Skip to main content
Log in

Early LGM Environments Accelerated the MSA/LSA Transition in Southern African Highlands: the Robberg’s Emergence at Melikane (Lesotho)

  • Research
  • Published:
Journal of Paleolithic Archaeology Aims and scope Submit manuscript

Abstract

Melikane, a large sandstone rockshelter in the Maloti-Drakensberg Mountains of highland Lesotho, preserves an 80,000-year-old archaeological sequence including an occupation pulse dated to the onset of the Last Glacial Maximum (LGM), ~27–23 kcal BP. Paleoenvironmental proxies indicate that temperature depressions of ~6 °C below present values provoked changes in vegetation distribution around the site. The onset of the LGM also coincides with a global shift towards microlithization, expressed in southern Africa as the Later Stone Age Robberg bladelet industry. Bousman and Brink’s (Quaternary International 495:116–135, 2018) rapid replacement hypothesis asserts that this technocomplex was adopted nearly simultaneously across the subcontinent ~24 ka cal BP, replacing the Early Later Stone Age technologies that preceded it. An alternative model, which we term the LGM acceleration hypothesis, suggests that the Robberg developed slowly as existing technologies were modified and expanded to function flexibly in a variety of LGM environments. In this paper, we test these hypotheses at Melikane through attribute and morphometric analyses of > 17,000 lithic artifacts. Intrasite continuities and gradual, asynchronous changes in flaking systems are inconsistent with rapid replacement. Instead, the subtle refinement of bladelet reduction strategies alongside climate shifts and a reorganization of mobility and settlement systems supports our LGM acceleration hypothesis. However, Melikane’s combination of highland-specific idiosyncrasies and shared flaking systems with sites in less marginal environments suggests a complex role for cultural transmission. We suggest that periodic isolation throughout the LGM encouraged the development of new flaking systems, the most flexible of which were adopted in a variety of environments when biogeographic barriers to transmission were lifted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  • Ambrose, S. H. (2002). Small things remembered: Origins of early microlithic industries in Sub-Saharan Africa. Archaeological Papers of the American Anthropological Association, 12(1), 9–29. https://doi.org/10.1525/ap3a.2002.12.1.9

    Article  Google Scholar 

  • Backwell, L. R., d’Errico, F., Banks, W. E., de la Peña, P., Sievers, C., Stratford, D., Lennox, S. J., Wojcieszak, M., Bordy, E. M., Bradfield, J., & Wadley, L. (2018). New excavations at Border Cave, KwaZulu-Natal, South Africa. Journal of Field Archaeology, 43(6), 417–436. https://doi.org/10.1080/00934690.2018.1504544

    Article  Google Scholar 

  • Bader, G. D., Mabuza, A., Price Williams, D., & Will, M. (2022). Rethinking the middle to later stone age transition in southern Africa—A perspective from the highveld of Eswatini. Quaternary Science Reviews, 286, 107540. https://doi.org/10.1016/j.quascirev.2022.107540

  • Barham, L. S. (1987). The bipolar technique in Southern Africa: A replication experiment. The South African Archaeological Bulletin, 42(145), 45–50. https://doi.org/10.2307/3887773

    Article  Google Scholar 

  • Barham, L. S. (1989). A preliminary report on the Later Stone Age artefacts from Siphiso Shelter in Swaziland. The South African Archaeological Bulletin, 33–43.

  • Beaumont, P. B. (1978). Border Cave [Unpublished M.A. thesis]. University of Cape Town.

    Google Scholar 

  • Behar, D. M., van Oven, M., Rosset, S., Metspalu, M., Loogväli, E.-L., Silva, N. M., Kivisild, T., Torroni, A., & Villems, R. (2012). A “Copernican” reassessment of the human mitochondrial DNA tree from its root. The American Journal of Human Genetics, 90(4), 675–684. https://doi.org/10.1016/j.ajhg.2012.03.002

    Article  Google Scholar 

  • Binneman, J. N. F. (1997). Usewear traces on Robberg bladelets from Rose Cottage Cave. South African Journal of Science, 93(10), 479–481.

    Google Scholar 

  • Binneman, J. N. F., & Mitchell, P. J. (1997). Usewear analysis of Robberg bladelets from Sehonghong shelter, Lesotho. Southern African Field Archaeology, 6, 42–49.

    Google Scholar 

  • Bjørnevad, M., Jonuks, T., Bye-Jensen, P., Manninen, M. A., Oras, E., Vahur, S., & Riede, F. (2019). The life and times of an Estonian Mesolithic slotted bone “dagger”: Extended object biographies for legacy objects. Estonian Journal of Archaeology, 23(2), 103. https://doi.org/10.3176/arch.2019.2.02

    Article  Google Scholar 

  • Bleed, P. (1986). The optimal design of hunting weapons: Maintainability or reliability. American Antiquity, 51(4), 737–747. https://doi.org/10.2307/280862

    Article  Google Scholar 

  • Bordy, E. M., & Head, H. V. (2018). Lithostratigraphy of the Clarens formation (Stormberg Group, Karoo Supergroup), South Africa. South African Journal of Geology, 121(1), 119–130. https://doi.org/10.25131/sajg.121.0009

