Skip to main content

Advertisement

Log in

High-risk pituitary adenomas and strategies for predicting response to treatment

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

High-risk pituitary adenomas are aggressive. They show clinical and imaging features similar to those of carcinomas, including infiltration of the surrounding brain structures, but lack cerebrospinal or systemic metastases. In addition, they display distinct behavior, including tendency for fast growth and frequent recurrences, which are difficult to control. The term “high-risk” adenoma was first introduced in the 4th edition of the World Health Organization Classification of Endocrine Tumors in 2017. Five defined adenoma types belong to this category, including sparsely granulated somatotroph, lactotroph in men, Crooke cell, silent corticotroph, and plurihormonal PIT-1 positive adenomas. The morphological and immunohistochemical characteristics of high-risk adenomas are herein described in detail. In addition, the clinical features and the treatment options are presented. This review focuses on predictive markers assessed by immunohistochemistry, which help clinicians to design the appropriate treatment strategies for high-risk adenomas. Somatostatin receptor status predicts effectiveness of postsurgical treatment with somatostatin analogs, and MGMT expression predicts response to treatment with temozolomide. This comprehensive review presents the clinical and pathological features of high-risk pituitary adenomas, underlines the contribution of immunohistochemistry, and emphasizes the leading role of pathology in the design of optimal clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB (2005) Diagnosis and management of pituitary carcinomas. J Clin Endocrinol Metab 90(5):3089–3099. https://doi.org/10.1210/jc.2004-2231

    Article  PubMed  CAS  Google Scholar 

  2. Hansen TM, Batra S, Lim M, Burger PC, Salvatori R, Wand G, Quinones-Hinojosa A, Kleinberg L, Redmond KJ (2014) Invasive adenoma and pituitary carcinoma: a SEER database analysis. Neurosurg Rev 37(2):279–286. https://doi.org/10.1007/s10143-014-0525-y

    Article  PubMed  PubMed Central  Google Scholar 

  3. Colao A, Grasso LF, Pivonello R, Lombardi G (2011) Therapy of aggressive pituitary tumors. Expert Opin Pharmacother 12(10):1561–1570. https://doi.org/10.1517/14656566.2011.568478

    Article  PubMed  CAS  Google Scholar 

  4. Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435. https://doi.org/10.1038/nrendo.2014.64

    Article  PubMed  CAS  Google Scholar 

  5. Zacharia BE, Gulati AP, Bruce JN, Carminucci AS, Wardlaw SL, Siegelin M, Remotti H, Lignelli A, Fine RL (2014) High response rates and prolonged survival in patients with corticotroph pituitary tumors and refractory Cushing disease from capecitabine and temozolomide (CAPTEM): a case series. Neurosurgery 74(4):E447–E455; discussion E455. https://doi.org/10.1227/NEU.0000000000000251

  6. Dai C, Liang S, Sun B, Kang J (2020) The progress of immunotherapy in refractory pituitary adenomas and pituitary carcinomas. Front Endocrinol (Lausanne) 11:608422. https://doi.org/10.3389/fendo.2020.608422

    Article  Google Scholar 

  7. Osamura RY, Lopes MBS, Grossman A, Kontogeorgos G, Trouillas J (2017) Tumours of the pituitary gland. Introduction. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) WHO Classification of Tumours of Endocrine Organs, vol 10, 4th edn. IARC, Lyon, p 13

    Google Scholar 

  8. Osamura R, Grossman A, Korbonits M, Kovacs K, Lopes MBS, Matsuro A, Trouillas J (2017) Pituitary gland: pituitary adenoma. In: Lloyd RV, Osamura RY, Klöppel G, Rosai J (eds) WHO Classification of Tumours of Endocrine Organs, vol 10, 4th edn. IARC, Lyon, pp 14–18

    Google Scholar 

  9. McCormack A, Dekkers OM, Petersenn S, Popovic V, Trouillas J, Raverot G, Burman P (2018) ESE survey collaborators. Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey. Eur J Endocrinol 178(3):265–276. https://doi.org/10.1530/EJE-17-0933

    Article  PubMed  CAS  Google Scholar 

  10. Trouillas J, Roy P, Sturm N, Dantony E, Cortet-Rudelli C, Viennet G, Bonneville JF, Assaker R, Auger C, Brue T et al (2013) A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol 126:123–135. https://doi.org/10.1007/s00401-013-1084-y

    Article  PubMed  Google Scholar 

  11. Asioli S, Righi A, Iommi M, Baldovini C, Ambrosi F, Guaraldi F, Zoli M, Mazzatenta D, Faustini-Fustini M, Rucci P, Giannini C, Foschini MP (2019) Validation of a clinicopathological score for the prediction of post-surgical evolution of pituitary adenoma: retrospective analysis on 566 patients from a tertiary care centre. Eur J Endocrinol 180(2):127–134. https://doi.org/10.1530/EJE-18-0749

    Article  PubMed  CAS  Google Scholar 

  12. Guaraldi F, Zoli M, Righi A, Gibertoni D, Marino Picciola V, Faustini-Fustini M, Morandi L, Bacci A, Pasquini E, Mazzatenta D, Asioli S (2020) A practical algorithm to predict postsurgical recurrence and progression of pituitary neuroendocrine tumours (PitNET)s. Clin Endocrinol (Oxf) 93(1):36–43. https://doi.org/10.1111/cen.14197

