Skip to main content
Log in

A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic concentration gradient generators (μCGGs) are indispensable parts of many emerging lab-on-a-chip platforms for biological studies and drug delivery applications. Most of the μCGGs reported in the literature can only generate the desired concentration gradients in a micron-sized sample (e.g., cells). As such, there is an unmet need to design a μCGG that can generate continuous concentration gradients of multi reagents (e.g., drugs) in a millimeter-sized sample (e.g., tissue). Herein, we report the proof-of-concept of this class of μCGG by combining a modified tree-like CGG with a micromixer. By conducting both experimental investigation and numerical analysis, we show that the proposed device can generate a continuous concentration gradient of two reagents and deliver all the possible combinations of their concentrations to a millimeter-sized sample. The proposed device can be used in a broad range of applications, especially ex-vivo drug chemosensitivity testing in personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bordbar A, Kheirandish S, Taassob A, Kamali R, Ebrahimi A (2020) High-viscosity liquid mixing in a slug-flow micromixer: a numerical study. Journal of Flow Chemistry:1–11. https://doi.org/10.1007/s41981-020-00085-7

  2. J-y Q, X-j L, Gao Z-x, Z-j J (2019) Mixing efficiency and pressure drop analysis of liquid-liquid two phases flow in serpentine microchannels. Journal of Flow Chemistry 9(3):187–197. https://doi.org/10.1007/s41981-019-00040-1

    Article  CAS  Google Scholar 

  3. Žnidaršič-Plazl P (2017) Biotransformations in microflow systems: bridging the gap between academia and industry. Journal of Flow Chemistry 7(3–4):111–117. https://doi.org/10.1556/1846.2017.00021

    Article  CAS  Google Scholar 

  4. Sonnen KF, Merten CA (2019) Microfluidics as an emerging precision tool in developmental biology. Dev Cell 48(3):293–311. https://doi.org/10.1016/j.devcel.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  5. Hajba L, Guttman A (2017) Continuous-flow-based microfluidic systems for therapeutic monoclonal antibody production and organ-on-a-chip drug testing. Journal of Flow Chemistry 7(3–4):118–123. https://doi.org/10.1556/1846.2017.00014

    Article  CAS  Google Scholar 

  6. Menon NV, Lim SB, Lim CT (2019) Microfluidics for personalized drug screening of cancer. J Current opinion in pharmacology 48:155–161. https://doi.org/10.1016/j.coph.2019.09.008

    Article  CAS  Google Scholar 

  7. López COC, Fejes Z, Viskolcz B (2019) Microreactor assisted method for studying isocyanate–alcohol reaction kinetics. Journal of Flow Chemistry 9(3):199–204. https://doi.org/10.1007/s41981-019-00041-0

    Article  CAS  Google Scholar 

  8. Jankowski P, Kutaszewicz R, Ogończyk D, Garstecki P (2019) A microfluidic platform for screening and optimization of organic reactions in droplets. Journal of Flow Chemistry:1–12. https://doi.org/10.1007/s41981-019-00055-8

  9. Ng WL, Yeong WY (2019) The future of skin toxicology testing–3D bioprinting meets microfluidics. J Int J Bioprinting 5:237. https://doi.org/10.18063/ijb.v5i2.1.237

    Article  CAS  Google Scholar 

  10. Wang X, Liu Z, Pang Y (2017) Concentration gradient generation methods based on microfluidic systems. RSC Adv 7(48):29966–29984. https://doi.org/10.1039/C7RA04494A

    Article  CAS  Google Scholar 

  11. Ebadi M, Moshksayan K, Kashaninejad N, Saidi MS, Nguyen N-T (2020) A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications. Chem Eng Sci 212:115339. https://doi.org/10.1016/j.ces.2019.115339

    Article  CAS  Google Scholar 

  12. Du Y, Shim J, Vidula M, Hancock MJ, Lo E, Chung BG, Borenstein JT, Khabiry M, Cropek DM, Khademhosseini A (2009) Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device. Lab Chip 9(6):761–767. https://doi.org/10.1039/B815990D

