Hamiltonian chaos. Physica D 76:110–122

    MathSciNet  MATH  Google Scholar 

  153. Liu F, Anh VV, Turner I, Zhuang P (2003) Time fractional advection-dispersion equation. J Appl Math Comput 13(1):233–245

    MathSciNet  MATH  Google Scholar 

  154. Meerschaert MM, Straka P (2013) Inverse stable subordinators. Math Model Nat Phenom 8(2):1–16

    MathSciNet  MATH  Google Scholar 

  155. Schumer R, Benson DA, Meerschaert MM, Baeumer B (2003) Fractal mobile/immobile solute transport. Water Resour Res 39(10):1296

    Google Scholar 

  156. Coats K, Smith B (1964) Dead-end pore volume and dispersion in porous media. Soc Petrol Eng J 4(1):73–84

    Google Scholar 

  157. Benson DA, Meerschaert MM (2009) A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations. Adv Water Resour 32:532–539

    Google Scholar 

  158. Haggerty R, Wondzell SM, Johnson MA (2002) Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream. Geophys Res Lett 29(13):1–18

    Google Scholar 

  159. Schmadel NM, Ward AS et al (2016) Stream solute tracer timescales changing with discharge and reach length confound process interpretation. Water Resour Res 52(4):3227–3245

    Google Scholar 

  160. Atangana A, Kilicman A (2014) On the generalized mass transport equation to the concept of variable fractional derivative. Math Prob Eng 2014

  161. Kobelev Y, Kobelev L, Klimontovich Y (2003) Anomalous diffusion with time-and coordinate-dependent memory. Dokl Phys 48:264–268

    MathSciNet  MATH  Google Scholar 

  162. Sokolov IM, Klafter J (2006) Field-induced dispersion in subdiffusion. Phys Rev Lett 97(14)

    Google Scholar 

  163. Sun H, Chen W, Chen Y (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388(21):4586–4592

    Google Scholar 

  164. Sun H, Chen W, Sheng H, Chen Y (2010) On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys Lett A 374(7):906–910

    MATH  Google Scholar 

  165. Sun H, Zhang Y, Chen W, Reeves DM (2014) Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J Contam Hydrol 157:47–58

    Google Scholar 

  166. Gerasimov D, Kondratieva V, Sinkevich O (2010) An anomalous non-self-similar infiltration and fractional diffusion equation. Physica D 239:1593–1597

    MATH  Google Scholar 

  167. Obembe AD, Hossain ME, Abu-Khamsin SA (2017) Variable-order derivative time fractional diffusion model for heterogeneous porous media. J Petrol Sci Eng 152:391–405

    Google Scholar 

  168. Pang G, Perdikaris P, Cai W, Karniadakis G (2017) Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization. J Comput Phys 348:694–714

    MathSciNet  MATH  Google Scholar 

  169. Berkowitz B, Emmanuel S, Scher H (2008) Non-fickian transport and multiple-rate mass transfer in porous media. Water Resour Res 44(3)

  170. Pang G, Lu L, Karniadakis GE (2019) fPINNs: Fractional physics-informed neural networks. SIAM J Sci Comput 41(4):A2603–A2626

    MathSciNet  MATH  Google Scholar 

  171. You H, Yu Y, Trask N, Gulian M, D’Elia M (2021) Data-driven learning of robust nonlocal physics from high-fidelity synthetic data. Comput Methods Appl Mech Eng 374:113553

    MATH  Google Scholar 

  172. Eames I, Flor JB (2011) New developments in understanding interfacial processes in turbulent flows

  173. Emmons HW (1970) Critique of numerical modeling of fluid-mechanics phenomena. Annu Rev Fluid Mech 2(1):15–36

    Google Scholar 

  174. Hussaini MY, Voigt RG (2012) Instability and transition: Materials of the workshop held May 15–June 9, 1989 in Hampton, Virginia, volume 2. Springer Science & Business Media

  175. Karniadakis GE, Orszag SA et al (1993) Nodes, modes and flow codes. Phys Today 46(3):34–42

    Google Scholar 

  176. Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    MATH  Google Scholar 