    Article  Google Scholar 

  • Bousman, C. B. (1993). Hunter-gatherer adaptations, economic risk and tool design. Lithic Technology, 18(1–2), 59–86. https://doi.org/10.1080/01977261.1993.11720897

    Article  Google Scholar 

  • Bousman, C. B. (2005). Coping with risk: Later stone age technological strategies at Blydefontein Rock Shelter, South Africa. Journal of Anthropological Archaeology, 24(3), 193–226. https://doi.org/10.1016/j.jaa.2005.05.001

    Article  Google Scholar 

  • Bousman, C. B., & Brink, J. S. (2018). The emergence, spread, and termination of the Early Later Stone Age event in South Africa and southern Namibia. Quaternary International, 495, 116–135. https://doi.org/10.1016/j.quaint.2017.11.033

    Article  Google Scholar 

  • Bradley, B. A., & Giria, Y. (1996). Concepts of the technological analysis of flaked stone: A case study from the High Arctic. Lithic Technology, 21(1), 23–39.

    Article  Google Scholar 

  • Bregman, A., & Knight, J. (2022). Analysis of a blockstream in the northern Lesotho Drakensberg, southern Africa. Quaternary International, 611, 41–54.

    Article  Google Scholar 

  • Brock, F., Higham, T., Ditchfield, P., & Ramsey, C. B. (2010). Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator Unit (Orau). Radiocarbon, 52(1), 103–112. https://doi.org/10.1017/S0033822200045069

    Article  Google Scholar 

  • Callahan, E. (1987). An evaluation of the lithic technology in Middle Sweden during the Mesolithic and Neolithic. Societas Archaeologica Upsaliensis.

    Google Scholar 

  • Carter, P. L. (1976). The effects of climatic change on settlement in Eastern Lesotho during the Middle and Later Stone Age. World Archaeology, 8(2), 197–206.

    Article  Google Scholar 

  • Carter, P. L. (1978). The prehistory of Eastern Lesotho. [Ph.D. thesis].University of Cambridge.

    Google Scholar 

  • Carter, P. L., Mitchell, P. J., & Vinnicombe, P. (1988). Sehonghong: The Middle and Later Stone Age industrial sequence at a Lesotho Rockshelter. BAR Publishing.

    Book  Google Scholar 

  • Chan, E. K. F., Hardie, R.-A., Petersen, D. C., Beeson, K., Bornman, R. M. S., Smith, A. B., & Hayes, V. M. (2015). Revised timeline and distribution of the earliest diverged human maternal lineages in Southern Africa. PLOS ONE, 10(3), e0121223. https://doi.org/10.1371/journal.pone.0121223

    Article  Google Scholar 

  • Clark, A. M. B. (1997). The MSA/LSA transition in Southern Africa: New technological evidence from Rose Cottage Cave. The South African Archaeological Bulletin, 52(166), 113–121. https://doi.org/10.2307/3889076

    Article  Google Scholar 

  • Clark, J. D. (1959). The prehistory of Southern Africa. Penguin Books.

    Google Scholar 

  • Clark, J. D. (1974). Kalambo Falls prehistoric site. Vol. II: The late prehistoric remains. Cambridge University Press.

    Google Scholar 

  • Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., & McCabe, A. M. (2009). The Last Glacial Maximum. Science, 325(5941), 710–714. https://doi.org/10.1126/science.1172873

    Article  Google Scholar 

  • Clark, P. U., & Mix, A. C. (2002). Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21(1), 1–7. https://doi.org/10.1016/S0277-3791(01)00118-4

    Article  Google Scholar 

  • Clarke, D. L. (1978). Mesolithic Europe: The economic basis. Duckworth.

    Google Scholar 

  • Clarkson, C., Hiscock, P., Mackay, A., & Shipton, C. (2018). Small, sharp, and standardized: Global convergence in backed-microlith technology. In M. J. O’Brien, B. Buchanan, & M. I. Eren (Eds.), Convergent evolution in stone tool technology (pp. 175–200). MIT Press.

    Chapter  Google Scholar 

  • Cochrane, G. W. G. (2008). A comparison of Middle Stone Age and Later Stone Age blades from South Africa. Journal of Field Archaeology, 33(4), 429–448. https://doi.org/10.1179/009346908791071132

    Article  Google Scholar 

  • Conard, N. J., Soressi, M., Parkington, J. E., Wurz, S., & Yates, R. (2004). A unified lithic taxonomy based on patterns of core reduction. The South African Archaeological Bulletin, 59(179), 12. https://doi.org/10.2307/3889318

    Article  Google Scholar 

  • Cotterell, B., & Kamminga, J. (1987). The formation of flakes. American Antiquity, 52(4), 675–708. https://doi.org/10.2307/281378

    Article  Google Scholar 

  • Creanza, N., Kolodny, O., & Feldman, M. W. (2017). Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires. Journal of The Royal Society Interface, 14(130), 20170171. https://doi.org/10.1098/rsif.2017.0171

    Article  Google Scholar 

  • d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., Higham, T. F. G., Colombini, M. P., & Beaumont, P. B. (2012). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences, 109(33), 13214–13219. https://doi.org/10.1073/pnas.1204213109

    Article  Google Scholar 

  • Davidson, D. S. (1934). Australian spear-traits and their derivations (Continued). The Journal of the Polynesian Society, 43(3(171)), 143–162.

