Skip to main content
Log in

The inverted exponentiated Chen distribution with application to cancer data

  • Original Paper
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

This article defines a new inverted exponentiated Chen (IEC) distribution, which has upside-down bathtub shape and increasing hazard function. A detailed analysis (along with a graphical analysis) of the density and hazard rate function is carried out. The maximum likelihood and Bayesian methods are discussed to estimate the parameters of the IEC distribution based on a right censored scheme. The Lindley approximation is used to obtain the Bayes estimator under squared error and LINEX loss functions. Observed Fisher information matrix and asymptotic confidence intervals of parameters are derived. Also, we conduct the numerical simulation to compare the accuracy of the various estimators through the mean square error (MSE) values. Finally, four cancer datasets are analyzed to illustrate the applicability and flexibility of the IEC distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abouammoh, A. M., & Alshingiti, A. M. (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation, 79, 1301–1315.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaubey, Y. P., & Zhang, R. (2015). An extension of Chen’s family of survival distributions with bathtub shape or increasing hazard rate function. Communications in Statistics-Theory and Methods, 44(19), 4049–4064.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statistics and Probability Letters, 49, 155–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Dey, S., Kumar, D., Ramos, P. L., & Louzada, F. (2017). Exponentiated Chen distribution: Properties and estimation. Communications in Statistics-Simulation and Computation, 46(10), 8118–8139.

    Article  MathSciNet  MATH  Google Scholar 

  • Durrans, S. R. (1992). Distributions of fractional order statistics in hydrology. Water Resources Research, 28, 1649–1655.

    Article  Google Scholar 

  • Foekens, J., Peters, H., Look, M., Portengen, H., Schmitt, M., Kramer, M., Brunner, N., Janicke, F., Meijer-van Gelder, M., Henzen-Logmans, S., van Putten, W., & Klijn, J. (2000). The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Research, 60, 636–643.

    Google Scholar 

  • Galton, F. (1988). Enquiries into Human Faculty and its Development. London: Macmillan & Company.

    Google Scholar 

  • Henningsen, A., & Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3), 443–458.

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, M., & Chung, Y. (2018). Bayesian inference of three-parameter bathtub-shaped lifetime distribution. Communications in Statistics-Theory and Methods, 47(17), 4229–4241.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D. & Prentice, R. L. (2011). The statistical analysis of failure time data, volume 360. John Wiley Sons.

  • Keller, A. Z., & Kamath, A. R. R. (1982). Alternative Reliability Models for Mechanical Systems. Proceeding of the 3rd International Conference on Reliability and Maintainability, 411–415.

  • Keller, A. Z., Kamath, A., & Perera, U. D. (1982). Reliability analysis of CNC machine tools. Reliability Engineering, 3, 449–473.

    Article  Google Scholar 

  • Kyle, R. (1983). Long term survival in multiple myeloma. The New England journal of medicine, 308(6), 314–6.

    Article  Google Scholar 

  • Lehmann, E. L. (1953). The Power of Rank Tests. Annals of Mathematical Statistics, 24, 23–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann, E. L., & Shaffer, J. P. (1988). Inverted distributions. The American Statistician, 42, 833–836.

    MathSciNet  Google Scholar 

  • Lindley, D. V. (1980). Approximate bayesian methods. Trabajos de Estadistica Y de Investigacion Operativa, 31(1), 223–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, C. T., Duran, B. S., & Lewis, T. O. (1982). Inverted gamma as life distribution. Microelectronics Reliability, 29, 619–626.

    Article  Google Scholar 

  • Loprinzi, C. L., Laurie, J. A., Wieand, H., Krook, J. E., Novotny, P. J., Kugler, J. W., Bartel, J., Law, M., Bateman, M.A., & Klatt, N. E. (1994). Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 12(3), 601–607.

  • Marshall, A. W., & Olkin, I. (2007). Life Distributions. New York: Springer.

    MATH  Google Scholar 

  • Moors, J. J. (1988). A quantile alternative for kurtosis. Statistician, 37, 25–32.

    Article  Google Scholar 

  • Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability, 42, 299–302.

