Skip to main content

Advertisement

Log in

Recent progress in ASL outside the brain

  • Review
  • Published:
Chinese Journal of Academic Radiology Aims and scope Submit manuscript

Abstract

Arterial spin labeling (ASL) is a technique used to measure blood flow quantitatively and non-invasively. It has been successfully practiced assessing cerebral perfusion and became widely available for research and clinical practices. In 2015, a consensus document standardized the implementation and operation of brain ASL and paved the way for the subsequent clinical translation. The success of ASL in the brain also encouraged the practice of ASL in regions outside, like kidney, placenta, pancreas, liver, and myocardium. These attempts faced distinctive technique and physiological problems, like markedly increased influence from motion and prolonged transit time. This review aims to provide a summary of the technique advances and the recent progress of body ASL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA. 1992;89(1):212–6. https://doi.org/10.1073/pnas.89.1.212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23(1):37–45. https://doi.org/10.1002/mrm.1910230106.

    Article  CAS  PubMed  Google Scholar 

  3. Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage. 2019;187:3–16. https://doi.org/10.1016/j.neuroimage.2017.12.095.

    Article  PubMed  Google Scholar 

  4. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16. https://doi.org/10.1002/mrm.25197.

    Article  PubMed  Google Scholar 

  5. Dai W, Robson PM, Shankaranarayanan A, Alsop DC. Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med. 2012;67(5):1252–65. https://doi.org/10.1002/mrm.23103.

    Article  PubMed  Google Scholar 

  6. Kober F, Jao T, Troalen T, Nayak KS. Myocardial arterial spin labeling. J Cardiovasc Magn Reson. 2016;18:22. https://doi.org/10.1186/s12968-016-0235-4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging. 2020;52(2):369–79. https://doi.org/10.1002/jmri.26911.

    Article  PubMed  Google Scholar 

  8. Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA. 2020;33(1):141–61. https://doi.org/10.1007/s10334-019-00800-z.

    Article  PubMed  Google Scholar 

  9. Greer JS, Wang X, Wang Y, Pinho MC, Maldjian JA, Pedrosa I, et al. Robust pCASL perfusion imaging using a 3D Cartesian acquisition with spiral profile reordering (CASPR). Magn Reson Med. 2019;82(5):1713–24. https://doi.org/10.1002/mrm.27862.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li Y, Mao D, Li Z, Schar M, Pillai JJ, Pipe JG, et al. Cardiac-triggered pseudo-continuous arterial-spin-labeling: a cost-effective scheme to further enhance the reliability of arterial-spin-labeling MRI. Magn Reson Med. 2018;80(3):969–75. https://doi.org/10.1002/mrm.27090.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60(6):1488–97. https://doi.org/10.1002/mrm.21790.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harteveld AA, de Boer A, Franklin SL, Leiner T, van Stralen M, Bos C. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. MAGMA. 2020;33(1):81–94. https://doi.org/10.1007/s10334-019-00806-7.

    Article  PubMed  Google Scholar 

  13. Zun Z, Limperopoulos C. Placental perfusion imaging using velocity-selective arterial spin labeling. Magn Reson Med. 2018;80(3):1036–47. https://doi.org/10.1002/mrm.27100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Echeverria-Chasco R, Vidorreta M, Aramendia-Vidaurreta V, Cano D, Escalada J, Garcia-Fernandez N, et al. Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging. Magn Reson Med. 2021;85(3):1507–21. https://doi.org/10.1002/mrm.28531.

    Article  PubMed  Google Scholar 

  15. Cox EF, Palaniyappan N, Aithal GP, Guha IN, Francis ST. Using MRI to study the alterations in liver blood flow, perfusion, and oxygenation in response to physiological stress challenges: meal, hyperoxia, and hypercapnia. J Magn Reson Imaging. 2019;49(6):1577–86. https://doi.org/10.1002/jmri.26341.

    Article  PubMed  Google Scholar 

  16. Martirosian P, Pohmann R, Schraml C, Schwartz M, Kuestner T, Schwenzer NF, et al. Spatial-temporal perfusion patterns of the human liver assessed by pseudo-continuous arterial spin labeling MRI. Z Med Phys. 2019;29(2):173–83. https://doi.org/10.1016/j.zemedi.2018.08.004.

    Article  PubMed  Google Scholar 

  17. Pan X, Qian T, Fernandez-Seara MA, Smith RX, Li K, Ying K, et al. Quantification of liver perfusion using multidelay pseudocontinuous arterial spin labeling. J Magn Reson Imaging. 2016;43(5):1046–54. https://doi.org/10.1002/jmri.25070.