    Google Scholar 

  • Deacon, H. J. (1976). Where hunters gathered: A study of Holocene Later Stone Age people in the eastern Cape. South African Archaeological Society.

    Google Scholar 

  • Deacon, H. J. (1992). Southern Africa and modern human origins. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 337(1280), 177–183.

    Article  Google Scholar 

  • Deacon, H. J. (1995). Two Late Pleistocene-Holocene archaeological depositories from the Southern Cape, South Africa. The South African Archaeological Bulletin, 50(162), 121–131. https://doi.org/10.2307/3889061

    Article  Google Scholar 

  • Deacon, H. J., & Wurz, S. (1996). Klasies River main site, cave 2: A Howiesons Poort occurrence. Aspects of African Archaeology (pp. 213–218). University of Zimbabwe Publications.

    Google Scholar 

  • Deacon, J. (1978). Changing patterns in the late Pleistocene/early Holocene prehistory of Southern Africa as seen from the Nelson Bay Cave Stone artifact sequence. Quaternary Research, 10(1), 84–111. https://doi.org/10.1016/0033-5894(78)90015-7

    Article  Google Scholar 

  • Deacon, J. (1982). The Later Stone Age in Southern Cape, South Africa. [Ph.D. thesis]. University of Cape Town.

    Google Scholar 

  • Deacon, J. (1984a). Southern African Prehistory and Paleoenvironments. In R. G. Klein (Ed.), Later Stone Age people and their descendants in southern Africa (pp. 221–328). AA Balkema.

    Chapter  Google Scholar 

  • Deacon, J. (1984b). The Later Stone Age of Southernmost Africa. BAR Publishing.

    Book  Google Scholar 

  • Derex, M., Perreault, C., & Boyd, R. (2018). Divide and conquer: Intermediate levels of population fragmentation maximize cultural accumulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743), 20170062. https://doi.org/10.1098/rstb.2017.0062

    Article  Google Scholar 

  • Diez-Martín, F., Yustos, P. S., Domínguez-Rodrigo, M., & Prendergast, M. E. (2011). An experimental study of bipolar and freehand knapping of Naibor Soit Quartz from Olduvai Gorge (Tanzania). American Antiquity, 76(4), 690–708. https://doi.org/10.7183/0002-7316.76.4.690

    Article  Google Scholar 

  • Doelman, T. (2008). Flexibility and creativity in microblade core manufacture in Southern Primorye, Far East Russia. Asian Perspectives, 47(2), 352–370. https://doi.org/10.1353/asi.0.0006

    Article  Google Scholar 

  • Ehleringer, J. R., Cerling, T. E., & Dearing, M. D. (2002). Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integrative and Comparative Biology, 42(3), 424–430.

    Article  Google Scholar 

  • Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112(3), 285–299. https://doi.org/10.1007/s004420050311

    Article  Google Scholar 

  • Elston, R. G., & Brantingham, P. J. (2002). Microlithic technology in Northern Asia: A risk-minimizing strategy of the Late Paleolithic and Early Holocene. Archaeological Papers of the American Anthropological Association, 12(1), 103–116. https://doi.org/10.1525/ap3a.2002.12.1.103

    Article  Google Scholar 

  • Flood, J. (1995). Archaeology of the dreamtime: The story of prehistoric Australia and its people. HarperCollins.

    Google Scholar 

  • Fritzen, D. K. (1959). The rock-hunter’s field manual: A guide to identification of rocks and minerals (1st ed.) http://hdl.handle.net/2027/mdp.39015006841707

    Google Scholar 

  • Gliozzo, E., Cairncross, B., & Vennemann, T. (2019). A geochemical and micro-textural comparison of basalt-hosted chalcedony from the Jurassic Drakensberg and Neoarchean Ventersdorp Supergroup (Vaal River alluvial gravels), South Africa. International Journal of Earth Sciences, 108(6), 1857–1877. https://doi.org/10.1007/s00531-019-01737-3

    Article  Google Scholar 

  • Goebel, T. (2002). The “microblade adaptation” and recolonization of Siberia during the Late Upper Pleistocene. Archaeological Papers of the American Anthropological Association, 12(1), 117–131. https://doi.org/10.1525/ap3a.2002.12.1.117

    Article  Google Scholar 

  • Goodwin, A. J. H., & Van Riet Lowe, C. (1929). The Stone Age cultures of South Africa. Neill.

    Google Scholar 

  • Grab, S., Knight, J., Mol, L., Botha, T., Carbutt, C., & Woodborne, S. (2021). Periglacial landforms in the high Drakensberg, Southern Africa: Morphogenetic associations with rock weathering rinds and shrub growth patterns. Geografiska Annaler: Series A, Physical Geography, 1–24. https://doi.org/10.1080/04353676.2020.1856625

  • Grab, S. W. (1996). Debris deposits in the high Drakensberg, South Africa: Possible indicators for plateau, niche and cirque glaciation. Zeitschrift Für Geomorphologie. Supplementband, 103, 389–403.

