Skip to main content
Log in

Differences in segmental hair cortisol concentration analysis among children and adolescents with overweight and obesity, their parents, and normal weight peers

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

Dysregulation of the stress system via incidental long exposure to glucocorticoids (GCs) can lead to weight gain. In addition, family and maternal stress can also have an impact on children’s weight. Hair is used in several studies to evaluate cortisol (GC) levels in children and adolescents with excess weight as a retrospective stress biomarker, depending on the hair length the cortisol measurement depicting different time periods. We aimed to investigate whether there is a difference among segmental hair cortisol concentration (HCC) analysis between children and adolescents with overweight and obesity, their mothers, and normal weight peers.

Methods

This study recruited 25 children aged 6–14 years with a body mass index (BMI) ≥ 85th centile and their mothers, as well as 20 children of the same age with a BMI < 85th centile. Hair cortisol concentration was measured using electrochemiluminescence immunoassay.

Results

Segmental HCC analysis exhibited gradually decreasing values in all participants as segments of hair were more distantly located from the scalp. A positive correlation was found between BMI z-score and HCC of the first segment of hair in children and adolescents with elevated BMI (b = 1.84, p = 0.033), as well as with maternal HCC / of an only child (b = 15.77, p = 0.01). There were no associations between mother-child dyads and children and adolescents of different BMI groups, even though minors with excess weight exhibited higher HCC levels in all segments of hair in comparison to their normal weight counterparts.

Conclusions

Hair cortisol of all participants exhibited a gradually declining concentration. More studies with larger samples and more sensitive methods of analysis are warranted in order to draw firmer conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (2021) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed on 14 January 2023

  2. NCD Risk Factor Collaboration (NCD-RisC) (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390:2627–2642. https://doi.org/10.1016/S0140-6736(17)32129-3

    Article  Google Scholar 

  3. Hampl SE, Hassink SG, Skinner AC, Armstrong SC, Barlow SE, Bolling CF, Avila Edwards KC, Eneli I, Hamre R, Joseph MM et al (2023) Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 151:e2022060640. https://doi.org/10.1542/peds.2022-060640

    Article  PubMed  Google Scholar 

  4. Styne DM, Arslanian SA, Connor EL, Farooqi IS, Murad MH, Silverstein JH, Yanovski JA (2017) Pediatric obesity—assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 102:709–757. https://doi.org/10.1210/jc.2016-2573

    Article  PubMed  PubMed Central  Google Scholar 

  5. Valaiyapathi B, Gower B, Ashraf AP (2020) Pathophysiology of type 2 diabetes in children and adolescents. Curr Diabetes Rev 16:220–229. https://doi.org/10.2174/1573399814666180608074510

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tyson N, Frank M (2018) Childhood and adolescent obesity definitions as related to BMI, evaluation and management options. Best Pract Res Clin Obstet Gynaecol 48:158–164. https://doi.org/10.1016/j.bpobgyn.2017.06.003

    Article  PubMed  Google Scholar 

  7. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, de Ferranti SD, Dionne JM, Falkner B, Flinn SK et al (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140:e20171904. https://doi.org/10.1542/peds.2017-1904

    Article  PubMed  Google Scholar 

  8. Rankin J, Matthews L, Cobley S, Han A, Sanders R, Wiltshire HD, Baker JS (2016) Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc Health Med Ther 7:125–146. https://doi.org/10.2147/AHMT.S101631

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kokka I, Mourikis I, Bacopoulou F (2023) Psychiatric disorders and obesity in childhood and adolescence—a systematic review of cross-sectional studies. Children 10:285. https://doi.org/10.3390/children10020285

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS (2015) Childhood obesity: causes and consequences. J Family Med Prim Care 4:187–192. https://doi.org/10.4103/2249-4863.154628

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gurnani M, Birken C, Hamilton J (2015) Childhood obesity: causes, consequences, and management. Pediatr Clin N Am 62:821–840. https://doi.org/10.1016/j.pcl.2015.04.001

    Article  Google Scholar 

  12. de Guia RM, Rose AJ, Herzig S (2014) Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Invest 19:117–128. https://doi.org/10.1515/hmbci-2014-0021