    Article  PubMed  Google Scholar 

  18. Shao X, Liu D, Martin T, Chanlaw T, Devaskar SU, Janzen C, et al. Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. J Magn Reson Imaging. 2018;47(6):1667–76. https://doi.org/10.1002/jmri.25893.

    Article  PubMed  Google Scholar 

  19. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34(3):293–301. https://doi.org/10.1002/mrm.1910340303.

    Article  CAS  PubMed  Google Scholar 

  20. Nery F, Gordon I, Thomas DL. Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics (Basel). 2018. https://doi.org/10.3390/diagnostics8010002.

    Article  Google Scholar 

  21. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39(5):702–8. https://doi.org/10.1002/mrm.1910390506.

    Article  CAS  PubMed  Google Scholar 

  22. Song R, Loeffler RB, Hillenbrand CM. QUIPSS II with window-sliding saturation sequence (Q2WISE). Magn Reson Med. 2012;67(4):1127–32. https://doi.org/10.1002/mrm.23093.

    Article  PubMed  Google Scholar 

  23. Luh W-M, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41(6):1246–54. https://doi.org/10.1002/(sici)1522-2594(199906)41:6%3c1246::Aid-mrm22%3e3.0.Co;2-n.

    Article  CAS  PubMed  Google Scholar 

  24. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006;55(6):1334–41. https://doi.org/10.1002/mrm.20906.

    Article  PubMed  Google Scholar 

  25. Jao TR, Nayak KS. Demonstration of velocity selective myocardial arterial spin labeling perfusion imaging in humans. Magn Reson Med. 2018;80(1):272–8. https://doi.org/10.1002/mrm.26994.

    Article  PubMed  Google Scholar 

  26. Qin Q, van Zijl PC. Velocity-selective-inversion prepared arterial spin labeling. Magn Reson Med. 2016;76(4):1136–48. https://doi.org/10.1002/mrm.26010.

    Article  PubMed  Google Scholar 

  27. Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Hendrikse J, Moonen C, et al. Influence of labeling parameters and respiratory motion on velocity-selective arterial spin labeling for renal perfusion imaging. Magn Reson Med. 2020;84(4):1919–32. https://doi.org/10.1002/mrm.28252.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu WC, Edlow BL, Elliot MA, Wang J, Detre JA. Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging. IEEE Trans Med Imaging. 2009;28(5):703–9. https://doi.org/10.1109/TMI.2008.2012020.

    Article  PubMed  Google Scholar 

  29. St Lawrence KS, Frank JA, Bandettini PA, Ye FQ. Noise reduction in multi-slice arterial spin tagging imaging. Magn Reson Med. 2005;53(3):735–8. https://doi.org/10.1002/mrm.20396.

    Article  CAS  PubMed  Google Scholar 

  30. Maleki N, Dai W, Alsop DC. Optimization of background suppression for arterial spin labeling perfusion imaging. MAGMA. 2012;25(2):127–33. https://doi.org/10.1007/s10334-011-0286-3.

    Article  PubMed  Google Scholar 

  31. Taso M, Guidon A, Alsop DC. Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Magn Reson Med. 2019;81(4):2439–49. https://doi.org/10.1002/mrm.27575.

    Article  PubMed  Google Scholar 

  32. Yan L, Liu CY, Smith RX, Jog M, Langham M, Krasileva K, et al. Assessing intracranial vascular compliance using dynamic arterial spin labeling. Neuroimage. 2016;124(Pt A):433–41. https://doi.org/10.1016/j.neuroimage.2015.09.008.

    Article  PubMed  Google Scholar 

  33. Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC. Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med. 2009;61(6):1374–87. https://doi.org/10.1002/mrm.21960.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jianxun Q, Tianye L, Priti B, Dylan TM, Detre JA. Improved inflow saturation markedly reduces inflow artifacts in background-suppressed 3D arterial spin labeling. Proc Intl Soc Mag Reson Med 2020;3275.

  35. Robson PM, Madhuranthakam AJ, Smith MP, Sun MR, Dai W, Rofsky NM, et al. Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol. 2016;23(2):144–54. https://doi.org/10.1016/j.acra.2015.09.013.

    Article  PubMed  Google Scholar 

  36. Javed A, Nayak KS. Single-shot EPI for ASL-CMR. Magn Reson Med. 2020;84(2):738–50. https://doi.org/10.1002/mrm.28165.

