Skip to main content

ASL 3.0 T Perfusion Studies

  • Chapter
  • First Online:
High Field Brain MRI

Abstract

Perfusion refers to the delivery of oxygen, glucose and other nutrients to tissues by means of blood flow and its disruption is commonly reported in different pathologies. In particular, changes in brain perfusion is found in most brain diseases, ranging from stroke to neurodegenerative and neoplastic disorders. In this chapter the basic physics and physiological principles of Arterial Spin Labeling (ASL) brain perfusion measurement are discussed, together with research and clinical applications of this promising noninvasive technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. AJR Am J Roentgenol 175:207–220

    Article  CAS  PubMed  Google Scholar 

  2. Cha S (2003) Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 11(3):403–413

    Article  PubMed  Google Scholar 

  3. Provenzale JM, Jahan R, Naidich TP, Fox AJ (2003) Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229(2):347–359

    Article  PubMed  Google Scholar 

  4. Scarabino T, Nemore F, Giannatempo GM et al (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  5. Scarabino T, Giannatempo GM, Pollice S et al (2004) 3.0 T perfusion MR imaging. Riv Neuroradiol 17:807–812

    Article  Google Scholar 

  6. Shimony JS (2005) Concepts in perfusion MRI. Syllabus. Int Soc Magn Reson Med 13

    Google Scholar 

  7. Zaharchuk G (2005) Frontiers of cerebral perfusion magnetic resonance imaging. Appl Radiol (Suppl to January) (34):100–111

    Google Scholar 

  8. Manka C, Traber F, Gieseke J et al (2005) Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 234(3):869–877

    Article  PubMed  Google Scholar 

  9. Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4):496–520

    Article  CAS  PubMed  Google Scholar 

  10. Derdeyn CP, TO V, Yundt KD et al (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125(3):595–607

    Article  PubMed  Google Scholar 

  11. Chen JJ, Wieckowska M, Meyer E, GB P (2008) Cerebral blood flow measurement using fMRI and PET: across-validation study. Int J Biomed Imaging 2008 :516359. doi:10.1155/2008/516359Article ID

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wintermark M, Sesay M, Barbier E et al (2005) Comparative overview of brain perfusion imaging techniques. Stroke 36:e83–e99

    Article  PubMed  Google Scholar 

  13. Penfield JG, Reilly RF Jr (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668

    Article  PubMed  Google Scholar 

  14. Sadowski EA, Benne LK, Chan MR et al (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157

    Article  PubMed  Google Scholar 

  15. Detre JA, Leigh JS, WIlliams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    Article  CAS  PubMed  Google Scholar 

  16. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin-inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  18. Hendrikse J, Petersen ET, Golay X (2012) Vascular disorders: insights from arterial spin labeling. Neuroimaging Clin N Am 22:259–269

    Article  PubMed  Google Scholar 

  19. Heijtel DF, Mutsaerts HJ, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BN, Majoie CB, Booij J, van Osch MJ, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ (2014) Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with 15O H2O positron emission tomography. Neuroimage 92:182–192

    Article  CAS  PubMed  Google Scholar 

  20. Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49:104–113

    Article  PubMed  Google Scholar 

  21. Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC (2010) Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 23:286–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mutsaerts HJ, van Osch MJ, Zelaya FO, Wang DJ, Nordhøy W, Wang Y, Wastling S, Fernandez-Seara MA, Petersen ET, Pizzini FB, Fallatah S, Hendrikse J, Geier O, Günther M, Golay X, Nederveen AJ, Bjørnerud A, Groote IR (2015) Multi-vendor reliability of arterial spin labeling perfusion MRI using a near-identical sequence: implications for multi-center studies. Neuroimage 113:143–152. doi:10.1016/j.neuroimage.2015.03.043 Epub 2015 Mar 24 PubMed PMID: 25818685

    Article  PubMed  Google Scholar 

  23. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA (2011) Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 337:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Vis JB, Hendrikse J, Bhogal A, Adams A, Kappelle LJ, Petersen ET (2015) Age-related changes in brain hemodynamics; a calibrated MRI study. Hum Brain Mapp 36(10):3973–3987

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buxton RB (2010) Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenerg 2:8. doi:10.3389/fnene.2010.00008

    Google Scholar 

  28. VJ S, Vannest J, Lee G, Hernandez-Garcia L, Plante E, Rajagopal A, SK H, CMIND Authorship Consortium (2015) Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood. Hum Brain Mapp 36(1):1–15