    Google Scholar 

  • Grab, S. W. (1997). Thermal regime for a thufa apex and its adjoining depression, Mashai Valley, Lesotho. Permafrost and Periglacial Processes, 8(4), 437–445. https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4%3C437::AID-PPP264%3E3.0.CO;2-O

    Article  Google Scholar 

  • Gurtov, A. N., & Eren, M. I. (2014). Lower Paleolithic bipolar reduction and hominin selection of quartz at Olduvai Gorge, Tanzania: What’s the connection? Quaternary International, 322–323, 285–291. https://doi.org/10.1016/j.quaint.2013.08.010

    Article  Google Scholar 

  • Hiscock, P. (1996). Mobility and technology in the Kakadu coastal wetlands. Bulletin of the Indo-Pacific Prehistory Association, 15, 151–157.

    Article  Google Scholar 

  • Hiscock, P. (2002). Pattern and context in the Holocene Proliferation of backed artifacts in Australia. Archaeological Papers of the American Anthropological Association, 12(1), 163–177. https://doi.org/10.1525/ap3a.2002.12.1.163

    Article  Google Scholar 

  • Hiscock, P., Clarkson, C., & Mackay, A. (2011). Big debates over little tools: Ongoing disputes over microliths on three continents. World Archaeology, 43(4), 653–664.

    Article  Google Scholar 

  • Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Siep Talma, A., & Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22(21), 2311–2326. https://doi.org/10.1016/S0277-3791(03)00204-X

    Article  Google Scholar 

  • Humphreys, A. J. B. (1972). Comments on aspects of raw material usage in the Later Stone Age of the Middle Orange River area. Goodwin Series, 1, 46–53. https://doi.org/10.2307/3858092

    Article  Google Scholar 

  • Iwase, A. (2016). A functional analysis of the LGM microblade assemblage in Hokkaido, northern Japan: A case study of Kashiwadai 1. Quaternary International, 425, 140–157. https://doi.org/10.1016/j.quaint.2016.04.008

    Article  Google Scholar 

  • Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grun, R., Mackay, A., Mitchell, P., Vogelsang, R., & Wadley, L. (2008). Ages for the Middle Stone Age of Southern Africa: Implications for human behavior and dispersal. Science, 322(5902), 733–735. https://doi.org/10.1126/science.1162219

    Article  Google Scholar 

  • Kaplan, J. (1990). The Umhlatuzana Rock Shelter sequence: 100 000 years of Stone Age history. Southern African Humanities, 2(11), 1–94.

    Google Scholar 

  • Kaplan, J. M. (1989). 45000 years of hunter-gatherer history in Natal as seen from Umhlatuzana Rock Shelter. Goodwin Series, 6, 7–16. https://doi.org/10.2307/3858128

    Article  Google Scholar 

  • Killick, D. J. B. (1978). Further data on the climate of the Alpine Vegetation Belt of eastern Lesotho. Bothalia, 12, 567–572.

    Article  Google Scholar 

  • Knutsson, H., Knutsson, K., Molin, F., & Zetterlund, P. (2016). From flint to quartz: Organization of lithic technology in relation to raw material availability during the pioneer process of Scandinavia. Quaternary International, 424, 32–57. https://doi.org/10.1016/j.quaint.2015.10.062

    Article  Google Scholar 

  • Kuhn, S. L. (1994). A formal approach to the design and assembly of mobile toolkits. American Antiquity, 59(3), 426–442. https://doi.org/10.2307/282456

    Article  Google Scholar 

  • Kuhn, S. L., & Elston, R. G. (2002). Introduction: Thinking small globally. Archaeological Papers of the American Anthropological Association, 12(1), 1–7. https://doi.org/10.1525/ap3a.2002.12.1.1

    Article  Google Scholar 

  • Kulongoski, J. T., Hilton, D. R., & Selaolo, E. T. (2004). Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2003GL019238

  • Loftus, E., Pargeter, J., Mackay, A., Stewart, B. A., & Mitchell, P. (2019). Late Pleistocene human occupation in the Maloti-Drakensberg region of southern Africa: New radiocarbon dates from Rose Cottage Cave and inter-site comparisons. Journal of Anthropological Archaeology, 56, 101117. https://doi.org/10.1016/j.jaa.2019.101117

    Article  Google Scholar 

  • Lombard, M., Bradfield, J., Caruana, M. V., Makhubela, T. V., Dusseldorp, G. L., Kramers, J. D., & Wurz, S. (2022). The South African Stone Age sequence updated (II). South African Archaeological Bulletin, 77(217), 172–212.

    Google Scholar 

  • Lombard, M., & Parsons, I. (2008). Blade and bladelet function and variability in risk management during the last 2000 years in the Northern Cape. The South African Archaeological Bulletin, 63(187), 18–27. https://doi.org/10.2307/20474988

    Article  Google Scholar 

  • Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J., & Mitchell, P. (2012). South African and Lesotho Stone Age sequence updated. The South African Archaeological Bulletin, 67(195), 123–144.