    Article  CAS  Google Scholar 

  13. Pervanidou P, Chrousos GP (2016) Stress and pediatric obesity: neurobiology and behavior. Fam Relat 65:85–93. https://doi.org/10.1111/fare.12181

    Article  Google Scholar 

  14. Kuckuck S, van der Valk ES, Scheurink AJW, van der Voorn B, Iyer AM, Visser JA, Delhanty PJD, van den Berg SAA, van Rossum EFC (2022) Glucocorticoids, stress and eating: the mediating role of appetite-regulating hormones. Obes Rev 24:e13539. https://doi.org/10.1111/obr.13539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ulrich-Lai YM, Fulton S, Wilson M, Petrovich G, Rinaman L (2015) Stress exposure, food intake and emotional state. Stress 18:381–399. https://doi.org/10.3109/10253890.2015.1062981

    Article  PubMed  PubMed Central  Google Scholar 

  16. García-Eguren G, Sala-Vila A, Giró O, Vega-Beyhart A, Hanzu FA (2020) Long-term hypercortisolism induces lipogenesis promoting palmitic acid accumulation and inflammation in visceral adipose tissue compared with HFD-induced obesity. Am J Physiol Endocrinol Metab 318:E995–E1003. https://doi.org/10.1152/ajpendo.00516.2019

    Article  CAS  PubMed  Google Scholar 

  17. Lustig RH, Collier D, Kassotis C, Roepke TA, Kim MJ, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S et al (2022) Obesity I: overview and molecular and biochemical mechanisms. Biochem Pharmacol 199:115012. https://doi.org/10.1016/j.bcp.2022.115012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee M-J, Pramyothin P, Karastergiou K, Fried SK (2014) Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 1842:473–481. https://doi.org/10.1016/j.bbadis.2013.05.029

    Article  CAS  PubMed  Google Scholar 

  19. Daniels LA (2019) Feeding practices and parenting: a pathway to child health and family happiness. Ann Nutr Metab 74:29–42. https://doi.org/10.1159/000499145

    Article  CAS  PubMed  Google Scholar 

  20. Balantekin KN, Anzman-Frasca S, Francis LA, Ventura AK, Fisher JO, Johnson SL (2020) Positive parenting approaches and their association with child eating and weight: a narrative review from infancy to adolescence. Pediatr Obes 15:e12722. https://doi.org/10.1111/ijpo.12722

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Connor SG, Maher JP, Belcher BR, Leventhal AM, Margolin G, Shonkoff ET, Dunton GF (2017) Associations of maternal stress with children’s weight-related behaviours: a systematic literature review. Obes Rev 18:514–525. https://doi.org/10.1111/obr.12522

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tate EB, Wood W, Liao Y, Dunton GF (2015) Do stressed mothers have heavier children? A meta-analysis on the relationship between maternal stress and child body mass index. Obes Rev 16:351–361. https://doi.org/10.1111/obr.12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parks EP, Kumanyika S, Moore RH, Stettler N, Wrotniak BH, Kazak A (2012) Influence of stress in parents on child obesity and related behaviors. Pediatrics 130:e1096–e1104. https://doi.org/10.1542/peds.2012-0895

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E (2015) Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22:6–19. https://doi.org/10.1159/000362736

    Article  CAS  PubMed  Google Scholar 

  25. Gatti R, Antonelli G, Prearo M, Spinella P, Cappellin E, De Palo EF (2009) Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin Biochem 42:1205–1217. https://doi.org/10.1016/j.clinbiochem.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  26. Russell E, Koren G, Rieder M, Van Uum S (2012) Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology 37:589–601. https://doi.org/10.1016/j.psyneuen.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  27. Wosu AC, Valdimarsdóttir U, Shields AE, Williams DR, Williams MA (2013) Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Ann Epidemiol 23:797–811.e2. https://doi.org/10.1016/j.annepidem.2013.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kitani RA, Letsou K, Kokka I, Kanaka-Gantenbein C, Bacopoulou F (2022) Difference in hair cortisol concentrations between obese and non-obese children and adolescents: a systematic review. Children (Basel) 9:715. https://doi.org/10.3390/children9050715

