Skip to main content

A symplectic moving horizon estimation algorithm with its application to the Earth—Moon L2 libration point navigation

Abstract

Accurate state estimations are perquisites of autonomous navigation and orbit maintenance missions. The extended Kalman filter (EKF) and the unscented Kalman filter (UKF), are the most commonly used method. However, the EKF results in poor estimation performance for systems are with high nonlinearity. As for the UKF, irregular sampling instants are required. In addition, both the EKF and the UKF cannot treat constraints. In this paper, a symplectic moving horizon estimation algorithm, where constraints can be considered, for nonlinear systems are developed. The estimation problem to be solved at each sampling instant is seen as a nonlinear constrained optimal control problem. The original nonlinear problem is transferred into a series of linear-quadratic problems and solved iteratively. A symplectic method based on the variational principle is proposed to solve such linear-quadratic problems, where the solution domain is divided into sub-intervals, and state, costate, and parametric variables are locally interpolated with linear approximation. The optimality conditions result in a linear complementarity problem which can be solved by the Lemke’s method easily. The developed symplectic moving horizon estimation method is applied to the Earth-Moon L2 libration point navigation. And numerical simulations demonstrate that though more time-consuming, the proposed method results in better estimation performance than the EKF and the UKF.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Castelvecchi, D. Chinese satellite launch kicks off ambitious mission to Moon’s far side. Nature, 2018, 557(7706): 478–479.

    Article  Google Scholar 

  2. [2]

    Hill, K., Born, G. H., Lo, M. W. Linked, autonomous, interplanetary satellite orbit navigation (LiAISON) in lunar halo orbits. In: Proceedings of AAS/AIAA Astrodynamical Specialists Conference, 2005.

    Google Scholar 

  3. [3]

    Hill, K., Born, G. H. Autonomous interplanetary orbit determination using satellite-to-satellite tracking. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 679–686.

    Article  Google Scholar 

  4. [4]

    Sheikh, S. I., Pines, D. J., Ray, P. S., Wood, K. S., Lovellette, M. N., Wolff, M. T. Spacecraft navigation using X-ray pulsars. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49–63.

    Article  Google Scholar 

  5. [5]

    Psiaki, M. L. Absolute orbit and gravity determination using relative position measurements between two satellites. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285–1297.

    Article  Google Scholar 

  6. [6]

    Cielaszyk, D., Wie, B. New approach to halo orbit determination and control. Journal of Guidance, Control, and Dynamics, 1996, 19(2): 266–273.

    Article  MATH  Google Scholar 

  7. [7]

    Ghorbani, M., Assadian, N. Optimal station-keeping near Earth-Moon collinear libration points using continuous and impulsive maneuvers. Advances in Space Research, 2013, 52(12): 2067–2079.

    Article  Google Scholar 

  8. [8]

    Hou, X. Y., Liu, L., Tang, J. S. Station-keeping of small amplitude motions around the collinear libration point in the real Earth-Moon system. Advances in Space Research, 2011, 47(7): 1127–1134.

    Article  Google Scholar 

  9. [9]

    Welch, G., Bishop, G. An introduction to the Kalman filter. University of North Carolina, 2001.

    Google Scholar 

  10. [10]

    Julier, S. J., Uhlmann, J. K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3): 401–422.

    Article  Google Scholar 

  11. [11]

    Kandepu, R., Foss, B., Imsland, L. Applying the unscented Kalman filter for nonlinear state estimation. Journal of Process Control, 2008, 18(7–8): 753–768.

    Article  Google Scholar 

  12. [12]

    Kalman, R. E., Bucy, R. S. New results in linear filtering and prediction theory. Journal of Basic Engineering, 1961, 83(1): 95–108.

    MathSciNet  Article  Google Scholar 

  13. [13]

    Abdelrahman, M., Park, S. Y. Simultaneous spacecraft attitude and orbit estimation using magnetic field vector measurements. Aerospace Science and Technology, 2011, 15(8): 653–669.

    Article  Google Scholar 

  14. [14]

    Xiong, K., Wei, C. L. Adaptive iterated extended KALMAN filter for relative spacecraft attitude and position estimation. Asian Journal of Control, 2018, 20(4): 1595–1610.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    Soken, H. E., Hajiyev, C. UKF-based reconfigurable attitude parameters estimation and magnetometer calibration. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2614–2627.

