Skip to main content
Log in

The interlink between thyroid autoimmunity and type 1 diabetes and the impact on male and female fertility

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

The aim of this review is to discuss the several interconnections between thyroid autoimmunity and type 1 diabetes in terms of epidemiology, immunoserology, genetic predisposition, and pathogenic mechanisms. We will also analyze the impact of these conditions on both male and female fertility. A literature search was carried out using the MEDLINE/PubMed, Scopus, Google Scholar, ResearchGate, and Clinical Trials Registry databases with a combination of keywords. It was found that the prevalence of thyroid autoantibodies in individuals with type 1 diabetes (T1DM) varied in different countries and ethnic groups from 7 to 35% in both sexes. There are several types of autoantibodies responsible for the immunoserological presentation of autoimmune thyroid diseases (AITDs) which can be either stimulating or inhibiting, which results in AITD being in the plus phase (thyrotoxicosis) or the minus phase (hypothyroidism). Different types of immune cells such as T cells, B cells, natural killer (NK) cells, antigen presenting cells (APCs), and other innate immune cells participate in the damage of the beta cells of the islets of Langerhans, which inevitably leads to T1D. Multiple genetic and environmental factors found in variable combinations are involved in the pathogenesis of AITD and T1D. In conclusion, although it is now well-known that both diabetes and thyroid diseases can affect fertility, only a few data are available on possible effects of autoimmune conditions. Recent findings nevertheless point to the importance of screening patients with immunologic infertility for AITDs and T1D, and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T1D:

Type 1 diabetes

AITD:

Autoimmune thyroid disease

AT:

Autoimmune thyroiditis

APC:

Antigen presenting cells

NK:

Natural killer

HT:

Hashimoto’s thyroiditis

GD:

Graves’ disease

TPO:

Thyroid peroxidase

Tg:

Thyroglobulin

NIS:

Sodium iodide symporter

MiRNA:

Microribonucleic acid

APS2v:

Autoimmune polyglandular syndrome type 2

APS3v:

Autoimmune polyglandular syndrome type 3

MAR:

Mixed antiglobulin reaction

TAR:

Tray agglutination test

SGA:

Small for gestational age

SCFAs:

Short-chain fatty acids

References

  1. Gregory GA, Robinson TIG, Linklater SE et al (2022) Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study [published correction appears in Lancet Diabetes Endocrinol. 2022]. Lancet Diabetes Endocrinol 10(10):741–760. https://doi.org/10.1016/S2213-8587(22)00218-2

    Article  PubMed  Google Scholar 

  2. Diaz-Valencia PA, Bougnères P, Valleron AJ (2015) Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health 15:255. https://doi.org/10.1186/s12889-015-1591-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lotti F, Maggi M (2023) Effects of diabetes mellitus on sperm quality and fertility outcomes: clinical evidence. Androl Feb 11(2):399–416. https://doi.org/10.1111/andr.13342Epub 2022 Dec 10. PMID: 36416060

    Article  CAS  Google Scholar 

  4. Abbade RCF, Fernandes A, Zantut-Wittmann DE et al (2020) Type 1 diabetes mellitus associated or not with primary hypothyroidism and women’s fertility. Gynecol Endocrinol 36(2):126–130 Epub 2019 Jun 22. PMID: 31232118

    Article  PubMed  Google Scholar 

  5. Ragusa F, Fallahi P, Elia G et al (2019) Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy, Best Practice & Research Clinical Endocrinology & Metabolism, Volume 33, Issue 6, 2019, https://doi.org/10.1016/j.beem.2019.101367

  6. Tańska K, Gietka-Czernel M, Glinicki P et al (2022) Thyroid autoimmunity and its negative impact on female fertility and maternal pregnancy outcomes. Front Endocrinol (Lausanne) 13:1049665. https://doi.org/10.3389/fendo.2022.1049665

    Article  PubMed  Google Scholar 

  7. Kota SK, Meher LK, Jammula S et al (2012) Clinical profile of coexisting conditions in type 1 diabetes mellitus patients. Diabetes Metab Syndr 6(2):70–76. https://doi.org/10.1016/j.dsx.2012.08.006Epub 2012 Aug 24. PMID: 23153973