    Google Scholar 

  • Mackay, A., Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 72, 26–51. https://doi.org/10.1016/j.jhevol.2014.03.003

    Article  Google Scholar 

  • Manninen, M. A., Asheichyk, V., Jonuks, T., Kriiska, A., Osipowicz, G., Sorokin, A. N., Vashanau, A., Riede, F., & Persson, P. (2021). Using radiocarbon dates and tool design principles to assess the role of composite slotted bone tool technology at the intersection of adaptation and culture-history. Journal of Archaeological Method & Theory, 28(3), 845–870. https://doi.org/10.1007/s10816-021-09517-7

    Article  Google Scholar 

  • Manninen, M. A., Hertell, E. J., Pesonen, P. A. P., & Tallavaara, M. (2018). Postglacial pioneer colonisation of Eastern Fennoscandia: Modeling technological change. In K. Knutsson, H. Knutsson, J. Apel, & H. Glørstad (Eds.), Technology of early settlement in Northern Europe—Transmission of knowledge and culture (Vol. 2, pp. 23–46). Equinox Publishing. https://doi.org/10.1558/equinox.30723

    Chapter  Google Scholar 

  • Marean, C. W. (2016). The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1698), 20150239. https://doi.org/10.1098/rstb.2015.0239

    Article  Google Scholar 

  • Mills, S. C., & Grab, S. W. (2005). Debris ridges along the southern Drakensberg escarpment as evidence for Quaternary glaciation in southern Africa. Quaternary International, 129(1), 61–73. https://doi.org/10.1016/j.quaint.2004.04.007

    Article  Google Scholar 

  • Mitchell, P. J. (1988a). The Early Microlithic assemblages of Southern Africa. BAR Publishing. https://doi.org/10.30861/9780860545026

    Book  Google Scholar 

  • Mitchell, P. J. (1988b). The late Pleistocene early microlithic assemblages of southern Africa. World Archaeology, 20(1), 27–39. https://doi.org/10.1080/00438243.1988.9980054

    Article  Google Scholar 

  • Mitchell, P. J. (1994). Understanding the MSA/LSA Transition: The pre-20,000 BP assemblages from new excavations at Sehonghong Rock Shelter, Lesotho. Southern African Field Archaeology, 3, 15–25.

    Google Scholar 

  • Mitchell, P. J. (1995). Revisiting the Robberg: New results and a revision of old ideas at Sehonghong Rock Shelter. Lesotho. The South African Archaeological Bulletin, 50(161), 28–38. https://doi.org/10.2307/3889272

    Article  Google Scholar 

  • Mitchell, P. J. (1996). The late Quaternary landscape at Sehonghong in the Lesotho highlands, southern Africa. Antiquity, 70(269), 623–638. https://doi.org/10.1017/S0003598X00083757

    Article  Google Scholar 

  • Mitchell, P. J., & Vogel, J. C. (1994). New radiocarbon dates from Sehonghong rock shelter, Lesotho. South African Journal of Science, 90(5), 284–288.

    Google Scholar 

  • Morgan, B., Eren, M. I., Khreisheh, N., Hill, G., Bradley, B., Jennings, T., & Smallwood, A. (2015). Clovis bipolar lithic reduction at Paleo Crossing, Ohio: A reinterpretation based on the examination of experimental replications. In Clovis: On the Edge of a New Understanding (pp. 121–143). Texas A&M Press.

    Google Scholar 

  • Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute.

    Google Scholar 

  • Muller, A., & Clarkson, C. (2016). Identifying major transitions in the evolution of lithic cutting edge production rates. Plos One, 11(12), e0167244. https://doi.org/10.1371/journal.pone.0167244

    Article  Google Scholar 

  • Nelson, M. C. (1991). The study of technological organization. Archaeological Method and Theory, 3, 57–100.

    Google Scholar 

  • Nüsser, M. (2002). Pastoral utilization and land cover change: A case study from the Sanqebethu Valley, Eastern Lesotho Weidenutzung und Landschaftsveränderungen: Ein Fallbeispiel aus dem Sanqebethu-Tal im östlichen Lesotho. Erdkunde, 56(2), 207–221.

    Article  Google Scholar 

  • Orlandi, F., Vazquez, L. M., Ruga, L., Bonofiglio, T., Fornaciari, M., Garcia-Mozo, H., Domínguez, E., Romano, B., & Galan, C. (2005). Bioclimatic requirements for olive flowering in two Mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Annals of Agricultural and Environmental Medicine, 12(1), 47–52.