    Article  PubMed  Google Scholar 

  37. Liu D, Shao X, Danyalov A, Chanlaw T, Masamed R, Wang DJJ, et al. Human placenta blood flow during early gestation with pseudocontinuous arterial spin labeling MRI. J Magn Reson Imaging. 2020;51(4):1247–57. https://doi.org/10.1002/jmri.26944.

    Article  PubMed  Google Scholar 

  38. Jianxun Q, Dylan TM, Detre JA. Reducing the effect of cerebrospinal fluid pulsation on arterial spin labeled perfusion MRI acquired with fast spin echo readouts. Proc Intl Soc Mag Reson Med 2020;3274.

  39. Zollner FG, Serifovic-Trbalic A, Kabelitz G, Kocinski M, Materka A, Rogelj P. Image registration in dynamic renal MRI-current status and prospects. MAGMA. 2020;33(1):33–48. https://doi.org/10.1007/s10334-019-00782-y.

    Article  CAS  PubMed  Google Scholar 

  40. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, et al. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant. 2018;33:15–21. https://doi.org/10.1093/ndt/gfy180.

    Article  CAS  Google Scholar 

  41. Wang W, Yu Y, Wen J, Zhang M, Chen J, Cheng D, et al. Combination of functional magnetic resonance imaging and histopathologic analysis to evaluate interstitial fibrosis in kidney allografts. Clin J Am Soc Nephrol. 2019;14(9):1372–80. https://doi.org/10.2215/CJN.00020119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou JY, Wang YC, Zeng CH, Ju SH. Renal functional MRI and its application. J Magn Reson Imaging. 2018;48(4):863–81. https://doi.org/10.1002/jmri.26180.

    Article  PubMed  Google Scholar 

  43. Liu HS, Jawad AF, Laney N, Hartung EA, Furth SL, Detre JA. Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease. J Neuroradiol. 2019;46(1):29–35. https://doi.org/10.1016/j.neurad.2018.03.002.

    Article  PubMed  Google Scholar 

  44. Liu HS, Hartung EA, Jawad AF, Ware JB, Laney N, Port AM, et al. Regional cerebral blood flow in children and young adults with chronic kidney disease. Radiology. 2018;288(3):849–58. https://doi.org/10.1148/radiol.2018171339.

    Article  PubMed  Google Scholar 

  45. Harteveld AA, Hutter J, Franklin SL, Jackson LH, Rutherford M, Hajnal JV, et al. Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Magn Reson Med. 2020;84(4):1828–43. https://doi.org/10.1002/mrm.28240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovo M, Schreiber L, Bar J. Placental vascular pathology as a mechanism of disease in pregnancy complications. Thromb Res. 2013;131:S18–21. https://doi.org/10.1016/s0049-3848(13)70013-6.

    Article  CAS  PubMed  Google Scholar 

  47. Zun Z, Zaharchuk G, Andescavage NN, Donofrio MT, Limperopoulos C. Non-invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity-selective arterial spin labeled MRI. Sci Rep. 2017;7(1):16126. https://doi.org/10.1038/s41598-017-16461-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jansson L, Carlsson PO. Pancreatic blood flow with special emphasis on blood perfusion of the islets of langerhans. Compr Physiol. 2019;9(2):799–837. https://doi.org/10.1002/cphy.c160050.

    Article  PubMed  Google Scholar 

  49. Delrue L, Blanckaert P, Mertens D, Van Meerbeeck S, Ceelen W, Duyck P. Tissue perfusion in pathologies of the pancreas: assessment using 128-slice computed tomography. Abdom Imaging. 2012;37(4):595–601. https://doi.org/10.1007/s00261-011-9783-0.

    Article  CAS  PubMed  Google Scholar 

  50. Tian C, Xu X. Multislice spiral perfusion computed tomography to assess pancreatic vascularity in mild acute pancreatitis. J Comput Assist Tomogr. 2017;41(2):284–8. https://doi.org/10.1097/RCT.0000000000000500.

    Article  PubMed  Google Scholar 

  51. Schraml C, Schwenzer NF, Martirosian P, Claussen CD, Schick F. Perfusion imaging of the pancreas using an arterial spin labeling technique. J Magn Reson Imaging. 2008;28(6):1459–65. https://doi.org/10.1002/jmri.21564.

    Article  PubMed  Google Scholar 

  52. Cox EF, Smith JK, Chowdhury AH, Lobo DN, Francis ST, Simpson J. Temporal assessment of pancreatic blood flow and perfusion following secretin stimulation using noninvasive MRI. J Magn Reson Imaging. 2015;42(5):1233–40. https://doi.org/10.1002/jmri.24889.