    Article  CAS  PubMed  Google Scholar 

  13. He YJ, Young DA, Mededovic M, Li K, Li C, Tichauer K, Venerus D, Papavasiliou G (2018) Protease-sensitive hydrogel biomaterials with tunable Modulus and adhesion ligand gradients for 3D vascular sprouting. Biomacromolecules 19(11):4168–4181. https://doi.org/10.1021/acs.biomac.8b00519

    Article  CAS  PubMed  Google Scholar 

  14. Perestrelo A, Águas A, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors 15(12):31142–31170. https://doi.org/10.3390/s151229848

    Article  PubMed  Google Scholar 

  15. Ross A, Pompano R (2018) Diffusion of cytokines in live lymph node tissue using microfluidic integrated optical imaging. Anal Chim Acta 1000:205–213. https://doi.org/10.1016/j.aca.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  16. Bower R, Green VL, Kuvshinova E, Kuvshinov D, Karsai L, Crank ST, Stafford ND, Greenman J (2017) Maintenance of head and neck tumor on-chip: gateway to personalized treatment? Future science OA 3(2):FSO174. https://doi.org/10.4155/fsoa-2016-0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masuda T, Song W, Nakanishi H, Lei W, Noor AM, Arai F (2017) Rare cell isolation and recovery on open-channel microfluidic chip. PLoS One 12(4):e0174937. https://doi.org/10.1371/journal.pone.0174937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moghadas H, Saidi MS, Kashaninejad N, Nguyen N-T (2018) Challenge in particle delivery to cells in a microfluidic device. Drug Delivery and Translational Research 8(3):830–842. https://doi.org/10.1007/s13346-017-0467-3

    Article  CAS  PubMed  Google Scholar 

  19. Gerami A, Alzahid Y, Mostaghimi P, Kashaninejad N, Kazemifar F, Amirian T, Mosavat N, Ebrahimi Warkiani M, Armstrong RT (2019) Microfluidics for porous systems: fabrication, microscopy and applications. Transp Porous Media 130(1):277–304. https://doi.org/10.1007/s11242-018-1202-3

    Article  Google Scholar 

  20. Meijer TG, Naipal KA, Jager A, van Gent DC (2017) Ex vivo tumor culture systems for functional drug testing and therapy response prediction. Future science OA 3(2):FSO190. https://doi.org/10.4155/fsoa-2017-0003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sweet EC, Chen JC-L, Karakurt I, Long AT, Lin L 3D printed three-flow microfluidic concentration gradient generator for clinical E. coli-antibiotic drug screening. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017. IEEE, pp 205–208

  22. Astolfi M, Péant B, Lateef M, Rousset N, Kendall-Dupont J, Carmona E, Monet F, Saad F, Provencher D, Mes-Masson A-MJLoaC (2016) Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy. 16 (2):312–325. https://doi.org/10.1039/C5LC01108F

  23. Ye N, Qin J, Shi W, Liu X, Lin B (2007) Cell-based high content screening using an integrated microfluidic device. Lab Chip 7(12):1696–1704. https://doi.org/10.1039/B711513J

    Article  CAS  PubMed  Google Scholar 

  24. Saadi W, Rhee SW, Lin F, Vahidi B, Chung BG, Jeon NL (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9(5):627–635. https://doi.org/10.1007/s10544-007-9051-9

    Article  PubMed  Google Scholar 

  25. Mitxelena-Iribarren O, Zabalo J, Arana S, Mujika M (2019) Improved microfluidic platform for simultaneous multiple drug screening towards personalized treatment. Biosens Bioelectron 123:237–243. https://doi.org/10.1016/j.bios.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  26. Chang TC, Mikheev AM, Huynh W, Monnat RJ, Rostomily RC, Folch A (2014) Parallel microfluidic chemosensitivity testing on individual slice cultures. Lab Chip 14(23):4540–4551. https://doi.org/10.1039/C4LC00642A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong B, Xue P, Wu Y, Bao J, Chuah YJ, Kang Y (2016) A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed Microdevices 18(1):21. https://doi.org/10.1007/s10544-016-0054-2

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Mukherjee T, Lin Q (2006) Systematic modeling of microfluidic concentration gradient generators. J Micromech Microeng 16(10):2128