  177. Orszag SA, Patterson G Jr (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys Rev Lett 28(2):76

    Google Scholar 

  178. Chorin AJ, Marsden JE, Marsden JE (1990) A mathematical introduction to fluid mechanics, vol 168. Springer

    MATH  Google Scholar 

  179. Temam R (2001) Navier-Stokes equations: Theory and numerical analysis, vol 343. American Mathematical Soc

  180. White FM, Majdalani J (2006) Viscous fluid flow, vol 3. McGraw-Hill New York

  181. Lumley JL, McMichael JM (1995) Turbulence modeling. Technical Report, Sibley Scholl of Mechanical and Aerospace Engineering Ithaca NY

  182. Wilcox DC et al (1998) Turbulence modeling for CFD, vol 2. DCW industries La Canada, CA

    Google Scholar 

  183. Pope SB (2001) Turbulent flows

  184. Eringen AC, Wegner J (2003) Nonlocal continuum field theories. Appl Mech Rev 56(2):B20–B22

    Google Scholar 

  185. Egolf PW, Kutter K (2020) Nonlinear, nonlocal and fractional turbulence. Graduate Studies in Mathematics, Springer

  186. Meneveau C (1994) Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Phys Fluids 6(2):815–833

    MATH  Google Scholar 

  187. Akhavan-Safaei A, Seyedi SH, Zayernouri M (2020) Anomalous features in internal cylinder flow instabilities subject to uncertain rotational effects. Phys Fluids 32(9)

    Google Scholar 

  188. Prandtl L (1942) Bemerkungen zur theorie der freien turbulenz. ZAMM-J Appl Math Mech/Z Angew Math Mech 22(5):241–243

    MathSciNet  MATH  Google Scholar 

  189. Bradshaw P (1973) Agardograph, no. 169. Nato Science and Technology Organisation, USA

  190. Lumley JL (1970) Toward a turbulent constitutive relation. J Fluid Mech 41(2):413–434

    Google Scholar 

  191. Spencer AJM, Rivlin RS (1958) The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch Ration Mech Anal 2(1):309–336

    MathSciNet  MATH  Google Scholar 

  192. Spencer AJM, Rivlin RS (1959) Further results in the theory of matrix polynomials. Arch Ration Mech Anal 4(1):214–230

    MathSciNet  MATH  Google Scholar 

  193. Pope S (1975) A more general effective-viscosity hypothesis. J Fluid Mech 72(2):331–340

    MATH  Google Scholar 

  194. Hinze JO, Sonnenberg R, Builtjes PJH (1974) Memory effect in a turbulent boundary-layer flow due to a relatively strong axial variation of the mean-velocity gradient. Appl Sci Res 29(1):1–13

    Google Scholar 

  195. Kraichnan RH (1964) Direct-interaction approximation for shear and thermally driven turbulence. Phys Fluids 7(7):1048–1062

    MathSciNet  Google Scholar 

  196. Chen W (2006) A speculative study of 2/ 3-order fractional laplacian modeling of turbulence: Some thoughts and conjectures. Chaos: Interdisciplinary J Nonlinear Sci 16(2):023126

  197. Egolf PW, Hutter K (2017a) Fractional turbulence models. In: Progress in Turbulence VII, Springer, pp 123–131

  198. Epps BP, Cushman-Roisin B (2018) Turbulence modeling via the fractional laplacian. arXiv preprint arXiv:180305286

  199. Hamba F (1995) An analysis of nonlocal scalar transport in the convective boundary layer using the green’s function. J Atmos Sci 52(8):1084–1095

    Google Scholar 

  200. Hamba F (2005) Nonlocal analysis of the reynolds stress in turbulent shear flow. Phys Fluids 17(11)

    MATH  Google Scholar 

  201. Egolf PW, Hutter K (2017b) Fractional turbulence models. In: Progress in Turbulence VII, Springer, pp 123–131

  202. Di Leoni PC, Zaki TA, Karniadakis G, Meneveau C (2021) Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows. J Fluid Mech 914