    Article  CAS  Google Scholar 

  13. Villa C, Vasiljevic A, Jaffrain-Rea ML, Ansorge O, Asioli S, Barresi V, Chinezu L, Gardiman MP, Lania A, Lapshina AM, Poliani L, Reiniger L, Righi A, Saeger W, Soukup J, Theodoropoulou M, Uccella S, Trouillas J, Roncaroli F (2019) A standardised diagnostic approach to pituitary neuroendocrine tumours (PitNETs): a European Pituitary Pathology Group (EPPG) proposal. Virchows Arch 475(6):687–692. https://doi.org/10.1007/s00428-019-02655-0

    Article  PubMed  CAS  Google Scholar 

  14. Asa SL, Asioli S, Bozkurt S, Casar-Borota O, Chinezu L, Comunoglu N, Cossu G, Cusimano M, Delgrange E, Earls P, Ezzat S, Gazioglu N, Grossman A, Guaraldi F, Hickman RA, Ikeda H, Jaffrain-Rea ML, Karavitaki N, Kraljević I, La Rosa S, Manojlović-Gačić E, Maartens N, McCutcheon IE, Messerer M, Mete O, Nishioka H, Oz B, Pakbaz S, Pekmezci M, Perry A, Reiniger L, Roncaroli F, Saeger W, Söylemezoğlu F, Tachibana O, Trouillas J, Turchini J, Uccella S, Villa C, Yamada S, Yarman S (2020) Pituitary neuroendocrine tumors (PitNETs): nomenclature evolution, not clinical revolution. Pituitary 23(3):322–325. https://doi.org/10.1007/s11102-019-01015-0

    Article  PubMed  Google Scholar 

  15. Ho KKY, Fleseriu M, Wass J, van der Lely A, Barkan A, Giustina A, Casanueva FF, Heaney AP, Biermasz N, Strasburger C, Melmed S (2019) A tale of pituitary adenomas: to NET or not to NET. Pituitary Society position statement. Pituitary 22:569–573. https://doi.org/10.1007/s11102-019-00988-2

    Article  PubMed  Google Scholar 

  16. Ho K, Fleseriu M, Kaiser U, Salvatori R, Brue T, Lopes MB, Kunz P, Molitch M, Camper SA, Gadelha M, Syro LV, Laws E, Reincke M, Nishioka H, Grossman A, Barkan A, Casanueva F, Wass J, Mamelak A, Katznelson L, van der Lely AJ, Radovick S, Bidlingmaier M, Boguszewski M, Bollerslev J, Hoffman AR, Oyesiku N, Raverot G, Ben-Shlomo A, Fowkes R, Shimon I, Fukuoka H, Pereira AM, Greenman Y, Heaney AP, Gurnell M, Johannsson G, Osamura RY, Buchfelder M, Zatelli MC, Korbonits M, Chanson P, Biermasz N, Clemmons DR, Karavitaki N, Bronstein MD, Trainer P, Melmed S (2021) Pituitary neoplasm nomenclature workshop: does adenoma stand the test of time? J Endocr Soc 5(3):bvaa205. https://doi.org/10.1210/jendso/bvaa205

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giustina A. Pituitary adenoma…nomen omen? (2021) Endocrine, Jun 10, Online ahead of print. https://doi.org/10.1007/s12020-021-02785-z

  18. Kovacs K, Horvath E (1986) Tumors of pituitary gland. Atlas of tumor pathology, 2nd series, fascicle 21. AFIP, Washington (DC)

  19. Sano T, Ohsims T, Yamada S (1991) Expression of glycoprotein hormones and intracytoplsmic distribution of cytokeratin in growth hormone-producing pituitary adenomas. Path Res Pract 187(5):530–533. https://doi.org/10.1016/S0344-0338(11)80135-4

    Article  PubMed  CAS  Google Scholar 

  20. Akirov A, Asa SL, Amer L, Shimon I, Ezzat S (2019) The clinicopathological spectrum of acromegaly. J Clin Med 8(11):1962. https://doi.org/10.3390/jcm8111962

    Article  PubMed Central  CAS  Google Scholar 

  21. Swanson AA, Erickson D, Donegan DM, Jenkins SM, Van Gompel JJ, Atkinson JLD, Erickson BJ, Giannini C (2021) Clinical, biological, radiological, and pathological comparison of sparsely and densely granulated somatotroph adenomas: a single center experience from a cohort of 131 patients with acromegaly. Pituitary 24(2):192–206. https://doi.org/10.1007/s11102-020-01096-2

    Article  PubMed  CAS  Google Scholar 

  22. Obari A, Sano T, Ohyama K, Kudo E, Qian ZR, Yoneda A, Rayhan N, Mustafizur Rahman M, Yamada S (2008) Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 19(2):82–91. https://doi.org/10.1007/s12022-008-9029-z

    Article  PubMed  Google Scholar 

  23. Brzana J, Yedinak CG, Gultekin SH, Delashaw JB, Fleseriu M (2013) Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience. Pituitary 16(4):490–498. https://doi.org/10.1007/s11102-012-0445-1

    Article  PubMed  CAS  Google Scholar 

  24. Asa SL (2011) Tumors of the pituitary gland. 2nd series. AFIP, Washington (DC)

  25. Larkin S, Reddy R, Karavitaki N, Cudlip S, Wass J, Ansorge O (2013) Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas. Eur J Endocrinol 168(4):491–419. https://doi.org/10.1530/EJE-12-0864

    Article  PubMed  CAS  Google Scholar 

  26. Kiseljak-Vassiliades K, Xu M, Mills TS, Smith EE, Silveira LJ, Lillehei KO, Kerr JM, Kleinschmidt- DeMasters BK, Wierman ME (2015) Differential somatostatin receptor (SSTR) 1–5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol Cell Endocrinol 5(417):73–83. https://doi.org/10.1016/j.mce.2015.09.016