    Article  Google Scholar 

  29. Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, Lu H (2010) Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med 63(3):765–771

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249

    Article  CAS  PubMed  Google Scholar 

  31. Sardashti M, Schwartzberg DG, Stomp GP, Dixon WT (1990) Spin-labeling angiography of the carotids by presaturation and simplified adiabatic inversion. Magn Reson Med 15:192–200

    Article  CAS  PubMed  Google Scholar 

  32. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    Article  CAS  PubMed  Google Scholar 

  33. Alsop DC, Detre JA (1998) Multisection cerebral blood flow MRI imaging with continuous arterial spin labeling. Radiology 208:410–416

    Article  CAS  PubMed  Google Scholar 

  34. Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  35. Edelman RR, Siewert B, Darby DG et al (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192:513–520

    Article  CAS  PubMed  Google Scholar 

  36. Edelman RR, Chen Q (1998) EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 40:800–805

    Article  CAS  PubMed  Google Scholar 

  37. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708

    Article  CAS  PubMed  Google Scholar 

  38. GarciaDM, BazelaireCD, AlsopD (2005) Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Miami, p. 37

    Google Scholar 

  39. Dai W, Garcia D, De Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu WC, Fernandez-Seara M, JA D et al (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027

    Article  PubMed  Google Scholar 

  41. Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116

    Article  PubMed  Google Scholar 

  42. Gevers S, Van Osch MJ, Bokkers RPH et al (2011) Intra- and multicenter reproducibility of pulsed, continuous and pseudocontinuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab 31:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372

    Article  PubMed  Google Scholar 

  44. Lawrence KSS, Frank JA, Bandettini PA et al (2005) Noise reduction in multi-slice arterial spin tagging imaging. Magn Reson Med 53:735–738

    Article  Google Scholar 

  45. Vidorreta M, Wang Z, Rodriguez I et al (2012) Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 66C:662–671

    Google Scholar 

  46. Nielsen JF, Hernandez-Garcia L (2013) Functional perfusion imaging using pseudocontinuous arterial spin labeling with low flip angle segmented 3D spiral readouts. Magn Reson Med 69:382–390

    Article  PubMed  Google Scholar 

  47. Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498

    Article  PubMed  Google Scholar 

  48. Zaharchuk G, Do HM, Marks MP et al (2011) Arterial spin-labeling MRI can identify the presence and intensity of collateral perfusion in patients with moyamoya disease. Stroke 42:2485–2491

    Article  PubMed  PubMed Central  Google Scholar 

  49. Le TT, Fischbein NJ, Andre JB et al (2012) Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol 33:61–68

    Article  CAS  PubMed  Google Scholar 

  50. Wolf RL, Wang J, Detre JA et al (2008) Arteriovenous shunt visualization in arteriovenous malformations with arterial spin labeling MR imaging. AJNR Am J Neuroradiol 29:681–687

    Article  CAS  PubMed  Google Scholar 

  51. Buxton RB, Frank LR, Wong EC et al (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    Article  CAS  PubMed  Google Scholar 

  52. Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  PubMed  Google Scholar 

  53. Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40:348–355

    Article  CAS  PubMed  Google Scholar 

  54. MaccaroneM, EspositoR, SaliceS, et al. (2015) Quantitative MR R2* imaging and arterial spin labeling brain perfusion assessment in alzheimer disease. Radiological Society of North America 2015 Scientific Assembly and Annual Meeting, November 29–December 4, 2015, Chicago. archive.rsna.org/2015/15016539.html

    Google Scholar 

  55. Gunther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a Look-Locker sampling strategy: inflow turbo-sampling EPI- FAIR (ITS-FAIR). Magn Reson Med 46:974–984

    Article  CAS  PubMed  Google Scholar 

  56. Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232

    Article  PubMed  Google Scholar 

  57. Francis ST, Bowtell R, Gowland PA (2008) Modeling and optimization of Look-Locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume. Magn Reson Med 59:316–325

    Article  CAS  PubMed  Google Scholar 

  58. Dai W, Robson PM, Shankaranarayanan A et al (2012) Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 67:1252–1265

    Article  PubMed  Google Scholar 

  59. Wang DJ, Alger JR, Qiao JX et al (2013) Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—comparison with dynamic susceptibility contrast enhanced perfusion imaging. NeuroImage Clin 3:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Laar PJ, van der Grond J, Hendrikse J (2008) Brain perfusion territory imaging: methods and clinical applications of selective arterial spin- labeling MR imaging. Radiology 246:354–364