    Article  PubMed  Google Scholar 

  29. Ma L, Liu X, Yan N, Gan Y, Wu Y, Li Y, Chu M, Chiu DT, Ma L (2022) Associations between different cortisol measures and adiposity in children: a systematic review and meta-analysis. Front Nutr 9:879256. https://doi.org/10.3389/fnut.2022.879256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Veldhorst MAB, Noppe G, Jongejan MHTM, Kok CBM, Mekic S, Koper JW, van Rossum EFC, van den Akker ELT (2014) Increased scalp hair cortisol concentrations in obese children. J Clin Endocrinol Metab 99:285–290. https://doi.org/10.1210/jc.2013-2924

    Article  CAS  PubMed  Google Scholar 

  31. Olstad DL, Ball K, Wright C, Abbott G, Brown E, Turner AI (2016) Hair cortisol levels, perceived stress and body mass index in women and children living in socioeconomically disadvantaged neighborhoods: the READI study. Stress 19:158–167. https://doi.org/10.3109/10253890.2016.1160282

    Article  CAS  PubMed  Google Scholar 

  32. Larsen SC, Fahrenkrug J, Olsen NJ, Heitmann BL (2016) Association between hair cortisol concentration and adiposity measures among children and parents from the “healthy start” study. PLoS One 11:e0163639. https://doi.org/10.1371/journal.pone.0163639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papafotiou C, Christaki E, van den Akker ELT, Wester VL, Apostolakou F, Papassotiriou I, Chrousos GP, Pervanidou P (2017) Hair cortisol concentrations exhibit a positive association with salivary cortisol profiles and are increased in obese prepubertal girls. Stress 20:217–222. https://doi.org/10.1080/10253890.2017.1303830

    Article  CAS  PubMed  Google Scholar 

  34. Noppe G, van den Akker ELT, de Rijke YB, Koper JW, Jaddoe VW (2005) van Rossum EFC (2016) Long-term glucocorticoid concentrations as a risk factor for childhood obesity and adverse body-fat distribution. Int J Obes 40:1503–1509. https://doi.org/10.1038/ijo.2016.113

    Article  CAS  Google Scholar 

  35. Bryson HE, Mensah F, Goldfeld S, Price AMH (2020) Using hair cortisol to examine the role of stress in children’s health inequalities at 3 years. Acad Pediatr 20:193–202. https://doi.org/10.1016/j.acap.2019.05.008

    Article  PubMed  Google Scholar 

  36. Genitsaridi S-M, Karampatsou S, Papageorgiou I, Mantzou A, Papathanasiou C, Kassari P, Paltoglou G, Kourkouti C, Charmandari E (2019) Hair cortisol concentrations in overweight and obese children and adolescents. Horm Res Paediatr 92:229–236. https://doi.org/10.1159/000504913

    Article  CAS  PubMed  Google Scholar 

  37. Distel LML, Egbert AH, Bohnert AM, Santiago CD (2019) Chronic stress and food insecurity: examining key environmental family factors related to body mass index among low-income Mexican-origin youth. Fam Community Health 42:213–220. https://doi.org/10.1097/FCH.0000000000000228

    Article  PubMed  Google Scholar 

  38. Christaki EV, Pervanidou P, Papassotiriou I, Bastaki D, Valavani E, Mantzou A, Giannakakis G, Boschiero D, Chrousos GP (2022) Stress, inflammation and metabolic biomarkers are associated with body composition measures in lean, overweight, and obese children and adolescents. Children (Basel) 9:291. https://doi.org/10.3390/children9020291

    Article  PubMed  Google Scholar 

  39. Stalder T, Kirschbaum C (2012) Analysis of cortisol in hair – state of the art and future directions. Brain Behav Immun 26:1019–1029. https://doi.org/10.1016/j.bbi.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  40. Hodes A, Lodish MB, Tirosh A, Meyer J, Belyavskaya E, Lyssikatos C, Rosenberg K, Demidowich A, Swan J, Jonas N et al (2017) Hair cortisol in the evaluation of cushing syndrome. Endocrine 56:164–174. https://doi.org/10.1007/s12020-017-1231-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zarkogianni K, Chatzidaki E, Polychronaki N, Kalafatis E, Nicolaides NC, Voutetakis A, Chioti V, Kitani RA, Mitsis K, Perakis Κ et al (2023) The ENDORSE feasibility study: exploring the use of m-Health, artificial intelligence and serious games for the management of childhood obesity. Nutrients 15:1451. https://doi.org/10.3390/nu15061451