    Article  CAS  Google Scholar 

  27. Heng L, Liu X, Jia D, Guo W, Zhang S, Gao G, Gong L, Qu Y (2021) Preoperative prediction of granulation pattern subtypes in GH-secreting pituitary adenomas. Clin Endocrinol (Oxf) 95(1):134–142. https://doi.org/10.1111/cen.14465

    Article  CAS  Google Scholar 

  28. Chatzellis E, Alexandraki KI, Androulakis II, Kaltsas G (2015) Aggressive pituitary tumors. Neuroendocrinol 101:87–104. https://doi.org/10.1159/000371806

    Article  CAS  Google Scholar 

  29. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340(6236):692–696. https://doi.org/10.1038/340692a0

    Article  PubMed  CAS  Google Scholar 

  30. Kato M, Inoshita N, Sugiyama T, Tani Y, Shichiri M, Sano T, Yamada S, Hirata Y (2012) Differential expression of genes related to drug responsiveness between sparsely and densely granulated somatotroph adenomas. Endocr J 59(3):221–228. https://doi.org/10.1507/endocrj.ej11-0177

    Article  PubMed  CAS  Google Scholar 

  31. Mete O, Asa SL (2013) Therapeutic implications of accurate classification of pituitary adenomas. Sem Diagn Pathol 30(3):158–164. https://doi.org/10.1053/j.semdp.2013.06.002

    Article  Google Scholar 

  32. Mayr B, Buslei R, Theodoropoulou M, Stalla GK, Buchfelder M, Schofl C (2013) Molecular and functional properties of densely and sparsely-granulated GH-producing pituitary adenomas. Eur J Endocrinol 169(4):391–400. https://doi.org/10.1530/EJE-13-0134

    Article  PubMed  CAS  Google Scholar 

  33. Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun-Fathallah M, Castinetti F, Devuyst F, Jaffrain-Rea ML, Briet C, Luca F, Lapoirie M, Zoicas F, Simoneau I, Diallo AM, Muhammad A, Kelestimur F, Nazzari E, Centeno RG, Webb SM, Nunes ML, Hana V, Pascal-Vigneron V, Ilovayskaya I, Nasybullina F, Achir S, Ferone D, Neggers SJ, Delemer B, Petit JM, Schöfl C, Raverot G, Goichot B, Rodien P, Corvilain B, Brue T, Schillo F, Tshibanda L, Maiter D, Bonneville JF, Beckers A (2016) T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocr Relat Cancer 23(11):871–881. https://doi.org/10.1530/ERC-16-0356

    Article  PubMed  Google Scholar 

  34. Ezzat S, Kontogeorgos G, Redelmeier DA, Horvath E, Harris AG, Kovacs K (1995) In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol 133(6):686–690. https://doi.org/10.1530/eje.0.1330686

    Article  PubMed  CAS  Google Scholar 

  35. Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee SK (2020) Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 23(6):691–700. https://doi.org/10.1007/s11102-020-01077-5

    Article  PubMed  CAS  Google Scholar 

  36. Batisse M, Raverot G, Maqdasy S, Durando X, Sturm N, Montoriol PF, Kemeny JL, Chazal J, Trouillas J, Tauveron I (2013) Aggressive silent GH pituitary tumor resistant to multiple treatments, including temozolomide. Cancer Invest 31(3):190–196. https://doi.org/10.3109/07357907.2013.775293

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Li J, Tohti M, Hu Y, Wang S, Li W, Lu Z, Ma C (2014) The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: a study of 197 cases and indications for the medical therapy. J Exp Clin Cancer Res 33(1):56. https://doi.org/10.1186/s13046-014-0056-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zuhur SS, Tanik C, Karaman Ö, Velet S, Çil E, Öztürk FY, Özkayalar H, Müslüman AM, Altuntaş Y (2011) MGMT immunoexpression in growth hormone-secreting pituitary adenomas and its correlation with Ki-67 labeling index and cytokeratin distribution pattern. Endocrine 40(2):222–227. https://doi.org/10.1007/s12020-011-9485-y

    Article  PubMed  CAS  Google Scholar 

  39. Maiter D, Delgrange E (2014) Therapy of endocrine disease: the challenges in managing giant prolactinomas. Eur J Endocrinol 170(6):R213–R227. https://doi.org/10.1530/EJE-14-0013

    Article  PubMed  CAS  Google Scholar 

  40. Pérez Pinzón J, González-Devia D, Kattah Calderón W, López Panqueva RDP, Jiménez Hakim E (2019) Unusual course of an aggressive pituitary prolactinoma: case report and review of the literature. Case Rep Neurol 11(1):148–156. https://doi.org/10.1159/000499702

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kars M, Dekkers OM, Pereira AM, Romijn JA (2010) Update in prolactinomas. Neth J Med 68(3):104–112

    PubMed  CAS  Google Scholar 

  42. Shimon I (2019) Giant prolactinomas. Neuroendocrinology 109(1):51–56. https://doi.org/10.1159/000495184

    Article  PubMed  CAS  Google Scholar 

  43. Delgrange E, Vasiljevic A, Wierinckx A, François P, Jouanneau E, Raverot G, Trouillas J (2015) Expression of estrogen receptor alpha is associated with prolactin pituitary tumor prognosis and supports the sex-related difference in tumor growth. Eur J Endocrinol 172(6):791–801. https://doi.org/10.1530/EJE-14-0990