    Article  PubMed  Google Scholar 

  8. Kahaly GJ, Hansen MP (2016) Type 1 diabetes associated autoimmunity. Autoimmun Rev 15(7):644–648. https://doi.org/10.1016/j.autrev.2016.02.017Epub 2016 Feb 20. PMID: 26903475

    Article  CAS  PubMed  Google Scholar 

  9. Kordonouri O, Klinghammer A, Lang EB et al (2002) Thyroid autoimmunity in children and adolescents with type 1 diabetes: a multicenter survey. Diabetes Care. (8):1346-50. https://doi.org/10.2337/diacare.25.8.1346. PMID: 12145233

  10. Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38(11):805–816

    Article  CAS  PubMed  Google Scholar 

  11. Kahaly GJ, Diana T, Olivo PD (2020) TSH receptor antibodies: relevance & utility. Endocr Pract 26(1):97–106

    Article  PubMed  Google Scholar 

  12. Morshed SA, Ando T, Latif R et al (2010) Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades. Endocrinology 151(11):5537–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bogusławska J, Godlewska M, Gajda E et al (2022) Cellular and molecular basis of thyroid autoimmunity. European thyroid journal vol. 11,1 e210024. 1 Jan. 2022, https://doi.org/10.1530/ETJ-21-0024

  14. Jaume JC, Burek CL, Hoffman WH et al (1996) Thyroid peroxidase autoantibody epitopic ‘fingerprints’ in juvenile Hashimoto’s thyroiditis: evidence for conservation over time and in families. Clin Experimental Immunol 104(1):115–123

    Article  CAS  Google Scholar 

  15. Eleftheriadou AM, Mehl S, Renko K et al (2020) Re-visiting autoimmunity to sodium-iodide symporter and pendrin in thyroid disease. Eur J Endocrinol 183(6):571–580

    Article  CAS  PubMed  Google Scholar 

  16. Yu L, Robles DT, Abiru N et al (2000) Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proceedings of the National Academy of Sciences, 97(4), 1701–1706

  17. Li M, Song LJ, Qin XY (2014) Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med. 2014;18(5):749 – 58. https://doi.org/10.1111/jcmm.12270. Epub 2014 Mar 14. PMID: 24629100; PMCID: PMC4119381

  18. Lampasona V, Petrone A, Tiberti C et al (2010) Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes: non insulin requiring Autoimmune Diabetes (NIRAD) 4. Diabetes Care 33(1):104–108. https://doi.org/10.2337/dc08-2305

    Article  CAS  PubMed  Google Scholar 

  19. Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proceedings of the National Academy of Sciences, 104(43), 17040–17045

  20. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464(7293):1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ajjan RA, Weetman AP (2015) The pathogenesis of Hashimoto’s Thyroiditis: further developments in our understanding. Horm Metab Res 47(10):702–710

    Article  CAS  PubMed  Google Scholar 

  22. Ilonen J, Lempainen J, Veijola R (2019) The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 15(11):635–650

    Article  CAS  PubMed  Google Scholar 

  23. Grieco FA, Vendrame F, Spagnuolo I et al (2011) Innate immunity and the pathogenesis of type 1 diabetes. Semin Immunopathol 33(1):57–66

    Article  CAS  PubMed  Google Scholar 

  24. Tritt M, Sgouroudis E, d’Hennezel E et al (2008) Functional waning of naturally occurring CD4 + regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57(1):113–123

    Article  CAS  PubMed  Google Scholar 

  25. Guay C, Kruit JK, Rome S et al (2019) Lymphocyte-derived exosomal MicroRNAs promote pancreatic beta cell death and may contribute to type 1 Diabetes Development. Cell Metab 29(2):348–361 e6

    Article  CAS  PubMed  Google Scholar 

  26. Rodacki M, Milech A, de Oliveira JE (2006) NK cells and type 1 diabetes. Clin Dev Immunol 13(2–4):101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, You R, Yu N et al (2016) Increased proportions of Tc17 cells and NK cells may be risk factors for disease progression in Hashimoto’s thyroiditis. Int Immunopharmacol 40:332–338