    Google Scholar 

  • Otsuka, Y. (2017). The background of transitions in microblade industries in Hokkaido, northern Japan. Quaternary International, 442, 33–42. https://doi.org/10.1016/j.quaint.2016.07.023

    Article  Google Scholar 

  • Otunga, C., Odindi, J., Mutanga, O., Adjorlolo, C., & Botha, C. (2016). Predicting the distribution of C3 (Festuca spp.) grass species using topographic variables and binary logistic regression model. Geocarto International, 1–36. https://doi.org/10.1080/10106049.2016.1265598

  • Pargeter, J. (2017). Lithic miniaturization in Late Pleistocene Southern Africa. Ph.D. thesis, State University of New York at Stony Brook http://search.proquest.com/docview/1932998079/abstract/994B7CA62187490EPQ/1

    Book  Google Scholar 

  • Pargeter, J., & Eren, M. I. (2017). Quantifying and comparing bipolar versus freehand flake morphologies, production currencies, and reduction energetics during lithic miniaturization. Lithic Technology, 42(2–3), 90–108. https://doi.org/10.1080/01977261.2017.1345442

    Article  Google Scholar 

  • Pargeter, J., & Faith, J. T. (2020). Lithic miniaturization as adaptive strategy: A case study from Boomplaas Cave. South Africa. Archaeological and Anthropological Sciences, 12(9), 1–13.

    Google Scholar 

  • Pargeter, J., Loftus, E., Mackay, A., Mitchell, P., & Stewart, B. A. (2018). New ages from Boomplaas Cave, South Africa, provide increased resolution on late/terminal Pleistocene human behavioural variability. Azania: Archaeological Research in Africa, 53(2), 156–184. https://doi.org/10.1080/0067270X.2018.1436740

    Article  Google Scholar 

  • Pargeter, J., Loftus, E., & Mitchell, P. (2017). New ages from Sehonghong rock shelter: Implications for the late Pleistocene occupation of highland Lesotho. Journal of Archaeological Science: Reports, 12, 307–315. https://doi.org/10.1016/j.jasrep.2017.01.027

    Article  Google Scholar 

  • Pargeter, J., & Redondo, M. (2016). Contextual approaches to studying unretouched bladelets: A late Pleistocene case study at Sehonghong Rockshelter, Lesotho. Quaternary International, 404, 30–43. https://doi.org/10.1016/j.quaint.2015.08.038

    Article  Google Scholar 

  • Parker, A. G., Lee-Thorp, J., & Mitchell, P. J. (2011). Late Holocene Neoglacial conditions from the Lesotho highlands, southern Africa: Phytolith and stable carbon isotope evidence from the archaeological site of Likoaeng. Proceedings of the Geologists’ Association, 122(1), 201–211. https://doi.org/10.1016/j.pgeola.2010.09.005

    Article  Google Scholar 

  • Parry, W. J., & Kelly, R. I. (1987). In J. Johnson & C. Morrow (Eds.), Expedient core technology and sedentism (pp. 285–304). The organization of core technology.

    Google Scholar 

  • Partridge, T. C., Scott, L., & Hamilton, J. E. (1999). Synthetic reconstructions of southern African environments during the Last Glacial Maximum (21–18kyr) and the Holocene Altithermal (8–6kyr). Quaternary International, 57–58, 207–214. https://doi.org/10.1016/S1040-6182(98)00061-5

    Article  Google Scholar 

  • Patalano, R., Arthur, C., Carleton, W. C., Challis, S., Dewar, G., Gayantha, K., Gleixner, G., Ilgner, J., Lucas, M., Marzo, S., Mokhachane, R., Pazan, K., Spurite, D., Morley, M. W., Parker, A., Mitchell, P., Stewart, B. A., & Roberts, P. (2023). Ecological stability of Late Pleistocene-to-Holocene Lesotho, southern Africa, facilitated human upland habitation. Communications Earth & Environment, 4(1). https://doi.org/10.1038/s43247-023-00784-8

  • Pazan, K. R., Dewar, G., & Stewart, B. A. (2022). The MIS 5a (~80 ka) Middle Stone Age lithic assemblages from Melikane Rockshelter, Lesotho: Highland adaptation and social fragmentation. Quaternary International, 611–612, 119–137. https://doi.org/10.1016/j.quaint.2020.11.046

    Article  Google Scholar 

  • Phillipson, D. W. (1976). The prehistory of Eastern Zambia. Memoirs of the British Institute of Eastern Africa, 6, 1–229.

    Google Scholar 

  • Phillipson, D. W. (1977). The Later Prehistory of Eastern and Southern Africa. Heinemann.

    Google Scholar 

  • Polanská, M., Hromadová, B., & Sázelová, S. (2021). The Upper and Final Gravettian in Western Slovakia and Moravia. Different approaches, new questions. Quaternary International, 581–582, 205–224. https://doi.org/10.1016/j.quaint.2020.08.004

    Article  Google Scholar 

  • Porraz, G., Igreja, M., Schmidt, P., & Parkington, J. (2016). A shape to the microlithic Robberg from Elands Bay Cave (South Africa). Southern African Humanities, 29, 203–247.

    Google Scholar 

  • Ramsey, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing (4.0.5). Foundation for Statistical Computing. https://www.R-project.org/

  • Reimer, P. J., Baillie, M. G., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Burr, G. S., & Edwards, R. L. (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51(4), 1111–1150.

