Skip to main content
Log in

Integrated strategy of stationkeeping, autonomous navigation, and real-time geodetical recovery of gravity fields: application into asteroid Lutetia mission

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An integrated strategy is proposed for asteroid orbiting, consisting of stationkeeping, autonomous navigation, and real-time geodetical recovery. It is designed to maintain the spacecraft on its nominal trajectory under some uncertainties from the spacecraft and the asteroid. Furthermore, it performs adaptive estimations on the mass and thruster of spacecraft, as well as the spherical harmonic coefficients and spin rate of the gravity field of asteroid. These estimations are then substituted into an extended Kalman filter for autonomous navigation, which has significantly reduced positioning errors. Inheriting the original idea of sliding mode control, the integrated strategy is designed to be adaptive and robust with control saturation. The accuracy and distribution of real-time geodetical recovery of Lutetia’s gravity fields are investigated by Monte Carlo simulations. Numerical simulations show that the proposed strategy can rapidly decrease the control errors and accurately estimate the aforementioned parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gradie, J., Tedesco, E.: Compositional structure of the asteroid belt. Science 216(4553), 1405–1407 (1982). https://doi.org/10.1126/science.216.4553.1405

    Article  Google Scholar 

  2. Zellner, B., Tholen, D.J., Tedesco, E.F.: The eight-color asteroid survey: results for 589 minor planets. Icarus 61(3), 355–416 (1985). https://doi.org/10.1016/0019-1035(85)90133-2

    Article  Google Scholar 

  3. Tonry, J.L.: An early warning system for asteroid impact. Publ. Astron. Soc. Pac. 123(899), 58–73 (2010). https://doi.org/10.1086/657997

    Article  Google Scholar 

  4. Sonter, M.J.: The technical and economic feasibility of mining the near-earth asteroids. Acta Astronaut. 41(4–10), 637–647 (1997). https://doi.org/10.1016/S0094-5765(98)00087-3

    Article  Google Scholar 

  5. Hein, A.M., Matheson, R., Fries, D.: A techno-economic analysis of asteroid mining. Acta Astronaut. 168, 104–115 (2020). https://doi.org/10.1016/j.actaastro.2019.05.009

    Article  Google Scholar 

  6. Scheeres, D.J.: Stability of hovering orbits around small bodies. Adv. Astronaut. Sci. 102, 855–873 (1999)

    Google Scholar 

  7. Sawai, S., Scheeres, D.J., Broschart, S.B.: Control of hovering spacecraft using altimetry. J. Guid. Control Dyn. 25(4), 786–795 (2002). https://doi.org/10.2514/2.4947

    Article  Google Scholar 

  8. Broschart, S.B., Scheeres, D.J.: Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005). https://doi.org/10.2514/1.3890

    Article  Google Scholar 

  9. Reyhanoglu, M., Kamran, N.N., Takahiro, K.: Orbital and attitude control of a spacecraft around an asteroid. In: 12th International Conference on Control, Automation and Systems, Jeju Island, South Korea, pp. 1627–1632. IEEE (2012)

  10. Guelman, M.: Closed-loop control of close orbits around asteroids. J. Guid. Control Dyn. 38(5), 854–860 (2015). https://doi.org/10.2514/1.G000158

    Article  MathSciNet  Google Scholar 

  11. Feng, J., Noomen, R., Yuan, J.: Orbital motion in the vicinity of the non-collinear equilibrium points of a contact binary asteroid. Planet. Space Sci. 117, 1–14 (2015). https://doi.org/10.1016/j.pss.2015.04.008

    Article  Google Scholar 

  12. Liang, Y., Xu, M., Xu, S.: Bounded motions near contact binary asteroids by hamiltonian structure-preserving control. J. Guid. Control Dyn. 41(2), 401–416 (2018). https://doi.org/10.2514/1.G002528

    Article  Google Scholar 

  13. Zhang, B., Cai, Y.: Twistor-based pose control for asteroid landing with path constraints. Nonlinear Dyn. 100(3), 2427–2448 (2020). https://doi.org/10.1007/s11071-020-05610-w

    Article  Google Scholar 

  14. Takei, Y., Saiki, T., Yamamoto, Y., Mimasu, Y., Takeuchi, H., Ikeda, H., Ogawa, N., Terui, F., Ono, G., Yoshikawa, K., Takahashi, T., Sawada, H., Hirose, C., Kikuchi, S., Fujii, A., Iwata, T., Nakazawa, S., Hayakawa, M., Tsukizaki, R., Tanaka, S., Matsushita, M., Mori, O., Koda, D., Shimada, T., Ozaki, M., Abe, M., Hosoda, S., Okada, T., Yano, H., Kato, T., Yasuda, S., Matsushima, K., Masuda, T., Yoshikawa, M., Tsuda, Y.: Hayabusa2’s station-keeping operation in the proximity of the asteroid Ryugu. Astrodynamics 4(4), 349–375 (2020). https://doi.org/10.1007/s42064-020-0083-8

    Article  Google Scholar 

  15. Xu, M., Xu, S.: Study on stationkeeping for halo orbits at EL1: Dynamics modeling and controller designing. Trans. Jpn. Soc. Aeronaut. Space Sci. 55(5), 274–285 (2012). https://doi.org/10.2322/tjsass.55.274

