Skip to main content
Log in

Zinc sulfate supplementation improves thyroid function in hypozincemic down children

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In subjects affected by trisomy 21 (Down syndrome), hypothyroidism is the most common endocrinological deficit. Plasma zinc levels, which are commonly detected below the normal range in Down patients, are related to some endocrinological and immunological functions; in fact, zinc deficiency has been shown to impair immune response and growth rate. Aims of this study were to evaluate (1) the role of zinc deficiency in subclinical hypothyroidism and (2) thyroid function changes in Down children cyclically supplemented with zinc sulfate. Inverse correlations have been observed between age and triiodotironine (T3) and between zinc and thyroid-stimulating hormone (TSH); higher TSH levels have been found in hypozincemic patients at the beginning of the study. After 6 mo of supplementation, an improvement of thyroid function (TSH levels: 3.96 ± 1.84 vs 2.64 ± 1.33 mUI/mL basally and after 6 mo, respectively) was observed in hypozincemic patients. In the second cycle of supplementation, a similar trend of TSH was observed. At the end of the study, TSH significantly decreased in treated hypozincemic subjects (4.48 ± 1.93 vs 2.96 ± 1.20 mUI/mL) and it was no longer different in comparison to normozincemic patients. We suggest zinc supplementation to the diet in hypozincemic Down children as a simple and useful therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Pueschel and J. C. Pezzullo, Thyroid disfunction in Down’s syndrome,Am. J. Dis. Child. 39, 636–639 (1985).

    Google Scholar 

  2. S. Dinani and S. Carpenter, Down’s syndrome and thyroid disorders,J. Mental Defic. Res. 34, 187–193 (1990).

    Google Scholar 

  3. D. L. Friedman, T. Kastner, S. W. Pond, and D. Rice O’Brien, Thyroid disfunction in individuals with Down syndrome,Arch. Intern. Med. 149, 1990–1993 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. A. T. Cutler, R. Benezra-Obeiter, and J. S. Brink, Thyroid function in young children with Down syndrome,Am. J. Dis. Child. 140, 479–483 (1986).

    PubMed  CAS  Google Scholar 

  5. D. Rubello, G. B. Pozzan, D. Casara, M. E. Girelli, S. Boccato, F. Rigon, et al., Natural course of subclinical hypothyroidism in Down’s syndrome: prospective study and therapeutic considerations,J. Endocrinol. Invest. 17, 35–40 (1995).

    Google Scholar 

  6. R. T. Zori, D. A. Schatz, H. Ostrer, C. A. Williams, R. Spillar, and W. J. Riley, Relationship of autoimmunity to thyroid disfunction in children and adults with Down syndrome,Am. J. Med. Genet. 7(suppl.), 238–241 (1990).

    Article  CAS  Google Scholar 

  7. T. Sharav, R. M. Collins, and P. J. Baab, Growth studies in infants and children with Down’s syndrome and elevated levels of thyrotropin,Am. J. Dis. Child. 142, 1302–1306 (1988).

    PubMed  CAS  Google Scholar 

  8. G. Napolitano, G. Palka, S. Lio S. I. Bucci, P. De Remigis, L. Stuppia, et al., Is zinc deficiency a cause of subclinical hypothyroidism in Down syndrome?Ann. Genet. 33, 9–15 (1990).

    PubMed  CAS  Google Scholar 

  9. B. Bjorkstein, O. Back, K. H. Gustavson, G. Hallmans, B. Hagglof, and A. Tarnvick, Zinc and immune function in Down syndrome,Acta Pediatr. Scand. 69, 183–187 (1980).

    Google Scholar 

  10. C. Franceschi, M. Chiricolo, F. Licastro, M. Zannotti, M. Masi, E. Mocchegiani, et al., Oral zinc supplementation in Down syndrome: restoration of thymic endocrine activity and some immune defects,J. Ment. Defic. Res. 32, 168–181 (1988).

    Google Scholar 

  11. N. Fabris, E. Mocchegiani, L. Amadio, M. Zannotti, F. Licastro, and C. Franceschi, Thymic hormone deficiency in normal aging and Down’s syndrome: Is there a primary failure of the thymus?Lancet 1, 983–986 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. A. S. Prasad, Clinical, endocrinological and biochemical effects of zinc deficiency,Clin. Endocrinol. Metab. 14, 567–589 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. T. Nakamura, S. Nishiyama, Y. Futagoishi-Suginohara, I. Matsuda, and A. Higashi, Mild to moderate zinc deficiency in short children: effect of zinc supplementation on linear growth velocity,J. Pediatr. 123, 65–69 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. A. E. Favier, Hormonal effects of zinc on growth in children,Biol. Trace Element Res. 32, 383–398 (1992).

    CAS  Google Scholar 

  15. S. Z. Ghavami-Maibodi, P. J. Collipp, M. Castro-Magana, C. Stewart, and S. Y. Chen, Effect of oral zinc supplementation on growth, hormonal levels and zinc in healthy short children,Ann. Nutr. Metab. 27, 214–219 (1983).

    PubMed  CAS  Google Scholar 

  16. M. Sustrova and V. Strbak, Thyroid function and plasma immunoglobulins in subjects with Down’s syndrome (DS) during ontogenesis and zinc therapy,J. Endocrinol. Invest. 17, 385–390 (1994).

