Figure 1 shows resulting projection images and cross-sectional views of the FEP tube and the concentration field of I− at angular positions of 0°, 360°, and 540° for different total volume flow rates and pitches. The angular positions are also marked in the projection images. In the cross-sectional slices, bright voxels indicate a high concentration of I− and dark voxels indicate pure water.
It is visible from the cross-sectional voxel slices that the total liquid flow is divided into an iodide-rich and an iodide-poor region that are separated by a clear separation line. For an angular position of 0°, this separation line is horizontal for the lower volume flow rate, while it is inclined to the outside of the helix for the higher flow rate. The difference in the concentration fields resulting from \({V}_{1}\) and \({V}_{2}\) is likely to be caused by settling effects, as the KI solution (15w% KI, \({\rho }_{s}\approx 1173\:\text{k}\text{g}\,{\text{m}}^{-3}\)) is known to have a higher density (\({\Delta }{\rho }_{rel}\approx\)0.18) than pure water. The residence time between the T-junction and the reference point of the helix (see Fig. 3) is significantly lower for the higher total volume flow rate \({V}_{2}\). Here, the concentration profile at an angular position of 0° is still affected strongly by the first contact of the KI-rich liquid and the KI-poor liquid in the T-junction and the redirecting of the contacted liquids in the feed section. Between 0° and 360° the separation line becomes horizontal.
In the following, the effect of \(Re\) number on the Dean vortices, and hence the resulting radial concentration fields, is considered for \({p}_{1}=4.8\:mm\). For a given helix geometry, increasing \(Re\) is realized by increasing the total volume flow rate \(V\). Increasing \(Re\) simultaneously increases \(Dn\) and \({T}^{*}\). For the lower volume flow rate tested (\({V}_{1}=1.5\:mL\,mi{n}^{-1}\), \(Re=25\), \(Dn=6\), \({T}^{*}\)=476), I− is transported upwards almost uniformly when following the main flow direction. Dean flow does not seem to be pronounced sufficiently to disturb the natural evolution of the concentration field due to diffusion. When increasing the total volume flow rate to \({V}_{2}=7\:mL\,mi{n}^{-1}\) (\(Re=118\), \(Dn=28\), and \({T}^{*}\)=2222) the concentration field significantly differs from the concentration field obtained for lower \(Re\), \(Dn\), and \({T}^{*}\). At an angular position of 360°, the concentration field shows the effect of the Dean vortices. The upper part of the tube cross-section predominantly contains pure water, but some I− is entrained into the iodide-poor region of the cross-section, located at the tube wall. Furthermore, a higher I− concentration can be found in the direction of the centrifugal force \({F}_{z}\). The same can be recognized inversely in the lower part of the tube cross-section for the iodide-rich phase and water. This characteristic concentration field is even pronounced stronger for an angular position of 540°. In total, better radial mixing can be observed for \({V}_{2}=7\:mL\,\text{m}\text{i}{\text{n}}^{-1}\) than for \({V}_{1}=1.5\:mL\,mi{n}^{-1}\) from the reconstructed cross-sectional views. This is especially true because the residence time for higher \(V\) in the shown number of turns is significantly reduced. Figure 2 gives a qualitative impression about the separation area between the iodide rich and the iodide poor region for \({p}_{1}\) along one turn of the helix starting at an angular position of 540°. For lower \(Re\), the total fluid stream is clearly divided into the iodide rich region at the bottom and the iodide poor region at the top, both are clearly distinguished from each other by a nearly horizontal separation area. For the higher \(Re\), a distinction can be made between the separation area between the iodide rich region and a region containing an intermediate concentration of iodide at the bottom (orange) and the separation area between the iodide poor region and the intermediate region at the top (blue). The difference between the appearances of the separation areas for different \(Re\) is contributed by the fact that Dean vortices are pronounced for higher \(Re\).
The sole increase of the total volume flow rate is insufficient to distinguish between the influence of \(Dn\) and \({T}^{*}\) on the resulting local concentration fields, as \(Dn\) and \({T}^{*}\) both depend on \(Re\). Different pitches, \({p}_{1} = 4.8\: mm\) and \({p}_{2} =9\:mm\) are compared for the same total volume flow rates.
\({V}_{1} = 1.5\:mL\,{\text{m}\text{i}\text{n}}^{-1}\)and \({V}_{2} = 7\:mL\,{\text{m}\text{i}\text{n}}^{-1}\) to isolate the effect of \({T}^{*}\). For both \(Re\) tested, the cross-sectional concentration fields for \({p}_{1}\) are very similar to the concentration fields obtained with \({p}_{2}.\) However, at the higher volume flow rate (\({V}_{2} = 7\:mL\,{\text{m}\text{i}\text{n}}^{-1}\)) the concentration fields at 360° and 540° show slightly better mixing for \({p}_{1}\) than for \({p}_{2}\)with slightly more symmetrical concentration fields for the lower pitch. Additionally, it must be considered that for a higher pitch the total residence time within one turn is longer, as is the tube distance. This supports the hypothesis that higher torsion from a larger pitch leads to reduced mixing. As the effect of \({T}^{*}\) on the concentration fields is apparently low, the strong dependence of \(Re\) on the concentration fields described previously originates from the effect of curvature (\(Dn\)).
It can be concluded that both, torsion and curvature, affect the radial mixing in an HCT, as already reported in the literature [12, 13, 16,17,18,19,20]. Increasing curvature, represented by the Dean number, significantly increases radial mixing as the concentration field is affected by the secondary Dean flow pattern. Increasing torsion (decreasing \({T}^{*}\)) for a fixed \(Dn\) number only slightly reduces the effect of Dean flow on radial mixing.