    Article  PubMed  CAS  Google Scholar 

  44. Almalki MH, Aljoaib NN, Alotaibi MJ, Aldabas BS, Wahedi TS, Ahmad MM, Alshahrani F (2017) Temozolomide therapy for resistant prolactin-secreting pituitary adenomas and carcinomas: a systematic review. Hormones (Athens) 16(2):139–149. https://doi.org/10.14310/horm.2002.1729

    Article  Google Scholar 

  45. Colao A, Sarno AD, Cappabianca P, Briganti F, Pivonello R, Somma CD, Faggiano A, Biondi B, Lombardi G (2003) Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol 148(3):325–331. https://doi.org/10.1530/eje.0.1480325

    Article  PubMed  CAS  Google Scholar 

  46. Sahakian N, Castinetti F, Dufour H, Graillon T, Romanet P, Barlier A, Brue T, Cuny T (2019) Clinical management of difficult to treat macroprolactinomas. Expert Rev Endocrinol Metab 14(3):179–192. https://doi.org/10.1080/17446651.2019.1596024

    Article  PubMed  CAS  Google Scholar 

  47. Salenave S, Ancelle D, Bahougne T, Raverot G, Kamenický P, Bouligand J, Guiochon-Mantel A, Linglart A, Souchon PF, Nicolino M, Young J, Borson-Chazot F, Delemer B, Chanson P (2015) Macroprolactinomas in children and adolescents: factors associated with the response to treatment in 77 patients. J Clin Endocrinol Metab 100(3):1177–1186. https://doi.org/10.1210/jc.2014-3670

    Article  PubMed  CAS  Google Scholar 

  48. Stratakis CA, Schussheim DH, Freedman SM, Keil MF, Pack SD, Agarwal SK, Skarulis MC, Weil RJ, Lubensky IA, Zhuang Z, Oldfield EH, Marx SJ (2000) Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 85(12):4776–4780. https://doi.org/10.1210/jcem.85.12.7064

    Article  PubMed  CAS  Google Scholar 

  49. Kontogeorgos G, Kapranos N, Tzavara I, Thalassinos N, Rologis D (2001) Monosomy of chromosome 11 in pituitary adenoma in a patient with familial multiple endocrine neoplasia type 1. Clin Endocrinol (Oxf) 54(1):117–120. https://doi.org/10.1046/j.1365-2265.2001.01031.x

    Article  CAS  Google Scholar 

  50. Kovacs K, Horvath E, Syro LV, Uribe H, Penagos LC, Ortiz LD, Fadul CE (2007) Temozolomide therapy in a man with an aggressive prolactin-secreting pituitary neoplasm: morphological findings. Hum Pathol (1):185–189. Erratum in: Hum Pathol 38(3):526. https://doi.org/10.1016/j.humpath.2006.07.014

  51. Syro LV, Uribe H, Penagos LC, Ortiz LD, Fadul CE, Horvath E, Kovacs K (2006) Antitumour effects of temozolomide in a man with a large, invasive prolactin-producing pituitary neoplasm. Clin Endocrinol (Oxf) 65(4):552–553. https://doi.org/10.1111/j.1365-2265.2006.02653.x

    Article  Google Scholar 

  52. Halevy C, Whitelaw BC (2017) How effective is temozolomide for treating pituitary tumours and when should it be used? Pituitary 20(2):261–266. https://doi.org/10.1007/s11102-016-0745-y

    Article  PubMed  CAS  Google Scholar 

  53. Zampetti B, Simonetti G, Attanasio R, Silvani A, Cozzi R (2018) Effective long-term temozolomide rechallenge in a macroprolactinoma. Endocrinol Diabetes Metab Case Rep 18-0092. https://doi.org/10.1530/EDM-18-0092

  54. Bengtsson D, Schrøder HD, Andersen M, Maiter D, Berinder K, Feldt Rasmussen U, Rasmussen ÅK, Johannsson G, Hoybye C, van der Lely AJ, Petersson M, Ragnarsson O, Burman P (2015) Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab 100(4):1689–1698. https://doi.org/10.1210/jc.2014-4350

    Article  PubMed  CAS  Google Scholar 

  55. Whitelaw BC, Dworakowska D, Thomas NW, Barazi S, Riordan-Eva P, King AP, Hampton T, Landau DB, Lipscomb D, Buchanan CR, Gilbert JA, Aylwin SJ (2012) Temozolomide in the management of dopamine agonist-resistant prolactinomas. Clin Endocrinol (Oxf) 76(6):877–886. https://doi.org/10.1111/j.1365-2265.2012.04373.x

    Article  CAS  Google Scholar 

  56. McCormack AI, McDonald KL, Gill AJ, Clark SJ, Burt MG, Campbell KA, Braund WJ, Little NS, Cook RJ, Grossman AB, Robinson BG, Clifton-Bligh RJ (2009) Low 06-methylguanine-DNA methyltransferase [p1] (mgmt) expression and response to temozolomide in aggressive pituitary tumors. Clin Endocrinol (Oxf) 71(2):226–233. https://doi.org/10.1111/j.1365-2265.2008.03487.x

    Article  CAS  Google Scholar 

  57. Murakami M, Mizutani A, Asano S, Katakami H, Ozawa Y, Yamazaki K, Ishida Y, Takano K, Okinaga H, Matsuno A (2011) A mechanism of acquiring temozolomide resistance during transformation of atypical prolactinoma into prolactin-producing pituitary carcinoma: case report. Neurosurg 68:E1761–E1767. https://doi.org/10.1227/NEU.0b013e318217161a