  203. Harris S (2004) An introduction to the theory of the Boltzmann equation. Courier Corporation

  204. Girimaji SS (2007) Boltzmann kinetic equation for filtered fluid turbulence. Phys Rev Lett 99(3)

    Google Scholar 

  205. Sagaut P (2010) Toward advanced subgrid models for Lattice-Boltzmann-based Large-eddy simulation: Theoretical formulations. Comput Math App 59(7):2194–2199

    MathSciNet  MATH  Google Scholar 

  206. Applebaum D (2009) Lévy processes and stochastic calculus. Cambridge University Press

    MATH  Google Scholar 

  207. Saint-Raymond L (2009) Hydrodynamic limits of the Boltzmann equation, No. 1971. Springer Science & Business Media

  208. Akhavan-Safaei A, Zayernouri M (2022) A nonlocal spectral transfer model and new scaling law for scalar turbulence. J Fluid Mech. In press, arXiv preprint arXiv:211106540

  209. Samiee M, Akhavan-Safaei A, Zayernouri M (2022) Tempered fractional les modeling. J Fluid Mech 932

  210. Hadi Seyedi S, Akhavan-Safaei A, Zayernouri M (2022) Dynamic nonlocal passive scalar subgrid-scale turbulence modeling. submitted to the Journal of Fluid Mechanics. arXiv e-prints, pp arXiv–2203

  211. Seyedi SH, Zayernouri M (2022) A data-driven dynamic nonlocal subgrid-scale model for turbulent flows. Phys Fluids 34(3)

    Google Scholar 

  212. Laval J, Dubrulle B, Nazarenko S (2001) Nonlocality and intermittency in three-dimensional turbulence. Phys Fluids 13(7):1995–2012

    MATH  Google Scholar 

  213. Song F, Karniadakis GE (2018) A universal fractional model of wall-turbulence. arXiv preprint arXiv:180810276

  214. Song F, Karniadakis GE (2021) Variable-order fractional models for wall-bounded turbulent flows. Entropy 23(6):782

    MathSciNet  Google Scholar 

  215. Pang G, D’Elia M, Parks M, Karniadakis GE (2020b) nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications. J Comput Phys 422:109760

  216. Parish EJ, Duraisamy K (2017) A dynamic subgrid scale model for large eddy simulations based on the Mori-Zwanzig formalism. J Comput Phys 349:154–175

    MathSciNet  MATH  Google Scholar 

  217. Bagley RL (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27(10):1412–1417

    Google Scholar 

  218. Craiem D, Rojo FJ, Atienza JM, Armentano RL, Guinea GV (2008) Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys Med Biol 53(17):4543

    Google Scholar 

  219. Djordjević VD, Jarić J, Fabry B, Fredberg JJ, Stamenović D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31(6):692–699

    Google Scholar 

  220. Magin RL, Royston TJ (2010) Fractional-order elastic models of cartilage: a multi-scale approach. Commun Nonlinear Sci Numer Simul 15(3):657–664

    MathSciNet  MATH  Google Scholar 

  221. Meral F, Royston T, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15(4):939–945

    MathSciNet  MATH  Google Scholar 

  222. Puig-de-Morales-Marinkovic M, Turner K, Butler J, Fredberg J, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Phys Cell Physiol 293(2):C597–C605

    Google Scholar 

  223. Nicolle S, Vezin P, Palierne JF (2010) A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues. J Biomech 43(5):927–932

    Google Scholar 

  224. Suki B, Barabasi A, Lutchen K (1994) Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol 76(6):2749–2759

    Google Scholar 

  225. Baghdadi H, Sardinha H, Bhatia S (2005) Rheology and gelation kinetics in laponite dispersions containing poly(ethylene oxide). J Polym Sci B: Polym Phys 43(2):233–240

    Google Scholar 

  226. Ketz RJ, Prud’homme RK, Graessley WW (1988) Rheology of concentrated microgel solutions. Rheol Acta 27(5):531–539

    Google Scholar 

  227. Winter H, Mours M (1997) Rheology of polymers near liquid-solid transitions. Adv Polym Sci 134:165–234

    Google Scholar 

  228. Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. arXiv:11103400v1

  229. Gerasimov A (1948) A generalization of linear laws of deformation and its applications to problems pf internal friction. Prikl Mat Mekh (J Appl Math Mech) 12(3):251–260