    PubMed  CAS  Google Scholar 

  17. R. K. Chondra, Excessive intake of zinc impairs immune responses,J. Am. Med. Assoc. 252, 1443–1446 (1984).

    Article  Google Scholar 

  18. J. Neve, Clinical implications of trace elements in endocrinology,Biol. Trace Element Res. 32, 173–185 (1992).

    CAS  Google Scholar 

  19. R. J. McConnell, C. E. Menendez, F. Rees Smith, R. I. Henkin, and R. S. Rivlin, Defect of taste and smell in patients with hypothyroidism,Am. J. Med. 59, 354–364 (1976).

    Article  Google Scholar 

  20. K. Aihara, Y. Nishi, S. Hatano, M. Kimara, K. Yoshimitsu, N. Takeichi, et al., Zinc, copper, manganese and selenium metabolism in thyroid diseases,Am. J. Clin. Nutr. 40, 26–35 (1984).

    PubMed  CAS  Google Scholar 

  21. K. Yoshida, J. Kiso, T. Watanabe, K. Kaise, N. Kaise, H. Fukazawa, et al., Erythrocyte zinc concentration in patients with subacute thyroiditis,J. Clin. Endocrinol. Metab. 70, 788–791 (1990).

    PubMed  CAS  Google Scholar 

  22. E. Dolev, P. A. Deuster, B. Solomon, U. H. Trostmann, L. Wartofsky, and K. D. Burman, Alterations in magnesium and zinc metabolism in thyroid diseases,Metabolism 37, 61–67 (1988).

    Article  PubMed  CAS  Google Scholar 

  23. S. Nishiyama, Y. Futagoishi-Suginohara, M. Matsukura, T. Nakamura, A. Higashi, M. Shinohara, et al., Zinc supplementation alters thyroid hormone metabolism in disabled patients with zinc deficiency,J. Am. Coll. Nutr. 13, 62–67 (1994).

    PubMed  CAS  Google Scholar 

  24. F. Arreola, R. Paniagua, A. Perez, S. Diaz-Bensussen, E. Junco, S. Villalpando, et al., Effect of zinc treatment on serum thyroid hormones in uremic patients under peritoneal dialysis,Horm. Metab. Res. 25, 539–542 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. F. Licastro, E. Mocchegiani, M. Zannotti, G. Arena, M. Masi, and N. Fabris, Zinc affects the metabolism of thyroid hormones in children with Down’s syndrome: normalization of thyroid stimulating hormone and reversal triiodothyronine plasmic levels by dietary zinc supplementation,Int. J. Neurosci. 65, 259–268 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. J. O. Oliver, D. S. Sachan, P. Su, and M. Applehans, Effects of zinc deficiency on thyroid function,Drug-Nutrient. Interact. 5, 113–124 (1987).

    CAS  Google Scholar 

  27. Essential trace elements and thyroid hormones [Editorial],Lancet 339, 1575–1576 (1992).

    Article  Google Scholar 

  28. J. Lejeune, M. Peeters, M. C. De Blois, M. Bergere, A. Grillot, M. O. Rethore, et al, Function thyroidienne et trisomie21; exces de TSH et deficit en rT3,Ann. Genet. (Paris) 31, 137–143 (1988).

    CAS  Google Scholar 

  29. I. J. Ramirez, M. Halwer, L. E. Shapiro, and M. I. Surks, Zinc (II) inhibits the release of thyroid and glucocorticoid receptor from chromatin of cultured GC cells,Horm. Metab. Res. 23, 155–161 (1991).

    PubMed  CAS  Google Scholar 

  30. T. Miyamoto, A. Sakurai, and L. J. De Groot, Effects of zinc and other divalent metals on deoxyribonucleic acid binding and hormone-binding activity on human αl thyroid hormone receptor expressed inEscherichia Coli, Endocrinology129, 3027–3033 (1991).

    PubMed  CAS  Google Scholar 

  31. N. Fabris, E. Mocchegiani, S. Mariotti, F. Pacini, and A. Pinchera, Thyroid function modulates thymic endocrine activity,J. Clin. Endocrinol. Metab. 62, 474–478 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. N. Fabris, E. Mocchegiani, S. Mariotti, G. Caramia, T. Braccilli, F. Pacini, et al., Thymulin deficiency and low 3,5,3′-triiodothyronine syndrome in infant with low birth weight syndrome,J. Clin. Endocrinol. Metab. 65, 247–252 (1987).

    PubMed  CAS  Google Scholar 

  33. G. Napolitano, I. Bucci, C. Giuliani, G. Palka, S. Lio, E. Mocchegiani, et al., Thyroid function in relation to endocrine thymic activity in Down children before and after zinc supplementation, inProgress in Thyroid Research, A. Gordon, J. Gross, and G. Henneman, eds., Balkema-Brookfield, Rotterdam, pp. 291–293 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucci, I., Napolitano, G., Giuliani, C. et al. Zinc sulfate supplementation improves thyroid function in hypozincemic down children. Biol Trace Elem Res 67, 257–268 (1999). https://doi.org/10.1007/BF02784425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784425

Index entries

Navigation