    Article  Google Scholar 

  16. Gui, H., Vukovich, G.: Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort. Nonlinear Dyn. 83(1–2), 597–614 (2016). https://doi.org/10.1007/s11071-015-2350-4

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, D., Vukovich, G.: Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid. Aerosp. Sci. Technol. 46, 471–483 (2015). https://doi.org/10.1016/j.ast.2015.09.001

    Article  Google Scholar 

  18. Zhang, B., Cai, Y., Li, F.: Adaptive double-saturated control for hovering over an asteroid. Adv. Space Res. 63(7), 2035–2051 (2019). https://doi.org/10.1016/j.asr.2018.12.017

    Article  Google Scholar 

  19. Lee, K.W., Singh, S.N.: Immersion-and invariance-based adaptive control of asteroid-orbiting and-hovering spacecraft. J. Astronaut. Sci. 66(4), 537–553 (2019). https://doi.org/10.1007/s40295-019-00163-6

    Article  Google Scholar 

  20. Xia, K., Zou, Y.: Adaptive fixed-time fault-tolerant control for noncooperative spacecraft proximity using relative motion information. Nonlinear Dyn. 100(3), 2521–2535 (2020). https://doi.org/10.1007/s11071-020-05634-2

    Article  Google Scholar 

  21. Bhaskaran, S.: Autonomous navigation for deep space missions. In: 12th International Conference on Space Operations, Stockholm, Sweden (2012). https://doi.org/10.2514/6.2012-1267135

  22. Miller, J.K., Konopliv, A.S., Antreasian, P.G., Bordi, J.J., Chesley, S., Helfrich, C.E., Owen, W.M., Wang, T.C., Williams, B.G., Yeomans, D.K.: Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155(1), 3–17 (2002). https://doi.org/10.1006/icar.2001.6753

    Article  Google Scholar 

  23. Konopliv, A.S., Park, R.S., Vaughan, A.T., Bills, B.G., Asmar, S.W., Ermakov, A.I., Rambaux, N., Raymond, C.A., Castillo-Rogez, J.C., Russell, C.T., Smith, D.E., Zuber, M.T.: The Ceres gravity field, spin pole, rotation period and orbit from the dawn radiometric tracking and optical data. Icarus 299, 411–429 (2018). https://doi.org/10.1016/j.icarus.2017.08.005

    Article  Google Scholar 

  24. Pätzold, M., Andert, T.P., Asmar, S.W., Anderson, J.D., Barriot, J.P., Bird, M.K., Häusler, B., Hahn, M., Tellmann, S., Sierks, H., Lamy, P., Weiss, B.P.: Asteroid 21 Lutetia: low mass, high density. Science 334(6055), 491–492 (2011). https://doi.org/10.1126/science.1209389

    Article  Google Scholar 

  25. Coradini, A., Capaccioni, F., Erard, S., Arnold, G., De Sanctis, M.C., Filacchione, G., Tosi, F., Barucci, M.A., Capria, M.T., Ammannito, E., Grassi, D., Piccioni, G., Giuppi, S., Bellucci, G., Benkhoff, J., Bibring, J.P., Blanco, A., Blecka, M., Bockelee-Morvan, D., Carraro, F., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., Drossart, P., Encrenaz, E.T., Federico, C., Fink, U., Fonti, S., Giacomini, L., Ip, W.H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., McCord, T., Mennella, V., Mottola, S., Neukum, G., Orofino, V., Palumbo, P., Schade, U., Schmitt, B., Taylor, F., Tiphene, D., Tozzi, G.: The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS. Science 334(6055), 492–494 (2011). https://doi.org/10.1126/science.1204062

    Article  Google Scholar 

  26. Aljbaae, S., Chanut, T.G.G., Carruba, V., Souchay, J., Prado, A.F.B.A., Amarante, A.: The dynamical environment of asteroid 21 Lutetia according to different internal models. MNRAS 464(3), 3552–3560 (2017). https://doi.org/10.1093/mnras/stw2619

    Article  Google Scholar 

  27. Carry, B., Kaasalainen, M., Leyrat, C., Merline, W.J., Drummond, J.D., Conrad, A., Weaver, H.A., Tamblyn, P.M., Chapman, C.R., Dumas, C.: Physical properties of the esa rosetta target asteroid (21) Lutetia-II. Shape and flyby geometry. Astron. Astrophys. 523, A94 (2010). https://doi.org/10.1051/0004-6361/201015074

    Article  Google Scholar 

  28. Li, X., Qiao, D., Li, P.: Frozen orbit design and maintenance with an application to small body exploration. Aerosp. Sci. Technol. 92, 170–180 (2019). https://doi.org/10.1016/j.ast.2019.05.062

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11772024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zheng, Y. & Xu, M. Integrated strategy of stationkeeping, autonomous navigation, and real-time geodetical recovery of gravity fields: application into asteroid Lutetia mission. Nonlinear Dyn 106, 3247–3263 (2021). https://doi.org/10.1007/s11071-021-06694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06694-8

Keywords

Navigation