Skip to main content

Advertisement

Log in

Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Purpose

Adolescence is a critical period of increased vulnerability to nutritional modifications, and adolescents may respond differently from adults to dietary intake and nutraceuticals. Cinnamaldehyde, a major bioactive compound of cinnamon, improves energy metabolism, as has been shown in studies conducted primarily in adult animals. We hypothesized that cinnamaldehyde treatment may have a higher impact on the glycemic homeostasis of healthy adolescent rats than on healthy adult rats.

Methods

Male adolescent (30 days) or adult (90 days) Wistar rats received cinnamaldehyde (40 mg/kg) for 28 days by gavage. The oral glucose tolerance test (OGTT), liver glycogen content, serum insulin concentration, serum lipid profile, and hepatic insulin signaling marker expression were evaluated.

Results

Cinnamaldehyde-treated adolescent rats showed less weight gain (P = 0.041), improved OGTT (P = 0.004), increased expression of phosphorylated IRS-1 (P = 0.015), and a trend to increase phosphorylated IRS-1 (P = 0.063) in the liver of adolescent rats in the basal state. None of these parameters was modified after treatment with cinnamaldehyde in the adult group. Cumulative food intake, visceral adiposity, liver weight, serum insulin, serum lipid profile, hepatic glycogen content, and liver protein expression of IRβ, phosphorylated IRβ, AKT, phosphorylated AKT, and PTP-1B in the basal state were similar between both age groups.

Conclusion

In a healthy metabolic condition, cinnamaldehyde supplementation affects glycemic metabolism in adolescent rats while promoting no changes in adult rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Oliveira JC, Lisboa PC, de Moura EG et al (2013) Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J Endocrinol 216:195–206. https://doi.org/10.1530/JOE-12-0408

    Article  CAS  PubMed  Google Scholar 

  2. Barella L, de Oliveira J, Branco RC et al (2012) Early exposure to a high-fat diet has more drastic consequences on metabolism compared with exposure during adulthood in rats. Horm Metab Res 44:458–464. https://doi.org/10.1055/s-0032-1306300

    Article  CAS  PubMed  Google Scholar 

  3. Logrip ML, Rivier C, Lau C, Im S, Vaughan J, Lee S (2013) Adolescent alcohol exposure alters the rat adult hypothalamic–pituitary–adrenal axis responsiveness in a sex-specific manner. Neuroscience 235:174–186. https://doi.org/10.1016/j.neuroscience.2012.12.069

    Article  CAS  PubMed  Google Scholar 

  4. Neto JGO, Boechat SK, Romão JS, Kuhnert LRB, Pazos-Moura CC, Oliveira KJ (2022) Cinnamaldehyde treatment during adolescence improves white and brown adipose tissue metabolism in a male rat model of early obesity. Food Funct 13:3405–3418. https://doi.org/10.1039/D1FO03871K

    Article  CAS  PubMed  Google Scholar 

  5. Neto JGO, Boechat SK, Romão JS, Pazos-Moura CC, Oliveira KJ (2020) Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J Nutr Biochem 77:108321. https://doi.org/10.1016/j.jnutbio.2019.108321

    Article  CAS  PubMed  Google Scholar 

  6. Ward WE, Yuan YV, Cheung AM, Thompson LU (2001) Exposure to purified lignan from flaxseed (Linum usitatissimum) alters bone development in female rats. Br J Nutr 86:499–505. https://doi.org/10.1079/BJN2001429

    Article  CAS  PubMed  Google Scholar 

  7. Bondi CO, Taha AY, Tock JL, Totah NK, Cheon Y, Torres GE, Rapoport SI, Moghaddam B (2014) Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol Psychiatry 75:38–46. https://doi.org/10.1016/j.biopsych.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  8. Melzer K, Heydenreich J, Schutz Y, Renaud A, Kayser B, Mäder U (2016) Metabolic equivalent in adolescents, active adults and pregnant women. Nutrients 8:438. https://doi.org/10.3390/nu8070438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park MH, Kim DH, Lee EK, Kim ND, Im DS, Lee J, Yu BP, Chung HY (2014) Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res 37:1507–1514. https://doi.org/10.1007/s12272-014-0474-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Moura LP, Souza Pauli LS, Cintra DE et al (2013) Acute exercise decreases PTP-1B protein level and improves insulin signaling in the liver of old rats. Immun Ageing 10:8. https://doi.org/10.1186/1742-4933-10-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med 2014:1–12. https://doi.org/10.1155/2014/642942

    Article  Google Scholar 

  12. Zhao H, Wu H, Duan M, Liu R, Zhu Q, Zhang K, Wang L (2021) Cinnamaldehyde improves metabolic functions in streptozotocin-induced diabetic mice by regulating gut microbiota. Drug Des Devel Ther 15:2339–2355. https://doi.org/10.2147/DDDT.S288011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zuo J, Zhao D, Yu N et al (2017) Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell Physiol Biochem 42:1514–1525. https://doi.org/10.1159/000479268