    Article  Google Scholar 

  58. Scheithauer BW, Jaap AJ, Horvath E, Kovacs K, Lloyd RV, Meyer FB, Laws ER Jr, Young WF Jr (2000) Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 47(3):723–729; discussion 729–730. https://doi.org/10.1097/00006123-200009000-00039

  59. Moshkin O, Syro LV, Scheithauer BW, Ortiz LD, Fadul CE, Uribe H, Gonzalez R, Cusimano M, Horvath E, Rotondo F, Kovacs K (2011) Aggressive silent corticotroph adenoma progressing to pituitary carcinoma: the role of temozolomide therapy. Hormones (Athens) 10(2):162–167. https://doi.org/10.14310/horm.2002.1307

    Article  Google Scholar 

  60. Xu Z, Ellis S, Lee CC, Starke Lee Vance M, Lopes MB, Sheehan J (2014) Silent corticotroph adenomas after stereotactic radiosurgery: a case-control study. Int J Radiat Oncol Biol Phys 90(4):903–910. https://doi.org/10.1016/j.ijrobp.2014.07.013

    Article  PubMed  Google Scholar 

  61. Nishioka H, Inoshita N, Mete O, Asa SL, Hayashi K, Takeshita A, Fukuhara N, Yamaguchi-Okada M, Takeuchi Y, Yamada S (2015) The complementary role of transcription factors in the accurate diagnosis of clinically nonfunctioning pituitary adenomas. Endocr Pathol 26(4):349–355. https://doi.org/10.1007/s12022-015-9398-z

    Article  PubMed  CAS  Google Scholar 

  62. Thodou E, Argyrakos T, Kontogeorgos G (2007) Galectin-3 as a marker distinguishing functioning from silent corticotroph adenomas. Hormones (Athens) 6(3):227–232

    Google Scholar 

  63. Jin L, Riss D, Ruebel K, Kajita S, Scheithauer BW, Horvath E, Kovacs K, Lloyd RV (2005) Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol 16(2):107–114. https://doi.org/10.1385/ep:16:2:107

    Article  PubMed  CAS  Google Scholar 

  64. Tateno T, Kato M, Tani Y, Oyama K, Yamada S, Hirata Y (2009) Differential expression of somatostatin and dopamine receptor subtype genes in adrenocorticotropin (ACTH)-secreting pituitary tumors and silent corticotroph adenomas. Endocr J 56(4):579–584. https://doi.org/10.1507/endocrj.k08e-186

    Article  PubMed  CAS  Google Scholar 

  65. Ben-Shlomo A, Schmid H, Wawrowsky K, Pichurin O, Hubina E, Chesnokova V, Liu NA, Culler M, Melmed S (2009) Differential ligand-mediated pituitary somatostatin receptor subtype signaling: implications for corticotroph tumor therapy. J Clin Endocrinol Metab 94(11):4342–4350. https://doi.org/10.1210/jc.2009-1311

    Article  PubMed  CAS  Google Scholar 

  66. Tanaka S, Yamamoto M, Morita M, Takeno A, Kanazawa I, Yamaguchi T, Yamada S, Inoshita N, Oki Y, Kurosaki M, Sugimoto T (2019) Successful reduction of ACTH secretion in a case of intractable Cushing’s disease with pituitary Crooke’s cell adenoma by combined modality therapy including temozolomide. Endocr J 66(8):701–708. https://doi.org/10.1507/endocrj.EJ18-0547

    Article  PubMed  CAS  Google Scholar 

  67. Felix IA, Horvath E, Kovacs K (1981) Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary: a histological, immunocytological and electron microscopic study of three cases. Acta Neurochir (Wien) 58(3–4):235–243. https://doi.org/10.1007/BF01407130

    Article  CAS  Google Scholar 

  68. George DH, Scheithauer BW, Kovacs K, Horvath E, Young WF Jr, Lloyd RV, Meyer FB (2003) Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 27(10):1330–1336. https://doi.org/10.1097/00000478-200310000-00005

    Article  PubMed  Google Scholar 

  69. Heaney AP (2011) Clinical review: pituitary carcinoma: difficult diagnosis and treatment. J Clin Endocrinol Metab 96(12):3649–3660. https://doi.org/10.1210/jc.2011-2031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Heaney A (2014) Management of aggressive pituitary adenomas and pituitary carcinomas. J Neurooncol 117(3):459–468. https://doi.org/10.1007/s11060-014-1413-6

    Article  PubMed  CAS  Google Scholar 

  71. Giri D, Roncaroli F, Sinha A, Didi M, Senniappan S (2017) Silent Crooke’s cell corticotroph adenoma of the pituitary gland presenting as delayed puberty. Endocrinol Diabetes Metab Case Rep 16-0153. https://doi.org/10.1530/EDM-16-0153

  72. Asimakopoulou A, Tzanela M, Kontogeorgos KA, G, Tsagarakis S, (2014) Long-term remission in an aggressive Crooke cell adenoma of the pituitary, 18 months after discontinuation of treatment with temozolomide. Clin Case Rep 2(1):1–3. https://doi.org/10.1002/ccr3.39

    Article  PubMed  Google Scholar 

  73. Tatsi C, Stratakis CA (2020) Aggressive pituitary tumors in the young and elderly. Rev Endocr Metab Disord 21(2):213–223. https://doi.org/10.1007/s11154-019-09534-8