    Article  Google Scholar 

  • Roffe, S. J., Fitchett, J. M., & Curtis, C. J. (2019). Classifying and mapping rainfall seasonality in South Africa: A review. South African Geographical Journal, 101(2), 158–174. https://doi.org/10.1080/03736245.2019.1573151

    Article  Google Scholar 

  • Sampson, C. G. (1968). Middle Stone Age industries of the Orange River scheme area (Vol. 4). National Museum.

    Google Scholar 

  • Sampson, C. G. (1974). The Stone Age archaeology of southern Africa. Academic Press.

    Google Scholar 

  • Sampson, C. G., & Sampson, M. (1967). Riversmead Shelter: Excavations and Analysis. National Museum.

    Google Scholar 

  • Schmid, V. C., Roussel, M., Abruzzese, T., Sifogeorgaki, I., & Dusseldorp, G. L. (2022). The role of anvil and bipolar flaking on quartz in the South African Robberg. In 6th International Conference of Experimental Archaeology. Pézénas.

    Google Scholar 

  • Schoville, B. J., Brown, K. S., & Wilkins, J. (2021). A lithic provisioning model as a proxy for landscape mobility in the Southern and Middle Kalahari. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-021-09507-9

  • Seltzer, A. M., Ng, J., Aeschbach, W., Kipfer, R., Kulongoski, J. T., Severinghaus, J. P., & Stute, M. (2021). Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature, 593(7858), 228–232. https://doi.org/10.1038/s41586-021-03467-6

    Article  Google Scholar 

  • Soffer, O., & Gamble, C. (Eds.). (1990a). The world at 18 000 BP: Vol. 1. High Latitudes. Unwin Hyman.

    Google Scholar 

  • Soffer, O., & Gamble, C. (Eds.). (1990b). The world at 18 000 BP: Vol. 2. Low Latitudes. Unwin Hyman.

    Google Scholar 

  • Stewart, B. A., & Mitchell, P. (2018). Beyond the shadow of a desert: aquatic resource intensification on the roof of southern Africa. In A. K. Lemke (Ed.), Foraging in the past: archaeological studies of hunter-gatherer diversity (pp. 159–208). University Press of Colorado. https://doi.org/10.5876/9781607327745.c006

    Chapter  Google Scholar 

  • Stewart, B. A., Dewar, G. I., Morley, M. W., Inglis, R. H., Wheeler, M., Jacobs, Z., & Roberts, R. G. (2012). Afromontane foragers of the Late Pleistocene: Site formation, chronology and occupational pulsing at Melikane Rockshelter, Lesotho. Quaternary International, 270, 40–60. https://doi.org/10.1016/j.quaint.2011.11.028

    Article  Google Scholar 

  • Stewart, B. A., Parker, A. G., Dewar, G., Morley, M. W., & Allott, L. F. (2016). Follow the Senqu: Maloti-Drakensberg paleoenvironments and implications for early human dispersals into mountain systems. In S. C. Jones & B. A. Stewart (Eds.), Africa from MIS 6-2: Population dynamics and paleoenvironments (pp. 247–271). Springer. https://doi.org/10.1007/978-94-017-7520-5_14

    Chapter  Google Scholar 

  • Straus, L. G. (2015). The human occupation of Southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. Journal of Anthropological Research, 71(4), 465–492. https://doi.org/10.3998/jar.0521004.0071.401

    Article  Google Scholar 

  • Straus, L. G. (2016). Humans confront the Last Glacial Maximum in Western Europe: Reflections on the Solutrean weaponry phenomenon in the broader contexts of technological change and cultural adaptation. Quaternary International, 425, 62–68. https://doi.org/10.1016/j.quaint.2016.01.059

    Article  Google Scholar 

  • Stute, M., & Talma, A. S. (1998). Glacial temperatures and moisture transport regimes reconstructed from noble gases and delta-O-18, Stampriet aquifer, Namibia. In International symposium on isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere https://www.osti.gov/etdeweb/biblio/651671

    Google Scholar 

  • Tomasso, A., Rots, V., Purdue, L., Beyries, S., Buckley, M., Cheval, C., Cnuts, D., Coppe, J., Julien, M.-A., Grenet, M., Lepers, C., & M’hamdi, M., Simon, P., Sorin, S., & Porraz, G. (2018). Gravettian weaponry: 23,500-year-old evidence of a composite barbed point from Les Prés de Laure (France). Journal of Archaeological Science, 100, 158–175. https://doi.org/10.1016/j.jas.2018.05.003

    Article  Google Scholar 

  • Torrence, R. (1983). Time budgeting and hunter-gatherer technology. In G. Bailey (Ed.), Hunter-gatherer economy in Prehistory: A European perspective (pp. 11–22). Cambridge University Press.

    Google Scholar 

  • Tryon, C. A., & Faith, J. T. (2016). A demographic perspective on the Middle to Later Stone Age transition from Nasera rockshelter, Tanzania. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1698), 20150238. https://doi.org/10.1098/rstb.2015.0238

    Article  Google Scholar 

  • Twiss, P. C. (1992). Predicted world distribution of C3 and C4 grass phytoliths. In G. Rapp & S. C. Mulholland (Eds.), Phytolith systematics: Emerging issues (pp. 113–128). Springer US. https://doi.org/10.1007/978-1-4899-1155-1_6

    Chapter  Google Scholar 

  • van der Drift, J. W. P. (2012). Oblique bipolar flaking, the new interpretation of mode-1. Notae Praehistoricae, 32, 159–164.