    Google Scholar 

  230. Valério D, Machado JT, Kiryakova V (2014) Some pioneers of the applications of fractional calculus. Fract Calc Appl Anal 17(2):552–578

    MathSciNet  MATH  Google Scholar 

  231. Mainardi F (2012) An historical perspective on fractional calculus in linear viscoelasticity. Fract Calc Appl Anal 15(4):712–717

    MathSciNet  MATH  Google Scholar 

  232. Lion A (1997) On the thermodynamics of fractional damping elements. Continuum Mech Thermodyn 9(2):83–96

    MathSciNet  MATH  Google Scholar 

  233. Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys A: Math Gen 26(19):5057

    Google Scholar 

  234. Schiessel H, Metzler R, Blumen A, Nonnenmacher T (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A: Math Gen 28(23):6567

    MATH  Google Scholar 

  235. Bagley R, Torvik P (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    MATH  Google Scholar 

  236. Glöckle WG, Nonnenmacher TF (1993) Fox function representation of non-debye relaxation processes. J Stat Phys 71(3):741–757

    MathSciNet  MATH  Google Scholar 

  237. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized stokes-einstein equation. Rheol Acta 39(4):371–378

    Google Scholar 

  238. Mashayekhi S, Hussaini MY, Oates W (2019) A physical interpretation of fractional viscoelasticity based on the fractal structure of media: Theory and experimental validation. J Mech Phys Solids 128:137–150

    MathSciNet  Google Scholar 

  239. Blair GS, Veinoglou B, Caffyn J (1947) Limitations of the newtonian time scale in relation to non-equilibrium rheological states and a theory of quasi-properties. Proc Royal Soc London Ser A Math Phys Sci 189(1016):69–87

    MATH  Google Scholar 

  240. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen D, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation of entangled ring polymers. Nat Mater 7:997–1002

    Google Scholar 

  241. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci 104(40):15619–15624

    Google Scholar 

  242. Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410:667–671

    Google Scholar 

  243. Szymanski J, Weiss M (2009) Elucidating the origin of anomalous diffusion in crowded fluids. Phys Rev Lett 103(3)

    Google Scholar 

  244. Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104(23)

    Google Scholar 

  245. Vincent J (2012) Structural biomaterials. Princeton University Press

    Google Scholar 

  246. McKinley G, Jaishankar A (2013) Critical gels, scott blair and the fractional calculus of soft squishy materials. Presentation

  247. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552

    MathSciNet  MATH  Google Scholar 

  248. Fung YC (2013) Biomechanics: Mechanical properties of living tissues. Springer Science & Business Media

  249. Doehring T, Freed A, Carew E, Vesely I (2005) Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. J Biomech Eng 127(4):700–708

    Google Scholar 

  250. Suzuki J, Zayernouri M, Bittencourt M, Karniadakis G (2016) Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput Methods Appl Mech Eng 308:443–467

    MathSciNet  MATH  Google Scholar 

  251. Xiao R, Sun H, Chen W (2017) A finite deformation fractional viscoplastic model for the glass transition behavior of amorphous polymers. Int J Non-Linear Mech 93:7–14

    Google Scholar 

  252. Suzuki J, Zhou Y, D’Elia M, Zayernouri M (2021) A thermodynamically consistent fractional visco-elasto-plastic model with memory-dependent damage for anomalous materials. Comput Methods Appl Mech Eng 373

    MathSciNet  MATH  Google Scholar 

  253. Sumelka W (2014) Application of fractional continuum mechanics to rate independent plasticity. Acta Mech 225(11):3247–3264

    MathSciNet  MATH  Google Scholar 

  254. Sumelka W (2014) Fractional viscoplasticity. Mech Res Commun 56:31–36

    Google Scholar 

  255. Sun Y, Sumelka W (2019) Fractional viscoplastic model for soils under compression. Acta Mech 230(9):3365–3377

    MathSciNet  MATH  Google Scholar 

  256. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    MATH  Google Scholar 