    Article  PubMed  Google Scholar 

  74. Ortiz LD, Syro LV, Scheithauer BW, Rotondo F, Uribe H, Fadul CE, Horvath E, Kovacs K (2012) Temozolomide in aggressive pituitary adenomas and carcinomas. Clinics (Sao Paulo, Brazil) 67(Suppl 1):119–123. https://doi.org/10.6061/clinics/2012(sup01)20

    Article  Google Scholar 

  75. Hirohata T, Asano K, Ogawa Y, Takano S, Amano K, Isozaki O, Iwai Y, Sakata K, Fukuhara N, Nishioka H, Yamada S, Fujio S, Arita K, Takano K, Tominaga A, Hizuka N, Ikeda H, Osamura RY, Tahara S, Ishii Y, Kawamata T, Shimatsu A, Teramoto A, Matsuno A (2013) DNA mismatch repair protein (MSH6) correlated with the responses of atypical pituitary adenomas and pituitary carcinomas to temozolomide: the national cooperative study by the Japan Society for Hypothalamic and Pituitary Tumors. J Clin Endocrinol Metab 98(3):1130–1136. https://doi.org/10.1210/jc.2012-2924

    Article  PubMed  CAS  Google Scholar 

  76. Horvath E, Kovacs K, Smyth HS, Cusimano M, Singer W (2005) Silent adenoma subtype 3 of the pituitary-immunohistochemical and ultrastructural classification: a review of 29 cases. Ultrastruct Pathol 29(6):511–524. https://doi.org/10.1080/01913120500323514

    Article  PubMed  CAS  Google Scholar 

  77. Mete O, Gomez-Hernandez K, Kucharczyk W, Ridout R, Zadeh G, Gentili F, Ezzat S, Asa SL (2016) Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol 29(2):131–142. https://doi.org/10.1038/modpathol.2015.151

    Article  PubMed  CAS  Google Scholar 

  78. Erickson D, Scheithauer B, Atkinson J, Horvath E, Kovacs K, Lloyd RV, Young WF Jr (2009) Silent subtype 3 pituitary adenoma: a clinicopathologic analysis of the Mayo Clinic experience. Clin Endocrinol (Oxf) 71(1):92–99. https://doi.org/10.1111/j.1365-2265.2008.03514.x

    Article  CAS  Google Scholar 

  79. Osamura RY, Tahara S, Komatsubara K, Itoh Y, Kajiwara H, Kurotani R, Sanno N, Teramoto A (1999) Pit-1 positive alpha-subunit positive nonfunctioning human pituitary adenomas: a dedifferentiated GH cell lineage? Pituitary 1(3–4):269–271. https://doi.org/10.1023/a:1009954409469

    Article  PubMed  CAS  Google Scholar 

  80. Osamura RY, Egashira N, Kajiya H, Takei M, Tobita M, Miyakoshi T, Inomoto C, Takekoshi S, Teramoto A (2009) Pathology, pathogenesis and therapy of growth hormone (GH)-producing pituitary adenomas: technical advances in histochemistry and their contribution. Acta Histochem Cytochem 42(4):95–104. https://doi.org/10.1267/ahc.09004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mete O, Asa SL (2012) Clinicopathological correlations in pituitary adenomas. Brain Pathol 22(4):443–453. https://doi.org/10.1111/j.1750-3639.2012.00599.x

    Article  PubMed  PubMed Central  Google Scholar 

  82. Thodou E, Kontogeorgos G (2020) Somatostatin receptor profile in pituitary thyrotroph adenomas. Clin Neurol Neurosurg 195:105865. https://doi.org/10.1016/j.clineuro.2020.105865

    Article  PubMed  Google Scholar 

  83. Wang EL, Qian ZR, Yamada S, Rahman MM, Inosita N, Kageji T, Endo H, Kudo E, Sano T (2009) Clinicopathological characterization of TSH-producing adenomas: special reference to TSH-immunoreactive but clinically non-functioning adenomas. Endocr Pathol 20(4):209–220. https://doi.org/10.1007/s12022-009-9094-y

    Article  PubMed  CAS  Google Scholar 

  84. Kuhn JM, Arlot S, Lefebvre H, Caron P, Cortet-Rudelli C, Archambaud F, Chanson P, Tabarin A, Goth MI, Blumberg J, Catus F, Ispas S, Beck-Peccoz P (2000) Evaluation of the treatment of thyrotropin-secreting pituitary adenomas with a slow release formulation of the somatostatin analog lanreotide. J Clin Endocrinol Metab 85(4):1487–1491. https://doi.org/10.1210/jcem.85.4.6548

    Article  PubMed  CAS  Google Scholar 

  85. Rimareix F, Grunenwald S, Vezzosi D, Rivière LD, Bennet A, Caron P (2015) Primary medical treatment of thyrotropin-secreting pituitary adenomas by first-generation somatostatin analogs: a case study of seven patients. Thyroid 25(8):877–882. https://doi.org/10.1089/thy.2015.0041

    Article  PubMed  CAS  Google Scholar 

  86. Fealey ME, Scheithauer BW, Horvath E, Erickson D, Kovacs K, McLendon R, Lloyd RV (2010) MGMT immunoexpression in silent subtype 3 pituitary adenomas: possible therapeutic implications. Endocr Pathol 21(3):161–165. https://doi.org/10.1007/s12022-010-9120-0

    Article  PubMed  CAS  Google Scholar 

  87. Salehi F, Scheithauer BW, Kros JM, Lau Q, Fealey M, Erickson D, Kovacs K, Horvath E, Lloyd RV (2011) MGMT promoter methylation and immunoexpression in aggressive pituitary adenomas and carcinomas. J Neurooncol 104(3):647–657. https://doi.org/10.1007/s11060-011-0532-6