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nicolaides NC, Makridakis M, Kitani RA, Letsou K, Kressou E, Angelopoulou E, Vasilakis I, Mantzou A, Papassotiriou I, Varvogli L, Zoidakis I, Kanana-Gantenbein C (2022) Proteomics analysis in children and adolescents with type I diabetes mellitus and assosiation with cognitive function levels. In: 20th Hellinic Diabetes Congress, Greece

  43. World Medical Association Declaration of Helsinki (2013) ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  CAS  Google Scholar 

  44. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179. https://doi.org/10.1136/adc.51.3.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Must A, Anderson SE (2006) Body mass index in children and adolescents: considerations for population-based applications. Int J Obes 30:590–594. https://doi.org/10.1038/sj.ijo.0803300

    Article  CAS  Google Scholar 

  46. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243. https://doi.org/10.1136/bmj.320.7244.1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cole TJ, Lobstein T (2012) Extended International (IOTF) Body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7:284–294. https://doi.org/10.1111/j.2047-6310.2012.00064.x

    Article  CAS  PubMed  Google Scholar 

  48. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11(246):1–190

    Google Scholar 

  49. Freedman DS, Berenson GS (2017) Tracking of bmi z scores for severe obesity. Pediatrics 140:e20171072. https://doi.org/10.1542/peds.2017-1072

    Article  PubMed  Google Scholar 

  50. Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SHM (2007) Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med 30:E183–E191. https://doi.org/10.25011/cim.v30i5.2894

    Article  PubMed  Google Scholar 

  51. Thomson S, Koren G, Fraser L-A, Rieder M, Friedman TC, Van Uum SHM (2009) Hair analysis provides a historical record of cortisol levels in Cushing’s syndrome. Exp Clin Endocrinol Diabetes 118:133–138. https://doi.org/10.1055/s-0029-1220771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vehmeijer FOL, Santos S, Gaillard R, de Rijke YB, Voortman T, van den Akker ELT, Felix JF, van Rossum EFC, Jaddoe VWV (2021) Associations of hair cortisol concentrations with general and organ fat measures in childhood. J Clin Endocrinol Metab 106:e551–e561. https://doi.org/10.1210/clinem/dgaa785

    Article  PubMed  Google Scholar 

  53. Gray NA, Dhana A, Van Der Vyver L, Van Wyk J, Khumalo NP, Stein DJ (2018) Determinants of hair cortisol concentration in children: a systematic review. Psychoneuroendocrinology 87:204–214. https://doi.org/10.1016/j.psyneuen.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  54. Stalder T, Steudte-Schmiedgen S, Alexander N, Klucken T, Vater A, Wichmann S, Kirschbaum C, Miller R (2017) Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology 77:261–274. https://doi.org/10.1016/j.psyneuen.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  55. Lembcke H, Buchmüller T, Leyendecker B (2020) Refugee mother-child dyads’ hair cortisol, post-traumatic stress, and affectionate parenting. Psychoneuroendocrinology 111:104470. https://doi.org/10.1016/j.psyneuen.2019.104470

    Article  PubMed  Google Scholar 

  56. Gherlone N, Hill DR, Feinn R, Hollenbach JP (2021) Hair cortisol concentrations among urban and rural-dwelling mother–child dyads, La Romana, Dominican Republic. Stress 24:413–420. https://doi.org/10.1080/10253890.2020.1846028

    Article  PubMed  Google Scholar 

  57. Bryson HE, Mensah F, Goldfeld S, Price AMH, Giallo R (2021) Hair cortisol in mother–child dyads: examining the roles of maternal parenting and stress in the context of early childhood adversity. Eur Child Adolesc Psychiatry 30:563–577. https://doi.org/10.1007/s00787-020-01537-0

    Article  PubMed  Google Scholar 

  58. Karlén J, Frostell A, Theodorsson E, Faresjö T, Ludvigsson J (2013) Maternal influence on child HPA axis: a prospective study of cortisol levels in hair. Pediatrics 132:e1333–e1340. https://doi.org/10.1542/peds.2013-1178