    Article  CAS  PubMed  Google Scholar 

  28. Levin L, Ban Y, Concepcion E (2004) Analysis of HLA genes in families with autoimmune diabetes and thyroiditis. Hum Immunol 65(6):640–647

    Article  CAS  PubMed  Google Scholar 

  29. Dittmar M, Kahaly GJ (2010) Genetics of the autoimmune polyglandular syndrome type 3 variant. Thyroid 20(7):737–743

    Article  CAS  PubMed  Google Scholar 

  30. Frommer L, Kahaly GJ (2021) Type 1 diabetes and autoimmune thyroid disease-the genetic link. Front Endocrinol (Lausanne) 12:618213

    Article  PubMed  Google Scholar 

  31. Menconi F, Osman R, Monti MC (2010) Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci U S A 107(39):16899–16903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li CW, Osman R, Menconi F (2017) Flexible peptide recognition by HLA-DR triggers specific autoimmune T-cell responses in autoimmune thyroiditis and diabetes. J Autoimmun 76:1–9

    Article  PubMed  Google Scholar 

  33. Tandon N, Zhang L, Weetman AP (1991) HLA associations with Hashimoto’s thyroiditis. Clin Endocrinol (Oxf) 34(5):383–386

    Article  CAS  PubMed  Google Scholar 

  34. Todd JA (2010) Etiology of type 1 diabetes. Immunity 32(4):457–467

    Article  CAS  PubMed  Google Scholar 

  35. Szeliga A, Calik-Ksepka A, Maciejewska-Jeske M et al (2021) Autoimmune diseases in patients with premature ovarian insufficiency-our current state of knowledge. Int J Mol Sci; 22(5)

  36. Duntas LH (2008) Environmental factors and autoimmune thyroiditis. Nat Clin Pract Endocrinol Metab 4(8):454–460

    Article  CAS  PubMed  Google Scholar 

  37. Weiss A, Donnachie E, Beyerlein A (2023) Type 1 Diabetes Incidence and Risk in Children With a Diagnosis of COVID-19. JAMA 2023

  38. Tutal E, Ozaras R, Leblebicioglu H (2022) Systematic review of COVID-19 and autoimmune thyroiditis. Travel Med Infect Dis 47:102314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossini A, Cassibba S, Perticone F et al (2023) Increased prevalence of autoimmune thyroid disease after COVID-19: a single-center, prospective study. Front Endocrinol (Lausanne) 14:1126683

    Article  PubMed  Google Scholar 

  40. Krassas GE, Perros P (2003) Thyroid disease and male reproductive function. J Endocrinol Invest. (4):372– 80. https://doi.org/10.1007/BF03345187. PMID: 12841547

  41. Mazzilli R, Medenica S, Di Tommaso AM et al (2023) The role of thyroid function in female and male infertility: a narrative review. J Endocrinol Invest 46(1):15–26. https://doi.org/10.1007/s40618-022-01883-7Epub 2022 Aug 9. PMID: 35945393; PMCID: PMC9829629

    Article  CAS  PubMed  Google Scholar 

  42. Krassas GE, Papadopoulou F, Tziomalos K et al (2008) Hypothyroidism has an adverse effect on human spermatogenesis: a prospective, controlled study. Thyroid. 18(12):1255-9. https://doi.org/10.1089/thy.2008.0257. PMID: 19012472

  43. Trummer H, Ramschak-Schwarzer S, Haas J et al (2001) Thyroid hormones and thyroid antibodies in infertile males. Fertil Steril. 76(2):254-7. https://doi.org/10.1016/s0015-0282(01)01875-1. PMID: 11476769

  44. Paschke R, Bertelsbeck DS, Tsalimalma K et al (1994) Association of sperm antibodies with other autoantibodies in infertile men. Am J Reprod Immunol. 32(2):88–94. https://doi.org/10.1111/j.1600-0897.1994.tb01098.x. PMID: 7826505

  45. Poppe K, Glinoer D, Tournaye H et al (2006) Is systematic screening for thyroid disorders indicated in subfertile men? Eur J Endocrinol. 154(3):363-6. https://doi.org/10.1530/eje.1.02098. PMID: 16498047