    Article  Google Scholar 

  16. [16]

    Rao, C. V., Rawlings, J. B., Lee, J. H. Constrained linear state estimation—a moving horizon approach. Automatica, 2001, 37(10): 1619–1628.

    Article  MATH  Google Scholar 

  17. [17]

    Wang, S., Chen, L., Gu, D. B., Hu, H. S. An optimization based moving horizon estimation with application to localization of autonomous underwater vehicles. Robotics and Autonomous Systems, 2014, 62(10): 1581–1596.

    Article  Google Scholar 

  18. [18]

    Abdollahpouri, M., Takács, G., Rohal’-Ilkiv, B. Real-time moving horizon estimation for a vibrating active cantilever. Mechanical Systems and Signal Processing, 2017, 86: 1–15.

    Article  Google Scholar 

  19. [19]

    Zavala, V. M., Laird, C. D., Biegler, L. T. A fast moving horizon estimation algorithm based on nonlinear programming sensitivity. Journal of Process Control, 2008, 18(9): 876–884.

    Article  Google Scholar 

  20. [20]

    Chen, T. P., Foo, Y. S. E., Ling, K. V., Chen, X. B. Distributed state estimation using a modified partitioned moving horizon strategy for power systems. Sensors, 2017, 17(10): 2310.

    Article  Google Scholar 

  21. [21]

    Vandersteen, J., Diehl, M., Aerts, C., Swevers, J. Spacecraft attitude estimation and sensor calibration using moving horizon estimation. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 734–742.

    Article  Google Scholar 

  22. [22]

    Huang, J. L., Zhao, G. R., Zhang, X. Y. MEMS gyroscope/TAM-integrated attitude estimation based on moving horizon estimation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 231(8): 1451–1459.

    Article  Google Scholar 

  23. [23]

    Betts, J. T. Practical methods for optimal control using nonlinear programming. SIAM, 2001.

    MATH  Google Scholar 

  24. [24]

    Soneda, Y., Ohtsuka, T. Nonlinear moving horizon state estimation with continuation/generalized minimum residual method. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 878–884.

    Article  Google Scholar 

  25. [25]

    Bryson, A. E. Jr., Ho, Y. C. Applied Optimal Control. Hemisphere, 1975.

    Google Scholar 

  26. [26]

    Szebehely, V. Theory of Orbits, the Restricted Problem of Three Bodies. Academic Press, 1967.

    MATH  Google Scholar 

  27. [27]

    Peng, H. J., Jiang, X., Chen, B. S. Optimal nonlinear feedback control of spacecraft rendezvous with finite low thrust between libration orbits. Nonlinear Dynamics, 2014, 76(2): 1611–1632.

    Article  MATH  Google Scholar 

  28. [28]

    Peng, H. J, Wang, X. W., Shi, B. Y., Zhang, S., Chen, B. S. Stabilizing constrained chaotic system using a symplectic psuedospectral method. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 77–92.

    MathSciNet  Article  Google Scholar 

  29. [29]

    Bellman, R. E., Kalaba, R. E. Quasilinearization and Nonlinear Boundary-value Problems. Elsevier, 1965.

    MATH  Google Scholar 

  30. [30]

    Liu, X. F., Lu, P., Pan, B. F. Survey of convex optimization for aerospace applications. Astrodynamics, 2017, 1(1): 23–40.

    Article  Google Scholar 

  31. [31]

    Wang, X. W., Peng, H. J., Zhang, S., Chen, B. S., Zhong, W. X. A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints. ISA Transactions, 2017, 68: 335–352.

    Article  Google Scholar 

  32. [32]

    Wang, X. W., Peng, H. J., Zhang, S., Chen, B. S., Zhong, W. X. A symplectic local pseudospectral method for solving nonlinear state-delayed optimal control problems with inequality constraints. International Journal of Robust and Nonlinear Control, 2018, 28(6): 2097–2120.

    MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    Tomlin, J. A. Robust implementation of Lemke’s method for the linear complementarity problem. Complementarity and Fixed Point Problems, 1978, 55–60.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 11772074).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Peng, H. A symplectic moving horizon estimation algorithm with its application to the Earth—Moon L2 libration point navigation. Astrodyn 3, 137–153 (2019). https://doi.org/10.1007/s42064-018-0041-x

Download citation

Keywords

  • moving horizon estimation
  • symplectic method
  • quasilinearization
  • variational principle
  • L2 libration point
  • navigation