    Article  PubMed  Google Scholar 

  59. Liu CH, Snidman N, Leonard A, Meyer J, Tronick E (2016) Intra-individual stability and developmental change in hair cortisol among postpartum mothers and infants: implications for understanding chronic stress: hair cortisol stability in mothers and infants. Dev Psychobiol 58:509–518. https://doi.org/10.1002/dev.21394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Romanova Z, Karailievova L, Garafova A, Hlavacova N, Oravcova H, Jezova D (2022) Testosterone but not cortisol concentrations in hair correlate between mothers and their prepubertal children under real-life stress conditions. Psychoneuroendocrinology 143:105844. https://doi.org/10.1016/j.psyneuen.2022.105844

    Article  CAS  PubMed  Google Scholar 

  61. Larsen SC, Turicchi J, Christensen GL, Larsen CS, Jørgensen NR, Mikkelsen MLK, Horgan G, O’Driscoll R, Michalowska J, Duarte C et al (2021) Hair cortisol concentration, weight loss maintenance and body weight variability: a prospective study based on data from the European NoHoW trial. Front Endocrinol 12:655197. https://doi.org/10.3389/fendo.2021.655197

    Article  Google Scholar 

  62. Ling J, Xu D, Robbins LB, Kao TSA (2020) Obesity and hair cortisol: relationships varied between low-income preschoolers and mothers. Matern Child Health J 24:1495–1504. https://doi.org/10.1007/s10995-020-03008-z

    Article  PubMed  Google Scholar 

  63. Qian G, Mei J, Tian L, Dou G (2020) Assessing mothers’ parenting stress: differences between one- and two-child families in China. Front Psychol 11:609715. https://doi.org/10.3389/fpsyg.2020.609715

    Article  PubMed  Google Scholar 

  64. van der Valk E, Abawi O, Mohseni M, Abdelmoumen A, Wester V, van der Voorn B, Iyer A, van den Akker E, Hoeks S, van den Berg S et al (2022) Cross-sectional relation of long-term glucocorticoids in hair with anthropometric measurements and their possible determinants: a systematic review and meta-analysis. Obes Rev Off J Int Assoc Study Obes 23:e13376. https://doi.org/10.1111/obr.13376

    Article  CAS  Google Scholar 

  65. Handelsman DJ, Wartofsky L (2013) Requirement for mass spectrometry sex steroid assays in the journal of clinical endocrinology and metabolism. J Clin Endocrinol Metab 98:3971–3973. https://doi.org/10.1210/jc.2013-3375

    Article  CAS  PubMed  Google Scholar 

  66. Russell E, Kirschbaum C, Laudenslager ML, Stalder T, de Rijke Y, van Rossum EFC, Van Uum S, Koren G (2015) Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin. Ther Drug Monit 37:71–75. https://doi.org/10.1097/FTD.0000000000000148

    Article  CAS  PubMed  Google Scholar 

  67. Greff MJE, Levine JM, Abuzgaia AM, Elzagallaai AA, Rieder MJ, van Uum SHM (2019) Hair cortisol analysis: an update on methodological considerations and clinical applications. Clin Biochem 63:1–9. https://doi.org/10.1016/j.clinbiochem.2018.09.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the postgraduate course on the Science of Stress and Health Promotion of the National and Kapodistrian University of Athens and the First Department of Pediatrics of the Medical School on the National and Kapodistrian University of Athens at “Aghia Sophia” Children’s Hospital, Athens, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-Anna Kitani.

Ethics declarations

Ethics approval and consent to participate

Ethical approval for the study was obtained from the Research Ethics Committee of “Aghia Sophia” Children’s Hospital (protocol number: 23234; date:18 November 2021), the procedures of which were in accordance with the standards of the Declaration of Helsinki for human experimentation [43]. All mothers of mother-child dyads signed a written informed consent form for their own and their child’s participation. Likewise, the parents of children in the control group were also informed about the purpose of this study and signed a written consent form. In addition, adolescents gave oral consent for their participation in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitani, RA., Nicolaides, N.C., Mantzou, A. et al. Differences in segmental hair cortisol concentration analysis among children and adolescents with overweight and obesity, their parents, and normal weight peers. Hormones 22, 623–632 (2023). https://doi.org/10.1007/s42000-023-00482-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00482-2

Keywords

Navigation