    Article  MATH  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Sharma, V. K., Singh, S. K., Singh, U., & Agiwal, V. (2015). The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data. Journal of Industrial and Production Engineering, 32, 162–173.

    Article  Google Scholar 

  • Sharma, V. K., Singh, S. K., Singh, U., & Merovci, F. (2016). The generalized inverse Lindley distribution: A new inverse statistical model for the study of upside-down bathtub data. Communications in Statistics-Theory and Methods, 45, 5709–5729.

    Article  MathSciNet  MATH  Google Scholar 

  • Soliman, A. A., Abd Ellah, A. H., Abou-Elheggag, N. A., & Modhesh, A. A. (2013). Estimation from Burr type XII distribution using progressive first-failure censored data. Journal of Statistical Computation and Simulation, 83(12), 2270–2290.

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava, P. K., & Srivastava, R. S. (2014). Two parameter Inverse Chen distribution as Survival Model. International Journal of Statistika and Mathematika, 11(1), 12–16.

    Google Scholar 

  • Tahir, M. H., Cordeiro, G. M., Ali, S., Dey, S., & Manzoor, A. (2018). The inverted Nadarajah-Haghighi distribution: estimation methods and applications. Journal of Statistical Computation and Simulation, 88, 2775–2798.

    Article  MathSciNet  MATH  Google Scholar 

  • Taketomi, N., Yamamoto, K., Chesneau, C., & Emura, T. (2022). Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch. Mathematics, 10, 3907.

    Article  Google Scholar 

  • Therneau, T. M. (2021). A Package for Survival Analysis in R. R Package Version 3.2-13. Available online: https://CRAN.R-project.org/package=survival

  • Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function. Journal of the American Statistical Association, 81, 446–451.

  • Zhang, R. (2004). A new three-parameter lifetime distribution with bathtub shape or increasing failure rate function and a ood data application. PhD thesis, Concordia University, Montreal, Quebec, Canada.

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their constructive comments, which led to improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azimi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Elements of the observed information matrix

$$\begin{aligned} \left\{ \begin{array}{lll} \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}})}{\partial \alpha ^2}=-\frac{r}{\alpha ^2}, \\ \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}}) }{\partial \beta ^2}=-\frac{r}{\beta ^2}-\sum _{i=1}^n \delta _i \left[ t_i^{-2 \beta } \left( \log t_i\right) ^2 \left( t_i^{\beta } \left[ \lambda e^{t_i^{-\beta }}-1\right] +\lambda e^{t_i^{-\beta }}\right) \right] \\ \quad \quad \quad \quad \quad \quad \quad \quad -\sum _{i=1}^{n} \frac{\lambda \left( \alpha -\delta _i\right) t_i^{-2 \beta } \left( \log t_i\right) ^2 e^{t_i^{-\beta }+\lambda } \left[ t_i^{\beta } \left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) +e^{\lambda e^{t_i^{-\beta }}} \left( \lambda e^{t_i^{-\beta }}-1\right) +e^{\lambda }\right] }{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^2}, \\ \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}}) }{\partial \lambda ^2}=-\frac{r}{\lambda ^2}-\sum _{i=1}^n \frac{\left( \alpha -\delta _i\right) \left( e^{t_i^{-\beta }}-1\right) ^2 e^{\lambda e^{t_i^{-\beta }}+\lambda }}{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^2}, \\ \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}}) }{\partial \alpha \partial \beta }=-\sum _{i=1}^n \frac{\lambda t_i^{-\beta } \log t_i e^{\lambda \left( 1-e^{t_i^{-\beta }}\right) +t_i^{-\beta }}}{1-e^{\lambda \left( 1-e^{t_i^{-\beta }}\right) }}, \\ \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}}) }{\partial \alpha \partial \lambda }=\sum _{i=1}^n \frac{e^{\lambda } \left( e^{t_i^{-\beta }}-1\right) }{e^{\lambda e^{t_i^{-\beta }}}-e^{\lambda }}, \\ \frac{\partial ^2 \ell (\alpha , \beta , \lambda \mid {\varvec{D}}) }{\partial \beta \partial \lambda }=\sum _{i=1}^n \delta _i e^{t_i^{-\beta }} t_i^{-\beta } \log t_i, \\ \quad \quad \quad \quad \quad \quad \quad \quad +\sum _{i=1}^n \frac{\left( \alpha -\delta _i\right) t_i^{-\beta } \log t_i e^{t_i^{-\beta }+\lambda } \left[ e^{\lambda e^{t_i^{-\beta }}} \left( \lambda \left[ e^{t_i^{-\beta }}-1\right] -1\right) +e^{\lambda }\right] }{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^2}. \end{array} \right. \end{aligned}$$