    Article  PubMed  Google Scholar 

  53. Taso M, Guidon A, Zhao L, Mortele KJ, Alsop DC. Pancreatic perfusion and arterial-transit-time quantification using pseudocontinuous arterial spin labeling at 3T. Magn Reson Med. 2019;81(1):542–50. https://doi.org/10.1002/mrm.27435.

    Article  PubMed  Google Scholar 

  54. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40(3):383–96. https://doi.org/10.1002/mrm.1910400308.

    Article  CAS  PubMed  Google Scholar 

  55. Wang DJ, Bi X, Avants BB, Meng T, Zuehlsdorff S, Detre JA. Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Magn Reson Med. 2010;64(5):1289–95. https://doi.org/10.1002/mrm.22630.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Landes V, Javed A, Jao T, Qin Q, Nayak K. Improved velocity-selective labeling pulses for myocardial ASL. Magn Reson Med. 2020;84(4):1909–18. https://doi.org/10.1002/mrm.28253.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Do HP, Yoon AJ, Fong MW, Saremi F, Barr ML, Nayak KS. Double-gated myocardial ASL perfusion imaging is robust to heart rate variation. Magn Reson Med. 2017;77(5):1975–80. https://doi.org/10.1002/mrm.26282.

    Article  PubMed  Google Scholar 

  58. Keith GA, Rodgers CT, Chappell MA, Robson MD. A look-locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 tesla. Magn Reson Med. 2017;78(2):541–9. https://doi.org/10.1002/mrm.26388.

    Article  CAS  PubMed  Google Scholar 

  59. Katada Y, Shukuya T, Kawashima M, Nozaki M, Imai H, Natori T, et al. A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow. Jpn J Radiol. 2012;30(10):863–9. https://doi.org/10.1007/s11604-012-0127-y.

    Article  PubMed  Google Scholar 

  60. Bolar DS, Levin DL, Hopkins SR, Frank LF, Liu TT, Wong EC, et al. Quantification of regional pulmonary blood flow using ASL-FAIRER. Magn Reson Med. 2006;55(6):1308–17. https://doi.org/10.1002/mrm.20891.

    Article  CAS  PubMed  Google Scholar 

  61. Seith F, Pohmann R, Schwartz M, Kustner T, Othman AE, Kolb M, et al. Imaging pulmonary blood flow using pseudocontinuous arterial spin labeling (PCASL) with balanced steady-state free-precession (bSSFP) readout at 1.5T. J Magn Reson Imaging. 2020. https://doi.org/10.1002/jmri.27276.

    Article  PubMed  Google Scholar 

  62. Misra S, Shishehbor MH, Takahashi EA, Aronow HD, Brewster LP, Bunte MC, et al. Perfusion assessment in critical limb ischemia: principles for understanding and the development of evidence and evaluation of devices: a scientific statement from the American heart association. Circulation. 2019;140(12):e657–72. https://doi.org/10.1161/CIR.0000000000000708.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raynaud JS, Duteil S, Vaughan JT, Hennel F, Wary C, Leroy-Willig A, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med. 2001;46(2):305–11. https://doi.org/10.1002/mrm.1192.

    Article  CAS  PubMed  Google Scholar 

  64. Wu WC, Mohler E 3rd, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009;53(25):2372–7. https://doi.org/10.1016/j.jacc.2009.03.033.

    Article  PubMed  Google Scholar 

  65. Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, et al. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging. 2012;5(12):1224–30. https://doi.org/10.1016/j.jcmg.2012.03.022.

    Article  PubMed  Google Scholar 

  66. Lopez D, Pollak AW, Meyer CH, Epstein FH, Zhao L, Pesch AJ, et al. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise. J Cardiovasc Magn Reson. 2015;17:23. https://doi.org/10.1186/s12968-015-0128-y.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Grozinger G, Pohmann R, Schick F, Grosse U, Syha R, Brechtel K, et al. Perfusion measurements of the calf in patients with peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty using MR arterial spin labeling. J Magn Reson Imaging. 2014;40(4):980–7. https://doi.org/10.1002/jmri.24463.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Qu.

Ethics declarations

Conflict of interest

The authors of this review are employees of SIEMENS Healthcare.

Research involving human participants and/or animals

This review does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Kong, Q., Guo, Y. et al. Recent progress in ASL outside the brain. Chin J Acad Radiol 4, 220–228 (2021). https://doi.org/10.1007/s42058-021-00085-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42058-021-00085-z

Keywords

Navigation