  257. Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. J Comput Phys 293:400–408

    MathSciNet  MATH  Google Scholar 

  258. Alfano G, Musto M (2017) Thermodynamic derivation and damage evolution for a fractional cohesive zone model. J Eng Mech 143(7):D4017001

    Google Scholar 

  259. Fabrizio M (2013) Fractional rheological models for thermomechanical systems. Dissipation and free energies. Fract Calc Appl Anal 17(1):206–223

  260. Lemaitre J (1996) A course on damage mechanics. Springer

    MATH  Google Scholar 

  261. Sumelka W, Łuczak B, Gajewski T, Voyiadjis G (2020) Modelling of AAA in the framework of time-fractional damage hyperelasticity. Int J Solids Struct 206:30–42

    Google Scholar 

  262. Beltempo A, Zingales M, Bursi OS, Deseri L (2018) A fractional-order model for aging materials: an application to concrete. Int J Solids Struct 138:13–23

    Google Scholar 

  263. Meng R, Yin D, Drapaca CS (2019) Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput Mech 64(1):163–171

    MathSciNet  MATH  Google Scholar 

  264. Ding W, Patnaik S, Sidhardh S, Semperlotti F (2021) Applications of distributed-order fractional operators: a review. Entropy 23:110

    MathSciNet  Google Scholar 

  265. Wang Y, Li Z, Ouyang J, Karniadakis GE (2020) Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter 16(20):4756–4766

    Google Scholar 

  266. Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE (2015) Imaging viscoelastic properties of live cells by afm: power-law rheology on the nanoscale. Soft Matter 11(23):4584–4591

    Google Scholar 

  267. Kharazmi E, Zayernouri M, Karniadakis GE (2017) Petrov-Galerkin and spectral collocation methods for distributed order differential equations. SIAM J Sci Comput 39(3):A1003–A1037

    MathSciNet  MATH  Google Scholar 

  268. Sancho JM, Lacasta A, Lindenberg K, Sokolov IM, Romero A (2004) Diffusion on a solid surface: Anomalous is normal. Phys Rev Lett 92(25)

    Google Scholar 

  269. Lawler GF (2010) Random walk and the heat equation, vol 55. American Mathematical Soc

  270. Samorodnitsky G, Taqqu M (1994) Stable Non-Gaussian random processes stochastic: Models with infinite variance. Chapman and Hall/CRC

  271. Nolan JP (1998) Parameterizations and modes of stable distributions. Statist Probab Lett 38(2):187–195

    MathSciNet  MATH  Google Scholar 

  272. Scher H, Lax M (1973) Stochastic transport in a disordered solid. I. Theory. Phys Rev B 7(10):4491

    MathSciNet  Google Scholar 

  273. Scher H, Lax M (1973) Stochastic transport in a disordered solid. II. Impurity conduction. Phys Rev B 7(10):4502

    Google Scholar 

Download references

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration contract number DE-NA0003525. This paper, SAND2021-11291 R, describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Funding

Marta D’Elia and Mamikon Gulian were partially supported by the U.S. Department of Energy, Office of Advanced Scientific Computing Research under the Collaboratory on Mathematics and Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs) project. Marta D’Elia was also supported by the Sandia National Laboratories Laboratory-directed Research and Development (LDRD) program, project 218318. Mamikon Gulian was also supported by John von Neumann fellowship at Sandia National Laboratories. Mohsen Zayernouri and Jorge L. Suzuki were supported by the ARO Young Investigator Program (YIP) award (W911NF-19-1-0444), the National Science Foundation award (DMS-1923201), and the MURI/ARO grant (W911NF-15-1-0562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta D’Elia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, J.L., Gulian, M., Zayernouri, M. et al. Fractional Modeling in Action: a Survey of Nonlocal Models for Subsurface Transport, Turbulent Flows, and Anomalous Materials. J Peridyn Nonlocal Model 5, 392–459 (2023). https://doi.org/10.1007/s42102-022-00085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-022-00085-2

Keywords

Navigation