    Article  CAS  PubMed  Google Scholar 

  14. Zhu R, Liu H, Liu C et al (2017) Cinnamaldehyde in diabetes: a review of pharmacology, pharmacokinetics and safety. Pharmacol Res 122:78–89. https://doi.org/10.1016/j.phrs.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  15. Camacho S, Michlig S, de Senarclens-Bezençon C, Meylan J, Meystre J, Pezzoli M, Markram H, le Coutre J (2015) Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Sci Rep 5:7919. https://doi.org/10.1038/srep07919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khare P, Jagtap S, Jain Y et al (2016) Cinnamaldehyde supplementation prevents fasting-induced hyperphagia, lipid accumulation, and inflammation in high-fat diet-fed mice. Biofactors 42:201–211. https://doi.org/10.1002/biof.1265

    Article  CAS  PubMed  Google Scholar 

  17. Subash-Babu P, Alshatwi AA, Ignacimuthu S (2014) Beneficial antioxidative and antiperoxidative effect of cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in Wistar rats. Biomol Ther 22:47–54. https://doi.org/10.4062/biomolther.2013.100

    Article  CAS  Google Scholar 

  18. Anand P, Murali KY, Tandon V, Murthy PS, Chandra R (2010) Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem Biol Interact 186:72–81. https://doi.org/10.1016/j.cbi.2010.03.044

    Article  CAS  PubMed  Google Scholar 

  19. Huang B, Yuan HD, Kim DY, Quan HY, Chung SH (2011) cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and amp-activated protein kinase (AMPK) pathways. J Agric Food Chem 59:3666–3673. https://doi.org/10.1021/jf104814t

    Article  CAS  PubMed  Google Scholar 

  20. Li JE, Futawaka K, Yamamoto H, Kasahara M, Tagami T, Liu TH, Moriyama K (2015) Cinnamaldehyde contributes to insulin sensitivity by activating PPARδ, PPARγ, and RXR. Am J Chin Med 43:879–892. https://doi.org/10.1142/S0192415X15500512

    Article  CAS  PubMed  Google Scholar 

  21. Santoleri D, Titchenell PM (2019) Resolving the paradox of hepatic insulin resistance. Cell Mol Gastroenterol Hepatol 7:447–456. https://doi.org/10.1016/j.jcmgh.2018.10.016

    Article  PubMed  Google Scholar 

  22. Abdelmageed ME, Shehatou GS, Abdelsalam RA, Suddek GM, Salem HA (2019) Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 392:243–258. https://doi.org/10.1007/s00210-018-1583-4

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Liu T, Wang L, Guo X, Xu T, Wu L, Qin L, Sun W (2012) Antihyperglycemic and antihyperlipidemic action of cinnamaldehyde in C57blks/j db/db mice. J Tradit Chin Med 32:446–452. https://doi.org/10.1016/S0254-6272(13)60053-9

    Article  PubMed  Google Scholar 

  24. Percie du Sert N, Hurst V, Ahluwalia A et al (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMC Vet Res 16:242. https://doi.org/10.1186/s12917-020-02451-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Healing G, Sulemann T, Cotton P et al (2016) Safety data on 19 vehicles for use in 1 month oral rodent pre-clinical studies: administration of hydroxypropyl-ß-cyclodextrin causes renal toxicity. J Appl Toxicol 36:140–150. https://doi.org/10.1002/jat.3155

    Article  CAS  PubMed  Google Scholar 

  26. Carper D, Coué M, Laurens C, Langin D, Moro C (2020) Reappraisal of the optimal fasting time for insulin tolerance tests in mice. Mol Metab 42:101058. https://doi.org/10.1016/j.molmet.2020.101058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mann A, Thompson A, Robbins N, Blomkalns AL (2014) Localization, identification, and excision of murine adipose depots. J Vis Exp 94:e52174. https://doi.org/10.3791/52174

    Article  CAS  Google Scholar 

  28. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM (2014) Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol 222:G13–G25. https://doi.org/10.1530/JOE-14-0182

    Article  CAS  PubMed  Google Scholar 

  29. Neto JGO, Bento-Bernardes T, Pazos-Moura CC, Oliveira KJ (2019) Maternal cinnamon intake during lactation led to visceral obesity and hepatic metabolic dysfunction in the adult male offspring. Endocrine 63:520–530. https://doi.org/10.1007/s12020-018-1775-1

    Article  CAS  PubMed  Google Scholar 

  30. Tamura Y, Iwasaki Y, Narukawa M, Watanabe T (2012) Ingestion of cinnamaldehyde, a trpa1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet. J Nutr Sci Vitaminol 58:9–13. https://doi.org/10.3177/jnsv.58.9

    Article  CAS  PubMed  Google Scholar 

  31. Kwan HY, Wu J, Su T et al (2017) Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 7:2447. https://doi.org/10.1038/s41598-017-02263-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang J, Emont MP, Jun H, Qiao X, Liao J, Kim DI, Wu J (2017) Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. Metabolism 77:58–64. https://doi.org/10.1016/j.metabol.2017.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopes BP, Gaique TG, Souza LL et al (2015) Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats. Food Funct 6:3257–3265. https://doi.org/10.1039/C5FO00569H