Appendix B: Elements of Eq. (20)

$$\begin{aligned}{} & {} \left\{ \begin{array}{lll} \theta _{1}=\frac{\partial \theta }{\partial \alpha },\quad \theta _{2}=\frac{\partial \theta }{\partial \beta },\quad \theta _{3}=\frac{\partial \theta }{\partial \lambda },\\ \theta _{11}=\frac{\partial ^2 \theta }{\partial \alpha ^2},\quad \theta _{12}=\frac{\partial ^2 \theta }{\partial \alpha \partial \beta },\quad \theta _{13}=\frac{\partial ^2 \theta }{\partial \alpha \partial \lambda },\\ \theta _{33}=\frac{\partial ^2 \theta }{\partial \lambda ^2},\quad \theta _{22}=\frac{\partial ^2 \theta }{\partial \beta ^2}, \quad \theta _{23}=\frac{\partial ^2 \theta }{\partial \beta \partial \lambda }, \end{array} \right. \\{} & {} \left\{ \begin{array}{lll} \rho =\log \pi (\alpha , \beta , \lambda ),\\ \rho _{1}=\frac{\partial \rho }{\partial \alpha }=\frac{a_1-1}{\alpha }-b_1,\\ \rho _{2}=\frac{\partial \rho }{\partial \beta }=\frac{a_2-1}{\beta }-b_2,\\ \rho _{3}=\frac{\partial \rho }{\partial \lambda }=\frac{a_3-1}{\lambda }-b_3, \end{array} \right. \\{} & {} \left\{ \begin{array}{lll} \ell _{300}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{\partial \alpha ^3}=\frac{2 r}{\alpha ^3},\\ \ell _{120}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{\partial \alpha \partial \beta ^2}=-\sum _{i=1}^{n}\frac{\lambda t_i^{-2 \beta } \log ^2\left( t_i\right) e^{t_i^{-\beta }+\lambda } \left( t_i^{\beta } \left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) +e^{\lambda e^{t_i^{-\beta }}} \left( \lambda e^{t_i^{-\beta }}-1\right) +e^{\lambda }\right) }{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) {}^2},\\ \ell _{102}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D}) }{\partial \alpha \partial \lambda ^2}=-\sum _{i=1}^{n}\frac{\left( e^{t_i^{-\beta }}-1\right) ^2 e^{\lambda e^{t_i^{-\beta }}+\lambda }}{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^2},\\ \ell _{210}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{\partial \alpha ^2 \partial \beta }=0,\\ \ell _{201}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{\partial \alpha ^2 \partial \lambda }=0,\\ \ell _{012}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D}) }{\partial \beta \partial \lambda ^2}=-\sum _{i=1}^{n} \frac{\left( \alpha -\delta _i\right) \left( e^{t_i^{-\beta }}-1\right) t_i^{-\beta } \log \left( t_i\right) e^{\lambda e^{t_i^{-\beta }}+t_i^{-\beta }+\lambda }}{\left( e^{\lambda e^{t_i^{-\beta }}}-e^{\lambda }\right) {}^3}\\ \quad \quad \quad \ \ \times e^{\lambda e^{t_i^{-\beta }}} \left( \lambda \left( e^{t_i^{-\beta }}-1\right) -2\right) +e^{\lambda } \left( \lambda \left( e^{t_i^{-\beta }}-1\right) +2\right) , \end{array} \right. \\{} & {} \left\{ \begin{array}{lll} \ell _{021}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D}) }{\partial \beta ^2 \partial \lambda }=\sum _{i=1}^n \delta _i \left( -e^{t_i^{-\beta }} t_i^{-2 \beta } \left( t_i^{\beta }+1\right) \log ^2\left( t_i\right) \right) \\ \quad \quad \quad \quad -\sum _{i=1}^{n}\frac{(\alpha -\delta _i)t_i^{-2 \beta }\left( \log t_i\right) ^2 e^{t_i^{-\beta }+\lambda }}{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^3}\\ \quad \quad \quad \quad \times \Bigg [e^{2 \lambda e^{t_i^{-\beta }}} \left( \lambda e^{t_i^{-\beta }} \left( \lambda \left( e^{t_i^{-\beta }}-1\right) -3\right) +\lambda +1\right) +e^{2 \lambda }\\ \quad \quad \quad \quad +e^{\lambda e^{t_i^{-\beta }}+\lambda } \left( \lambda \left( e^{t_i^{-\beta }} \left( \lambda \left( e^{t_i^{-\beta }}-1\right) +3\right) -1\right) -2\right) \\ \quad \quad \quad \quad +t_i^{\beta } \left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) \left( e^{\lambda e^{t_i^{-\beta }}} \left( \lambda \left( e^{t_i^{-\beta }}-1\right) -1\right) +e^{\lambda }\right) \Bigg ],\\ \ell _{111}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D}) }{\partial \alpha \partial \beta \partial \lambda }=\sum _{i=1}^{n}\frac{t_i^{-\beta } \log \left( t_i\right) e^{t_i^{-\beta }+\lambda } \left( e^{\lambda e^{t_i^{-\beta }}} \left( \lambda \left( e^{t_i^{-\beta }}-1\right) -1\right) +e^{\lambda }\right) }{\left( e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right) ^2}\\ \ell _{030}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{ \partial \beta ^{3}}=\sum _{i=1}^n \delta _i \left[ t_i^{-3 \beta } \left( \log t_i\right) ^3 \left( 3 \lambda e^{t_i^{-\beta }} t_i^{\beta }+t_i^{2 \beta } \left[ \lambda e^{t_i^{-\beta }}-1\right] +\lambda e^{t_i^{-\beta }}\right) \right] \\ \quad \quad \quad \quad +\sum _{i=1}^{n} \frac{\lambda \left( \alpha -\delta _i\right) (\log t_i)^3 e^{t_i^{-\beta }+\lambda }}{t_i^{3 \beta } \big (e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\big )^3} \times \Bigg \{e^{2 \lambda }+e^{2 \lambda e^{t_i^{-\beta }}} \left[ \lambda e^{t_i^{-\beta }} \left( \lambda e^{t_i^{-\beta }}-3\right) +1\right] \\ \quad \quad \quad \quad +e^{\lambda e^{t_i^{-\beta }}+\lambda } \left[ \lambda e^{t_i^{-\beta }} \left( \lambda e^{t_i^{-\beta }}+3\right) -2\right] \\ \quad \quad \quad \quad +t_i^{\beta } \left[ e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right] \left( t_i^{\beta } \left[ e^{\lambda }-e^{\lambda e^{t_i^{-\beta }}}\right] +3 \left[ e^{\lambda e^{t_i^{-\beta }}} \left( \lambda e^{t_i^{-\beta }}-1\right) +e^{\lambda }\right] \right) \Bigg \}+\frac{2 r}{\beta ^3},\\ \ell _{003}=\frac{\partial ^3 \ell (\alpha , \beta , \lambda \mid \varvec{D})}{ \partial \lambda ^{3}}=\frac{2 r}{\lambda ^3}+\sum _{i=1}^n\frac{\left( \alpha -\delta _i\right) \big (e^{t_i^{-\beta }}-1\big )^3 \big (e^{\lambda e^{t_i^{-\beta }}+\lambda }\big ) \big (e^{\lambda e^{t_i^{-\beta }}}+e^{\lambda }\big )}{\big (e^{\lambda e^{t_i^{-\beta }}}-e^{\lambda }\big )^3}. \end{array} \right. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, R., Esmailian, M. & Gallardo, D.I. The inverted exponentiated Chen distribution with application to cancer data. Jpn J Stat Data Sci 6, 213–241 (2023). https://doi.org/10.1007/s42081-023-00199-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-023-00199-x

Keywords

Navigation