    Article  PubMed  CAS  Google Scholar 

  88. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20(3):157–198. https://doi.org/10.1007/s10555-011-9293-0

    Article  PubMed  CAS  Google Scholar 

  89. Schmid HA, Schoeffter P (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology 80(Suppl 1):47–55. https://doi.org/10.1159/000080741

    Article  PubMed  CAS  Google Scholar 

  90. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24(4):389–427. https://doi.org/10.1210/er.2002-0007

    Article  PubMed  CAS  Google Scholar 

  91. Mizutani G, Nakanishi Y, Watanabe N, Honma T, Obana Y, Seki T, Ohni S, Nemoto N (2012) Expression of somatostatin receptor (SSTR) subtypes (SSTR-1, 2A, 3, 4 and 5) in neuroendocrine tumors using real-time RT-PCR method and immunohistochemistry. Acta Histochem Cytochem 45(3):167–176. https://doi.org/10.1267/ahc.12006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Oda Y, Tanaka Y, Naruse T, Sasanabe R, Tsubamoto M, Funahashi H (2002) Expression of somatostatin receptor and effects of somatostatin analog on pancreatic endocrine tumors. Surg Today 32(8):690–694. https://doi.org/10.1007/s005950200128

    Article  PubMed  CAS  Google Scholar 

  93. Körner M, Waser B, Schonbrunn A, Perren A, Reubi JC (2012) Somatostatin receptor subtype 2a immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 36(2):242–252. https://doi.org/10.1097/PAS.0b013e31823d07f3

    Article  PubMed  PubMed Central  Google Scholar 

  94. Stueven AK, Kayser A, Wetz C, Amthauer H, Wree A, Tacke F, Wiedenmann B, Roderburg C, Jann H (2019) Somatostatin analogues in the treatment of neuroendocrine tumors: past, present and future. Int J Mol Sci 20(12):3049. https://doi.org/10.3390/ijms20123049

    Article  PubMed Central  CAS  Google Scholar 

  95. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20(11):1172–1182. https://doi.org/10.1038/modpathol.3800954

    Article  PubMed  CAS  Google Scholar 

  96. Diakatou E, Alexandraki KI, Tsolakis AV, Kontogeorgos G, Chatzellis E, Leonti A, Kaltsas GA (2015) Somatostatin and dopamine receptor expression in neuroendocrine neoplasms: correlation of immunohistochemical findings with somatostatin receptor scintigraphy visual scores. Clin Endocrinol (Oxf) 83(3):420–428. https://doi.org/10.1111/cen.12775

    Article  CAS  Google Scholar 

  97. Bush ZM, Longtine JA, Cunningham T, Schiff D, Jane JA Jr, Vance ML, Thorner MO, Laws ER Jr, Lopes MB (2010) Temozolomide treatment for aggressive pituitary tumors: correlation of clinical outcome with O(6)-methylguanine methyltransferase (MGMT) promoter methylation and expression. J Clin Endocrinol Metab 95(11):E280-290. https://doi.org/10.1210/jc.2010-0441

    Article  PubMed  PubMed Central  Google Scholar 

  98. Raverot G, Sturm N, de Fraipont F, Muller M, Muller M, Salenave S, Caron P, Chabre O, Chanson P, Cortet-Rudelli C, Assaker R, Dufour H, Gaillard S, François P, Jouanneau E, Passagia JG, Bernier M, Cornélius A, Figarella-Branger D, Trouillas J, Borson-Chazot F, Brue T (2010) Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab 95(10):4592–4599. https://doi.org/10.1210/jc.2010-0644

    Article  PubMed  CAS  Google Scholar 

  99. Syro LV, Rotondo F, Camargo M, Ortiz LD, Serna CA, Kovacs K (2018) Temozolomide and pituitary tumors: current understanding, unresolved issues, and future directions. Front Endocrinol (Lausanne) 9:318. https://doi.org/10.3389/fendo.2018.00318

    Article  Google Scholar 

  100. Micko ASG, Wöhrer A, Höftberger R, Vila G, Marosi C, Knosp E, Wolfsberger S (2017) MGMT and MSH6 immunoexpression for functioning pituitary macroadenomas. Pituitary 20(6):643–653. https://doi.org/10.1007/s11102-017-0829-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kontogeorgos G, Thodou E, Koutourousiou M, Kaltsas G, Seretis A (2019) MGMT immunohistochemistry in pituitary tumors: controversies with clinical implications. Pituitary 22(6):614–619. https://doi.org/10.1007/s11102-019-00993-5

    Article  PubMed  CAS  Google Scholar 

  102. Kontogeorgos G, Thodou E (2019) Is MGMT the best marker to predict response of temozolomide in aggressive pituitary tumors? Alternative markers and prospective treatment modalities. Hormones (Athens) 18(4):333–337. https://doi.org/10.1007/s42000-019-00145-1

    Article  Google Scholar 

  103. Kapranos N, Kontogeorgos G, Frangia K, Kokka E (1997) Effect of fixation on interphase cytogenetic analysis by direct fluorescence in situ hybridization on cell imprints. Biotech Histochem 72(3):148–151. https://doi.org/10.3109/10520299709082229