    Article  CAS  PubMed  Google Scholar 

  34. Wu Y, Wang M, Yang T et al (2022) Mechanisms for improving hepatic glucolipid metabolism by cinnamic acid and cinnamic aldehyde: an insight provided by multi-omics. Front Nutr 8:794841. https://doi.org/10.3389/fnut.2021.794841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farrokhfall K, Khoshbaten A, Zahediasl S, Mehrani H, Karbalaei N (2014) Improved islet function is associated with anti-inflammatory, antioxidant and hypoglycemic potential of cinnamaldehyde on metabolic syndrome induced by high tail fat in rats. J Funct Foods 10:397–406. https://doi.org/10.1016/j.jff.2014.07.014

    Article  CAS  Google Scholar 

  36. Mohammed A, Islam MS (2018) Spice-derived bioactive ingredients: potential agents or food adjuvant in the management of diabetes mellitus. Front Pharmacol 9:893. https://doi.org/10.3389/fphar.2018.00893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hafizur RM, Hameed A, Shukrana M, Raza SA, Chishti S, Kabir N, Siddiqui RA (2015) Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 22:297–300. https://doi.org/10.1016/j.phymed.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  38. Ataie Z, Dastjerdi M, Farrokhfall K, Ghiravani Z (2021) The effect of cinnamaldehyde on iNOS activity and no-induced islet insulin secretion in high-fat-diet rats. Evid Based Complement Alternat Med 2021:1–8. https://doi.org/10.1155/2021/9970678

    Article  Google Scholar 

  39. Jones JG (2016) Hepatic glucose and lipid metabolism. Diabetologia 59:1098–1103. https://doi.org/10.1007/s00125-016-3940-5

    Article  CAS  PubMed  Google Scholar 

  40. Lewis GF, Carpentier AC, Pereira S, Hahn M, Giacca A (2021) Direct and indirect control of hepatic glucose production by insulin. Cell Metab 33:709–720. https://doi.org/10.1016/j.cmet.2021.03.007

    Article  CAS  PubMed  Google Scholar 

  41. Guo S, Copps KD, Dong X et al (2009) The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol Cell Biol 29:5070–5083. https://doi.org/10.1128/MCB.00138-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. García-Vicente S, Yraola F, Marti L et al (2007) Oral insulin-mimetic compounds that act independently of insulin. Diabetes 56:486–493. https://doi.org/10.2337/db06-0269

    Article  CAS  PubMed  Google Scholar 

  43. Akilen R, Tsiami A, Devendra D, Robinson N (2012) Cinnamon in glycaemic control: systematic review and meta analysis. Clin Nutr 31:609–615. https://doi.org/10.1016/j.clnu.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  44. Michlig S, Merlini JM, Beaumont M, Ledda M, Tavenard A, Mukherjee R, Camacho S, le Coutre J (2016) Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects. Sci Rep 6:20795. https://doi.org/10.1038/srep20795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; KJO, grant number E-26/210.341/2019; CCPM, grant number E-26/202.800/2018 and E-26/010.002429/2019). TGG and JGON were recipients of a FAPERJ fellowship. SKB, TBB, and RFM were recipients of a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Código de Financiamento 001) fellowship.

Author information

Authors and Affiliations

Authors

Contributions

TGG: conception and design of the work; acquisition, analysis, and interpretation of data; writing — original draft preparation; approved the submitted version. SKB: conception and design of the work; acquisition, analysis, and interpretation of data; approved the submitted version. JGON: acquisition, analysis, and interpretation of data; writing — reviewing and editing; approved the submitted version. TBB: acquisition, analysis, and interpretation of data; Approved the submitted version. RFM: Acquisition, analysis, and interpretation of data; approved the submitted version. CCPM: funding acquisition; writing — reviewing and editing; approved the submitted version. KJO: funding acquisition; conception and design of the work; acquisition, analysis, and interpretation of data; writing — original draft preparation, reviewing and editing; approved the submitted version.

Corresponding author

Correspondence to Karen J. Oliveira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The Institutional Animal Care Committee of Fluminense Federal University, Rio de Janeiro, RJ, Brazil, approved our experimental protocols (#711/2015). This study follows the ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) (Percie du Sert N, Hurst V, Ahluwalia A, et al (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet Res 16:242. https://doi.org/10.1186/s12917-020-02451-y) and complies with the ethical guidelines set out by the Brazilian Association for Laboratory Animal Science.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 21 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaique, T.G., Boechat, S.K., Neto, J.G.O. et al. Cinnamaldehyde supplementation acts as an insulin mimetic compound improving glucose metabolism during adolescence, but not during adulthood, in healthy male rats. Hormones 22, 295–304 (2023). https://doi.org/10.1007/s42000-023-00442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00442-w

Keywords

Navigation