  46. Mihara S, Suzuki N, Wakisaka S et al (1999) Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J Clin Endocrinol Metab. 84(4):1378-85. https://doi.org/10.1210/jcem.84.4.5598. PMID: 10199782

  47. (2021) ETA Guidelines https://doi.org/10.1159/000512790

  48. Derrou S, El Guendouz F, Benabdelfedil Y et al (2021) The profile of autoimmunity in Type 1 diabetes patients. Ann Afr Med. 2021 Jan-Mar;20(1):19–23. https://doi.org/10.4103/aam.aam_8_20. PMID: 33727507; PMCID: PMC8102891

  49. Vallianou N, Stratigou T, Koutroumpi S et al (2019) Autoimmune thyroiditis in patients with type 1 diabetes mellitus: a long-term follow-up study. Diabetes Metab Syndr 2019 Jan-Feb 13(1):608–611 Epub 2018 Nov 14. PMID: 30641774

    Google Scholar 

  50. Alexander EK, Pearce EN, Brent GA et al (2017) 2017 guidelines of the American thyroid association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid 27:315–389. https://doi.org/10.1089/thy. 2016. 0457

  51. Krassas GE, Poppe K, Glinoer D (2010) Thyroid function and human reproductive health. Endocr Rev 31:702–755

    Article  CAS  PubMed  Google Scholar 

  52. Bellver J, Soares SR, Alvarez C et al (2008) The role of thrombophilia and thyroid autoimmunity in unexplained infertility, implantation failure and recurrent spontaneous abortion. Hum Reprod 23:278–284

    Article  PubMed  Google Scholar 

  53. Van den Boogaard E, Vissenberg R, Land JA et al (2011) Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update 17:605–619

    Article  PubMed  Google Scholar 

  54. Zhang C, Guo L, Zhu B et al (2013) Effects of 3, 5, 3′-triiodothyronine (t3) and follicle stimulating hormone on apoptosis and proliferation of rat ovarian granulosa cells. Chin J Physiol 56:298–305

    CAS  PubMed  Google Scholar 

  55. Zhang SS, Carrillo AJ, Darling DS (1997) Expression of multiple thyroid hormone receptor mRNAs in human oocytes, cumulus cells, and granulosa cells. Mol Hum Reprod 3:555–562

    Article  CAS  PubMed  Google Scholar 

  56. Monteleone P, Parrini D, Faviana P et al (2011) Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis. Am J Reprod Immunol 66:108–114

    Article  CAS  PubMed  Google Scholar 

  57. Kim NY, Cho HJ, Kim HY et al (2011) Thyroid autoimmunity and its association with cellular and humoral immunity in women with reproductive failures. Am J Reprod Immunol 2011b;65:78–87

  58. Snajderová M, Martínek J, Horejsí J et al (1999) Premenarchal and postmenarchal girls with insulin-dependent diabetes mellitus: ovarian and other organ-specific autoantibodies, menstrual cycle. J Pediatr Adolesc Gynecol 12(4):209–214. https://doi.org/10.1016/s1083-3188(99)00023-6

    Article  PubMed  Google Scholar 

  59. Arrais RF, Dib SA (2006) The hypothalamus-pituitary-ovary axis and type 1 diabetes mellitus: a mini review. Hum Reprod 21(2):327–337. https://doi.org/10.1093/humrep/dei353

    Article  CAS  PubMed  Google Scholar 

  60. Codner E, Merino PM, Tena-Sempere M (2012) Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update 18(5):568–585. https://doi.org/10.1093/humupd/dms024

    Article  CAS  PubMed  Google Scholar 

  61. Bakr HG, Meawed TE (2017) Relevance of 25 (OH) vitamin D deficiency on Hashimoto’s Thyroiditis. Egypt J Immunol 24(2):53–62

    PubMed  Google Scholar 

  62. Biondi B, Cooper DS (2019) Thyroid hormone therapy for hypothyroidism. Endocrine 66:18–26. https://doi.org/10.1007/s12020-019-02023-7

    Article  CAS  PubMed  Google Scholar 

  63. Khan SZA, Lungba RM, Ajibawo-Aganbi U et al (2020) Minerals: An Untapped Remedy for Autoimmune Hypothyroidism? Cureus vol. 12,10 e11008. https://doi.org/10.7759/cureus.11008