    Article  Google Scholar 

  29. Guermonprez C, Michelin S, Baroud CN (2015) Flow distribution in parallel microfluidic networks and its effect on concentration gradient. Biomicrofluidics 9(5):054119. https://doi.org/10.1063/1.4932305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saadi W, Wang S-J, Lin F, Jeon NL (2006) A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 8(2):109–118. https://doi.org/10.1007/s10544-006-7706-6

    Article  PubMed  Google Scholar 

  31. Lin F, Saadi W, Rhee SW, Wang S-J, Mittal S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4(3):164–167. https://doi.org/10.1039/B313600K

    Article  CAS  PubMed  Google Scholar 

  32. Dertinger SK, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246. https://doi.org/10.1021/ac001132d

    Article  CAS  Google Scholar 

  33. Yang C-G, Wu Y-F, Xu Z-R, Wang J-H (2011) A radial microfluidic concentration gradient generator with high-density channels for cell apoptosis assay. Lab Chip 11(19):3305–3312. https://doi.org/10.1039/C1LC20123A

    Article  CAS  PubMed  Google Scholar 

  34. Glawdel T, Elbuken C, Lee LE, Ren CL (2009) Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)—towards water toxicity testing. Lab Chip 9(22):3243–3250. https://doi.org/10.1039/B911412M

    Article  CAS  PubMed  Google Scholar 

  35. Toh AG, Wang Z, Yang C, Nguyen N-T (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16(1–2):1–18. https://doi.org/10.1007/s10404-013-1236-3

    Article  Google Scholar 

  36. Atencia J, Morrow J, Locascio LE (2009) The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9(18):2707–2714. https://doi.org/10.1039/B902113B

    Article  CAS  PubMed  Google Scholar 

  37. Rismanian M, Saidi MS, Kashaninejad N (2019) A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators. Journal of Chemical Engineering Science 195:120–126. https://doi.org/10.1016/j.ces.2018.11.041

    Article  CAS  Google Scholar 

  38. Ongaroa AE, Howartha N, La Carrubbac V, Kersaudy-Kerhoas M Rapid Prototyping for Micro-ngineering and Microfluidic Applications: Recycled PMMA, a Sustainable Substrate Material. In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research (2018). IOS Press, p:107

  39. Sheldon RA, Windsor C, Ferriero DM (2018) Strain-related differences in mouse neonatal hypoxia-ischemia. J Developmental neuroscience 40(5–6):490–496. https://doi.org/10.1159/000495880

    Article  CAS  Google Scholar 

  40. Muley SV, Vidvans AN, Chaudhari GP, Udainiya S (2016) An assessment of ultra fine grained 316L stainless steel for implant applications. J Acta biomaterialia 30:408–419. https://doi.org/10.1016/j.actbio.2015.10.043

    Article  CAS  Google Scholar 

  41. Vafai K, Tien C (1981) Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat Mass Transfer 24(2):195–203. https://doi.org/10.1016/0017-9310(81)90027-2

    Article  CAS  Google Scholar 

  42. Vafai KJJoFM (1984) Convective flow and heat transfer in variable-porosity media. 147:233–259. doi:https://doi.org/10.1017/S002211208400207X

  43. Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56(2):365–373. https://doi.org/10.1016/S0039-9140(01)00602-6

    Article  CAS  PubMed  Google Scholar 

  44. Armour JC, Cannon JN (1968) Fluid flow through woven screens. AICHE J 14(3):415–420. https://doi.org/10.1002/aic.690140315

    Article  CAS  Google Scholar 

  45. Kalyanasundaram S, Calhoun VD, Leong K (1997) A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Journal of Physiology-Regulatory, Integrative Comparative Physiology 273(5):R1810–R1821. https://doi.org/10.1152/ajpregu.1997.273.5.R1810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our great appreciation to Dr. Javad Mirnajafizadeh, head of Cell-Electrophysiology Laboratory of Tarbiat-Modares University, for providing the neonatal mouse brain and the vibratome slicer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Said Saidi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article Highlights

• Development of a new type of microfluidic concentration gradient generators (μCGG).

• Millimeter-sized sample/Multi-reagents/ Continuous CGG.

• The proposed μCGG is highly suitable for drug delivery at a tissue level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rismanian, M., Saidi, M.S. & Kashaninejad, N. A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample. J Flow Chem 10, 615–625 (2020). https://doi.org/10.1007/s41981-020-00104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00104-7

Keywords

Navigation