    Google Scholar 

  • Vaquero, M., & Romagnoli, F. (2018). Searching for lazy people: The significance of expedient behavior in the interpretation of Paleolithic assemblages. Journal of Archaeological Method and Theory, 25(2), 334–367. https://doi.org/10.1007/s10816-017-9339-x

    Article  Google Scholar 

  • Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T. F. G., d’Errico, F., Backwell, L., Lucejko, J. J., Colombini, M. P., & Beaumont, P. B. (2012). Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences, 109(33), 13208–13213. https://doi.org/10.1073/pnas.1202629109

    Article  Google Scholar 

  • Visser, J. N. J. (1984). A review of the Stormberg Group and Drakensberg volcanics in southern Africa. Palaeontologica Africana, 25 http://wiredspace.wits.ac.za/handle/10539/16136

  • Vogel, J. C. (1983). Isotopic evidence for the past climates and vegetation of southern Africa. Bothalia, 14(3/4). https://doi.org/10.4102/abc.v14i3/4.1183

  • Vogel, J. C., Fuls, A., & Visser, E. (1986). Pretoria radiocarbon dates III. Radiocarbon, 28(3), 1133–1172. https://doi.org/10.1017/S003382220002018X

    Article  Google Scholar 

  • Wadley, L. (1993). The Pleistocene later stone age south of the Limpopo river. Journal of World Prehistory, 7(3), 243–296.

    Article  Google Scholar 

  • Wadley, L. (1996). The Robberg industry of Rose Cottage Cave, Eastern Free State: The technology, spatial patterns and environment. The South African Archaeological Bulletin, 51(164), 64–74. https://doi.org/10.2307/3888841

    Article  Google Scholar 

  • Wang, B., & French, H. M. (1995). Permafrost on the Tibet Plateau, China. Quaternary Science Reviews, 14(3), 255–274. https://doi.org/10.1016/0277-3791(95)00006-B

    Article  Google Scholar 

  • Wiessner, P. (1982). Risk, reciprocity and social influences on !Kung San economies. In E. Leacock & R. B. Lee (Eds.), Politics and history in band societies (pp. 61–84). Cambridge University Press.

    Google Scholar 

  • Wiessner, P. (1986). !Kung San networks in a generational perspective. In M. Biesele, R. Gordon, & R. B. Lee (Eds.), The past and future of !Kung ethnography: Critical reflections and symbolic perspectives (pp. 103–129). Helmut Buske Verlag.

    Google Scholar 

  • Wiessner, P. W. (1994). The pathways of the past: !Kung San hxaro exchange and history. In M. Bollig & F. Klees (Eds.), Überlebensstrategien in Afrika (pp. 101–124). Heinrich-Barth Institut.

    Google Scholar 

  • Yaroshevich, A., Kaufman, D., Nuzhnyy, D., Bar-Yosef, O., & Weinstein-Evron, M. (2010). Design and performance of microlith implemented projectiles during the Middle and the Late Epipaleolithic of the Levant: Experimental and archaeological evidence. Journal of Archaeological Science, 37(2), 368–388. https://doi.org/10.1016/j.jas.2009.09.050

    Article  Google Scholar 

Download references

Acknowledgements

Melikane was excavated under permits granted by the Ministry of Technology, Environment and Culture (MTEC), Kingdom of Lesotho. We extend thanks to MTEC, and particularly bo-Mme Matsosane Molibeli, Moitheri Molibeli, Moliehi Ntene, Tsepang Shano, Puseletso Moremi, and the late Ntsema Khitsane, for their continued support. We are grateful for the hospitality of the Melikane villagers, especially Morena Pule Machine. We are indebted to Mme Refiloe Okello for her friendship and support. We appreciatively acknowledge the assistance of Jim Moss and John Klausmeyer of the University of Michigan Museum of Anthropological Archaeology (UMMAA) for facilitating access to photographic equipment. We are extremely grateful to Bruce Worden, UMMAA’s illustrator, for his wonderful work on Fig. 10.

Funding

Fieldwork at Melikane was supported by generous grants from the Wenner-Gren Foundation, the British Academy, the Prehistoric Society, and the McDonald Institute for Archaeological Research and the Centre of African Studies (University of Cambridge).

Author information

Authors and Affiliations

Authors

Contributions

K. Pazan conducted the lithic analysis, statistical analyses, and wrote the manuscript, with contributions from B. A. Stewart. B. A. Stewart and G. Dewar secured funding, conducted excavations, and obtained dates and paleoenvironment data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Kyra Pazan or Brian A. Stewart.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazan, K., Stewart, B.A. & Dewar, G. Early LGM Environments Accelerated the MSA/LSA Transition in Southern African Highlands: the Robberg’s Emergence at Melikane (Lesotho). J Paleo Arch 6, 24 (2023). https://doi.org/10.1007/s41982-023-00150-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41982-023-00150-2

Keywords

Navigation