  64. Baser H, Can U, Baser S (2015) Assesment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine 48:916–923

  65. Wichman J, Winther KH, Bonnema SJ et al (2016) Selenium supplementation significantly reduces thyroid autoantibody levels in patients with chronic autoimmune thyroiditis: a systematic review and meta-analysis. Thyroid 26(12):1681–1692

    Article  CAS  PubMed  Google Scholar 

  66. Mao J, Pop VJ, Bath SC (2016) Effect of low-dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur J Nutr 55:55–61

    Article  CAS  PubMed  Google Scholar 

  67. Filipowicz D, Majewska K, Kalantarova A et al (2021) The rationale for selenium supplementation in patients with autoimmune thyroiditis, according to the current state of knowledge. Endokrynologia Polska vol 72(2):153–162. https://doi.org/10.5603/EP.a2021.0017

    Article  CAS  Google Scholar 

  68. Mantovani G, Isidori AM, Moretti C et al (2019) Selenium supplementation in the management of thyroid autoimmunity during pregnancy: results of the SERENA study, a randomized, double-blind, placebo-controlled trial. Endocrine 66:542–550. https://doi.org/10.1007/s12020-019-01958-1

    Article  CAS  PubMed  Google Scholar 

  69. Fan Y, Xu S, Zhang H et al (2014) Selenium supplementation for autoimmune thyroiditis: a systematic review and meta-analysis. Int J Endocrinol 2014:904573. https://doi.org/10.1155/2014/904573

  70. Kandhro GA, Kazi TG, Afridi HI (2009) Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin Nutr 28(2):162–168

    Article  CAS  PubMed  Google Scholar 

  71. Bucci I, Napolitano G, Giuliani C et al (1999) Zinc sulfate supplementation improves thyroid function in hypozincemic down children. Biol Trace Elem Res 67:257–268

    Article  CAS  PubMed  Google Scholar 

  72. Sanna A, Firinu D, Zavattari P et al (2018) Zinc status and autoimmunity: a systematic review and meta-analysis. Nutrients 10(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moncayo R, Moncayo H (2015) Proof of concept of the WOMED model of benign thyroid disease: restitution of thyroid morphology after correction of physical and psychological stressors and magnesium supplementation. BBA Clin 3:113–122

    Article  PubMed  Google Scholar 

  74. Hu X, Teng X, Zheng H et al (2014) Iron deficiency without anemia causes maternal hypothyroxinemia in pregnant rats. Nutr Res 34(7):604–612

    Article  CAS  PubMed  Google Scholar 

  75. Bremner AP, Feddema P, Joske DJ et al (2012) Significant association between thyroid hormones and erythrocyte indices in euthyroid subjects. Clin Endocrinol 76(2):304–311

    Article  CAS  Google Scholar 

  76. Wang F, Zhang Y, Yuan Z et al (2022) The association between iron status and thyroid hormone levels during pregnancy. J Trace Elem Med Biology: Organ Soc Minerals Trace Elem (GMS) 74:127047

    Article  CAS  Google Scholar 

  77. Gregoriou E, Mamais I, Tzanetakou I et al (2017) The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. The review of diabetic studies: RDS vol. 14,2–3 (2017): 260–268. https://doi.org/10.1900/RDS.2017.14.260

  78. Panjiyar RP, Dayal D, Attri SV et al (2018) Sustained serum 25-hydroxyvitamin D concentrations for one year with cholecalciferol supplementation improves glycaemic control and slows the decline of residual β cell function in children with type 1 diabetes. Pediatric endocrinology, diabetes, and metabolism. 3111–117. https://doi.org/10.5114/pedm.2018.80992

  79. Bell KJ, Saad S, Tillett B et al (2022) Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome 10,1(9):19. https://doi.org/10.1186/s40168-021-01193-9

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or non-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Defeudis.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medenica, S., Stojanovic, V., Capece, U. et al. The interlink between thyroid autoimmunity and type 1 diabetes and the impact on male and female fertility. Hormones (2024). https://doi.org/10.1007/s42000-024-00563-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42000-024-00563-w

Keywords

Navigation