    Article  PubMed  CAS  Google Scholar 

  104. Micko ASG, Höftberger R, Wöhrer A, Millesi M, Knosp E, Wolfsberger S (2018) MGMT assessment in pituitary adenomas: comparison of different immunohistochemistry fixation chemicals. Pituitary 21(3):266–273. https://doi.org/10.1007/s11102-018-0862-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. McCormack AI, Wass JA, Grossman AB (2011) Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur J Clin Invest 41(10):1133–1148. https://doi.org/10.1111/j.1365-2362.2011.02520.x

    Article  PubMed  CAS  Google Scholar 

  106. Dworakowska D, Grossman AB (2018) Aggressive and malignant pituitary tumours: state-of-the-art. Endocr Relat Cancer 25(11):R559–R575. https://doi.org/10.1530/ERC-18-0228

    Article  PubMed  CAS  Google Scholar 

  107. Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E, Kovacs K (2012) Anti-VEGF therapy in pituitary carcinoma. Pituitary 15(3):445–449. https://doi.org/10.1007/s11102-011-0346-8

    Article  PubMed  Google Scholar 

  108. Touma W, Hoostal S, Peterson RA, Wiernik A, SantaCruz KS, Lou E (2017) Successful treatment of pituitary carcinoma with concurrent radiation, temozolomide, and bevacizumab after resection. J Clin Neurosci 41:75–77. https://doi.org/10.1016/j.jocn.2017.02.052

    Article  PubMed  CAS  Google Scholar 

  109. Cooper O, Mamelak A, Bannykh S, Carmichael J, Bonert V, Lim S, Cook-Wiens G, Ben-Shlomo A (2014) Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine 46(2):318–327. https://doi.org/10.1007/s12020-013-0093-x

    Article  PubMed  CAS  Google Scholar 

  110. Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D, Melmed S (2011) EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 121(12):4712–4721. https://doi.org/10.1172/JCI60417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ben-Shlomo A, Cooper O (2017) Role of tyrosine kinase inhibitors in the treatment of pituitary tumours: from bench to bedside. Curr Opin Endocrinol Diabetes Obes 24(4):301–305. https://doi.org/10.1097/MED.0000000000000344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cooper O, Bonert VS, Rudnick J, Pressman BD, Lo J, Salvatori R, Yuen KCJ, Fleseriu M, Melmed S (2021) EGFR/ErbB2-targeting lapatinib therapy for aggressive prolactinomas. J Clin Endocrinol Metab 106(2):e917–e925. https://doi.org/10.1210/clinem/dgaa805

    Article  PubMed  Google Scholar 

  113. Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK, Theodoropoulou M (2010) The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Can Res 70(2):666–674. https://doi.org/10.1158/0008-5472.CAN-09-2951

    Article  CAS  Google Scholar 

  114. Sajjad EA, Zieliński G, Maksymowicz M, Hutnik Ł, Bednarczuk T, Włodarski P (2013) mTOR is frequently active in GH-secreting pituitary adenomas without influencing their morphopathological features. Endocr Pathol 24(1):11–19. https://doi.org/10.1007/s12022-012-9230-y

    Article  PubMed  CAS  Google Scholar 

  115. Donovan LE, Arnal AV, Wang SH, Odia Y (2016) Widely metastatic atypical pituitary adenoma with mTOR pathway STK11 (F298L) mutation treated with everolimus therapy. CNS Oncol 5(4):203–209. https://doi.org/10.2217/cns-2016-0011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhang D, Way JS, Zhang X, Sergey M, Bergsneider M, Wang MB, Yong WH, Heaney AP (2019) Effect of everolimus in treatment of aggressive prolactin-secreting pituitary adenomas. J Clin Endocrinol Metab 104(6):1929–1936. https://doi.org/10.1210/jc.2018-02461

    Article  PubMed  Google Scholar 

  117. Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM, Yan CX (2018) The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 139(1):89–95. https://doi.org/10.1007/s11060-018-2844-2

    Article  PubMed  CAS  Google Scholar 

  118. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF (2016) Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7(47):76565–76576

    Article  Google Scholar 

  119. Hazrati SM, Aghazadeh J, Mohtarami F, Abouzari M, Rashidi A (2006) Immunotherapy of prolactinoma with a T helper 1 activator adjuvant and autoantigens: a case report. NeuroImmunoModulation 13(4):205–208. https://doi.org/10.1159/000100405

    Article  PubMed  CAS  Google Scholar 

  120. Lin AL, Jonsson P, Tabar V, Yang TJ, Cuaron J, Beal K, Cohen M, Postow M, Rosenblum M, Shia J, DeAngelis LM, Taylor BS, Young RJ, Geer EB (2018) Marked response of a hypermutated ACTH-secreting pituitary carcinoma to ipilimumab and nivolumab. J Clin Endocrinol Metab 103(10):3925–3930. https://doi.org/10.1210/jc.2018-01347

    Article  PubMed  PubMed Central  Google Scholar 

  121. Giuffrida G, Ferraù F, Laudicella R, Cotta OR, Messina E, Granata F, Angileri FF, Vento A, Alibrandi A, Baldari S, Cannavò S (2019) Peptide receptor radionuclide therapy for aggressive pituitary tumors: a monocentric experience. Endocr Connect 8(5):528–535. https://doi.org/10.1530/EC-19-0065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was financially supported in part by the Pituitary Research Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kontogeorgos.

Ethics declarations

Research involving human participants and/or animals

This article does not contain studies with human participants or animals.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontogeorgos, G., Thodou, E., Osamura, R.Y. et al. High-risk pituitary adenomas and strategies for predicting response to treatment. Hormones 21, 1–14 (2022). https://doi.org/10.1007/s42000-021-00333-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-021-00333-y

Keywords

Navigation