    Article  PubMed  Google Scholar 

  61. Paiva FF, Tannus A, Silva AC (2007) Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 20:633–642

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hendrikse J, van Raamt AF, van der Graaf Y et al (2005) Distribution of cerebral blood flow in the circle of Willis. Radiology 235(1):184–189

    Article  PubMed  Google Scholar 

  63. Hendrikse J, van der Grond J, Lu H et al (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887

    Article  PubMed  Google Scholar 

  64. Hendrikse J, van Osch MJ, van der Zwan A et al (2005) Altered flow territories after extracranial to intracranial by- pass surgery: clinical implementation of selective arterial spin labeling MRI. Proc Intl Soc Mag Reson Med 13:1137

    Google Scholar 

  65. van Laar PJ, Hendrikse J, Golay X et al (2005) In-vivo flow territory mapping of major brain feeding arteries: a population study with selective arterial spin labeling MRI. Proc Int Soc Mag Reson Med 13:1134

    Google Scholar 

  66. Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bandettini PA, Wong EC, Hinks RS et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  CAS  PubMed  Google Scholar 

  68. Ogawa S, Tank DW, Menon R et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ances BM, Leontiev O, Perthen JE et al (2008) Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. Neuroimage 39:1510–1521

    Article  PubMed  Google Scholar 

  70. Buxton RB (2010) Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism. Front Neuroenerg 2:8. http://dx.doi.org/10.3389/fnene.2010.00008

    Google Scholar 

  71. Griffeth VEM, Perthen JE, Buxton RB (2011) Prospects for quantitative fMRI: investigating the effects of caffeine on baseline oxygen metabolism and the response to a visual stimulus in humans. Neuroimage 57:809–816

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moradi F, Buracas GT, Buxton RB (2012) Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex. Neuroimage 59:601–607

    Article  PubMed  Google Scholar 

  73. Liu TT (2013) Neurovascular factors in resting-state functional MRI. Neuroimage 80:339–348

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mohtasib RS, Lumley G, Goodwin JA et al (2012) Calibrated fMRI during a cognitive Stroop task reveals reduced metabolic response with increasing age. Neuroimage 59:1143–1151

    Article  PubMed  Google Scholar 

  75. Blockley NP, Griffeth VE, Simon AB et al (2013) A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed 26:987–1003

    Article  PubMed  Google Scholar 

  76. Davis TL, Kwong KK, Weisskoff RM et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wise RG, Harris AD, Stone AJ et al (2013) Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia. Neuroimage 83:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bulte DP, Kelly M, Germuska M et al (2012) Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. Neuroimage 60:582–591

    Article  CAS  PubMed  Google Scholar 

  79. Zhang N, Zhu XH, Chen W (2008) Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli. Neuroimage 43:204–212

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang N, Yacoub E, Zhu XH et al (2009) Linearity of blood-oxygenation-level dependent signal at microvasculature. Neuroimage 48:313–318

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chiacchiaretta P, Ferretti A (2015) Resting state BOLD functional connectivity at 3 T: spin echo versus gradient echo EPI. PLoS One 10(3):e0120398. doi:10.1371/journal.pone.0120398

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chiacchiaretta P, Romani GL, Ferretti A (2013) Sensitivity of BOLD response to increasing visual contrast: spin echo versus gradient echo EPI. Neuroimage 82:35–43

    Article  PubMed  Google Scholar 

  83. Uludağ K, Müller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165

    Article  PubMed  Google Scholar 

  84. Norris DG (2012) Spin-echo fMRI: The poor relation? Neuroimage 62:1109–1115

    Article  PubMed  Google Scholar 

  85. Diekhoff S, Uludag K, Sparing R et al (2011) Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum BrainMapp 32:341–357

    Google Scholar 

  86. Raoult H, Petr J, Bannier EC et al (2011) Arterial spin labeling for motor activation mapping at 3 T with a 32-channel coil: reproducibility and spatial accuracy in comparison with BOLD fMRI. Neuroimage 58:157–167

    Article  PubMed  Google Scholar 

  87. Tjandra T, Brooks JC, Figueiredo P et al (2005) Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 27:393–401

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Tartaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiacchiaretta, P., Tartaro, A., Salice, S., Ferretti, A. (2017). ASL 3.0 T Perfusion Studies. In: Scarabino, T., Pollice, S., Popolizio, T. (eds) High Field Brain MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-44174-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44174-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44173-3

  • Online ISBN: 978-3-319-44174-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics