Skip to main content
Log in

A Novel High-Order Finite-Difference Method for the Time-Fractional Diffusion Equation with Smooth/Nonsmooth Solutions

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

A time-fractional diffusion equation with variable coefficients and Caputo derivative of order \(\alpha \in (0,1)\) is considered. Recently, some S-type, i.e., S1, S2, and S3, formulae have been established with high-order accuracy for approximating the Caputo derivative. These formulas are based on B-splines of degree l with the global \((l+1-\alpha )\)-order accuracy. On the other hand, the typical solution of such diffusion equations has weak regularity near the initial time. In this paper, we aim to establish a new finite-difference method based on the transformed S2 discretization, called the S2-FD method, dealing with this singularity of the solution. We analyze the stability and convergence of the proposed S2-FD scheme for some problems with smooth/nonsmooth solutions. We also indicate the stability of the classic S2-FD method for smooth solutions. It is also proved that both have the global convergence of order \(3-\alpha \). The obtained results are confirmed by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, J., Li, C., Chen, Y.: High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II). Fract. Calc. Appl. Anal. 18(3), 735–761 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  4. Dimitrov, Y.: Three-point approximation for Caputo fractional derivative, Commun. Appl. Math. Comput. 31, 413–442 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Du, R., Yan, Y., Liang, Z.: A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation. J. Comput. Phys. 376, 1312–1330 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, C., Liu, X., Meng, X., Stynes, M.: Error analysis of a finite difference method on graded meshes for a multiterm time-fractional initial-boundary value problem. Comput. Methods Appl. Math. 20(4), 815–825 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Holte, J.M.: Discrete Gronwall lemma and applications. MAA-NCS meeting at the University of North Dakota 24, 1–7 (2009)

    Google Scholar 

  9. Irandoust-Pakchin, S., Lakestani, M., Kheiri, H.: Numerical approach for solving a class of nonlinear fractional differential equation. Bull. Iran. Math. Soc. 42(5), 1107–1126 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Kammerer, W.J., Reddien, G.W., Varga, R.S.: Quadratic interpolatory splines. Numer. Math. 22(4), 241–259 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equation, in: North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, (2006)

  12. Kumar, S., Atangana, A.: A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment. Int. J. Biomath. 13(3), 2050021 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, D.F., Sun, W.W., Wu, C.D.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Meth. Appl. 14, 355–376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C., Wang, Z.: The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Mathematical analysis. Appl. Numer. Math. 150, 587–606 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Z., Cheng, A., Li, X.: A novel finite difference discrete scheme for the time fractional diffusion-wave equation. Appl. Numer. Math. 134, 17–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, W., Li, C., Huang, T., Gu, X., Wu, G.: A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems. Numer. Func. Anal. Opt. 39, 600–622 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mohebbi, A.: Analysis of a numerical method for the solution of time fractional Burgers equation. Bull. Iran. Math. Soc. 44(2), 457–480 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mokhtari, R., Mostajeran, F.: A high order formula to approximate the Caputo fractional derivative. Commun. Appl. Math. Comput. 2(1), 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mokhtari, R., Ramezani, M., Haase, G.: Stability and convergence analyses of the FDM based on some L-type formulae for solving the subdiffusion equation. Numer. Math. Theor. Meth. Appl. 14(4), 1–27 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oldham, K.B., and Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. Mathematics in Science and Engineering, vol. 111, Academic Press, New York and London, (1974)

  24. Owolabi, K.M., Atangana, A., Akgul, A.: Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model. Alex. Eng. J. 59(4), 2477–2490 (2020)

    Article  Google Scholar 

  25. Qiao, H., Cheng, A.: Finite difference method on non-uniform meshes for time fractional diffusion problem. Comput. Methods Appl. Math. 21(4), 899–911 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Qin, H., Li, D., Zhang, Z.: A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations. J. Sci. Comput. 89, 1–20 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations, vol. 23. Springer Science and Business Media (2008)

  28. Ramezani, M., Mokhtari, R., Haase, G.: Some high order formulae for approximating Caputo fractional derivatives. Appl. Numer. Math. 153, 300–318 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramezani, M., Mokhtari, R., Haase, G.: Analysis of the stability and convergence for L-type formula combined with a spatial finite element method for solving subdiffusion problems. Electron. Trans. Numer. Anal. 55, 568–584 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roul, P.: A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options. Appl. Numer. Math. 151, 472–493 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Samarskii, A.A.: The Theory of Difference Schemes, Monogr. Textb. Pure Appl. Math., 240, Marcel Dekker, New York (2001)

  32. She, M., Li, D., Sun, H.W.: A transformed L1 method for solving the multi-term time-fractional diffusion problem. Math. Comput. Simul. 193, 584–606 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stynes, M., O’Riordan, E., Grace, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM. J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stynes, M., Shen, J., Sun, Z.: Two finite difference schemes for multi-dimensional fractional wave equations with weakly singular solutions. Comput. Methods Appl. Math. 21(4), 913–928 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, H., Cao, W.: A fast temporal second-order difference scheme for the time-fractional subdiffusion equation. Numer. Methods. Partial. Differ. Equ. 37(3), 1825–1846 (2021)

    Article  MathSciNet  Google Scholar 

  36. Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, Y., Ren, L.: A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 342, 71–93 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Ren, L.: Analysis of a high-order compact finite difference method for Robin problems of time-fractional sub-diffusion equations with variable coefficients. Appl. Numer. Math. 156, 467–492 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Witkowski, A.: On Young’s inequality, J. Inequal. Pure Appl. Math., 7(5), (article 164), (2006)

  40. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. Appl. Math. Comput. 387, 124564 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Xie, S.S., Li, G.X., Yi, S.H.: Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 198, 1052–1060 (2009)

    Article  MATH  Google Scholar 

  42. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time fractional partial differential equations with nonsmooth data, SIAM. J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohadese Ramezani.

Additional information

Communicated by Davoud Mirzaei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Classic S2-FD Method

The Classic S2-FD Method

Let \( T=1 \), n be a positive integer, \(\Delta t=1/n\), and \(t_k = k\, \Delta t\) for \(k=0,1,\ldots ,n\) denotes a uniform mesh on [0, 1] . We approximate \({\mathcal {D}}^{\alpha }_t u(t) \) using the classic S2 formula [28]

$$\begin{aligned} {\mathcal {D}}^{\alpha }_t u(t)\big \vert _{t = t_k}&=\dfrac{1}{\Gamma (1-\alpha )} \sum _{j=1}^{k} \int _{t_{j-1}}^{t_j} \dfrac{u'(s)}{(t_k - s)^\alpha } \mathrm{d}s \nonumber \\&\simeq \dfrac{1}{\mu } \Big ( \beta ^{k+1} - \sum _{j=1}^{k} (c^{ (\alpha )}_{k-j} - c^{ (\alpha )}_{k-j+1}) \, \beta ^{j} - c_{k}^{(\alpha )} \, \beta ^{0} \Big ) := D ^{\alpha , 2}_t u(t)\big \vert _{t = t_k}, \end{aligned}$$
(A.1)

where \(\mu = \Delta t^{\alpha } \Gamma (3-\alpha )\) and

$$\begin{aligned} c^{(\alpha )}_j := \left\{ \begin{array}{ll} a^{(\alpha )}_{0} - b^{(\alpha )}_{0}, &{} j=0, \\ a^{(\alpha )}_{j} - a^{(\alpha )}_{j-1}, &{} 1\le j \le k-1, \\ b^{(\alpha )}_{k} - a^{(\alpha )}_{k-1}, &{} j=k, \end{array} \right. \end{aligned}$$
(A.2)

with \( a^{(\alpha )}_{j} := (j+1)^{2-\alpha }-j^{2-\alpha }\) and \(b^{(\alpha )}_{j} := (2-\alpha ) \, j^{1-\alpha }\). Some properties of \(c_j^{(\alpha )}\)’s defined in (A.2) are mentioned in the next Lemma.

Lemma A.1

For \(k \ge 1\), we have

  1. 1.

    \(c_j^{(\alpha )} > 0\) for \(j=0,1,\ldots ,k\),

  2. 2.

    \(c_0^{(\alpha )} \ge c_{k}^{(\alpha )}\),

  3. 3.

    \(c_1^{(\alpha )} \ge c_2^{(\alpha )} \ge c_3^{(\alpha )} \ge \cdots \ge c_{k}^{(\alpha )}\),

  4. 4.

    \( c_j^{(\alpha )} \leqslant 2\) for \(j=1,\ldots ,k\).

Proof

Noticing \( a_{j}^{(\alpha )} = (2-\alpha ) \int _{j}^{j+1} x^{1-\alpha } dx \) and \(x^{1-\alpha }\) being strictly increasing with respect to x, it is easy to verify that

$$\begin{aligned} 1= a_{0}^{(\alpha )}< a_{1}^{(\alpha )} <\cdots . \end{aligned}$$

Hence, \(c_j^{(\alpha )} > 0\) for \(j=0,\ldots , k-1\). On the other hand,

$$\begin{aligned} c_{k}^{(\alpha )} = b_{k}^{(\alpha )} - a_{k-1}^{(\alpha )} = (2-\alpha ) k ^{1-\alpha }- k ^{2-\alpha } + (k-1) ^{2-\alpha }. \end{aligned}$$

Let \(g(x) = (2-x) k ^{1-x}- k ^{2-x} + (k-1) ^{2-x}\), then \( g'(x) <0 \) for \( x\in (0,1) \). Therefore, g is monotone decreasing on (0, 1) and \(0 = c_{k}^{(1)}< c_{k}^{(\alpha )} < c_{k}^{(0)} = 1 = c_{0}^{(\alpha )}\). For the third part, letting \(h(x) = x^{2-\alpha }\) follows that

$$\begin{aligned} h'''(x) = (2 - \alpha ) (1-\alpha ) (-\alpha ) x^{-1-\alpha } < 0. \end{aligned}$$

Eventually, \(c_j^{(\alpha )} - c_{j+1}^{(\alpha )} = -h(j+2) + 3 h(j+1) - 3 h(j) + h(j-1) = -h'''(\xi _j) > 0\) which leads to \(c_1^{(\alpha )} \ge c_2^{(\alpha )} \ge c_3^{(\alpha )} \ge \cdots \ge c_{k-1}^{(\alpha )}\). Furthermore,

$$\begin{aligned} c_k^{(\alpha )} - c_{k-1}^{(\alpha )} = (2-\alpha ) k^{1-\alpha }-2 k^{2-\alpha }+3(k-1)^{2-\alpha }-(k-2)^{2-\alpha }. \end{aligned}$$

Let \(g(x) = (2-x) k^{1-x}-2 k^{2-x}+3(k-1)^{2-x}-(k-2)^{2-x}\), then for \(x\in (0,1)\), \(g'(x) >0 \). Hence, g is monotone increasing and attains its maximum at \(x=1 \). Consequently, \(g(x) \le g(1) = 0\) and the third part is complete. To complete the proof, it suffices to use the third part together with the showing that \(c_1^{(\alpha )} \leqslant 2\). Suppose \(g(x) = 2^{2-x} - 2\), then \(g'(x) <0\) and g is monotone decreasing on (0, 1). Therefore \(g(x) \leqslant g(0) =2\). \(\square \)

For constructing a finite-difference scheme, We utilize the difference operator L to approximate the diffusion term and the S2 discretization (A.1) for approximating the Caputo fractional derivative (1.2). Hence, problem (1.1) is approximated using the following discrete problem:

$$\begin{aligned}&D ^{\alpha , 2}_t u^k_i = Lu^k_i + f(x_i,t_k), \quad i=1,2,\ldots ,m, \quad k=1,2,\ldots ,n, \end{aligned}$$
(A.3)
$$\begin{aligned}&u_0^{k} = u_{m}^{k} = 0, \qquad k=0,1,\ldots ,n, \end{aligned}$$
(A.4)

where

$$\begin{aligned}&u_i^k = \sum _{j=0}^{k+1} \beta _{i}^{j} B_{j}(t^k) = \frac{1}{2} (\beta _{i}^{k} + \beta _{i}^{k+1}), \qquad i=0,\ldots ,m, \quad k=0,\ldots ,n, \end{aligned}$$
(A.5)
$$\begin{aligned}&\partial _t u(x_i, 0) \simeq \sum _{j=0}^{1} \beta _{i}^{j} \partial _t B_{j}(0) = \dfrac{1}{\Delta t} ( \beta _{i}^{1} - \beta _{i}^{0}), \quad i=0,\ldots , m. \end{aligned}$$
(A.6)

1.1 Stability and Convergence Analyses

Theorem A.1

Difference scheme (A.3) is unconditionally stable and its solution satisfies

$$\begin{aligned} \Vert u^k \Vert \leqslant \Vert u^0 \Vert , \qquad k = 1, 2, \ldots , n. \end{aligned}$$

Proof

Taking the inner product of (A.3) with \( u^k\), and analysis similar to that in the proof of Theorem 3.1 leads to the following cases.

Case 1: If \(c_0^{(\alpha )} \ge c_1^{(\alpha )}\), then for \(\varepsilon \ge 0\), we get \( \Vert \beta ^{k+1} \Vert ^2\, \leqslant \varepsilon \, \Vert \beta ^{0}\Vert ^2+ \sum _{j=0}^{k} w_j \,\Vert \beta ^{j}\Vert ^2, \) where

$$\begin{aligned} w_j = \left\{ \begin{array}{ll} 4 c_k^{(\alpha )}, &{} j=0,\\ 4 (c_{0}^{(\alpha )} - c_{1}^{(\alpha )}) +6 , &{} j = k, \\ 4(c_{k-j}^{(\alpha )} - c_{k-j+1}^{(\alpha )}) , &{} \text {otherwise}. \end{array} \right. \end{aligned}$$

According to Lemma A.1, \(w_j\)’s are nonnegative and using Lemma 2.4, we have

$$\begin{aligned} \Vert \beta ^{k+1} \Vert ^2\, \leqslant \varepsilon \exp \Big (\sum _{j=0}^{k} w_j\Big ) \, \Vert \beta ^{0}\Vert ^2=\varepsilon \exp (C) \, \Vert \beta ^{0}\Vert ^2, \end{aligned}$$

with \(C = 2(2 c_{0}^{(\alpha )} + 3)>0\). Choosing \(\varepsilon \le 1/\exp (C)\) gives \(\Vert \beta ^{k+1}\Vert \leqslant \Vert \beta ^{0}\Vert \) for \(k = 1, \ldots , n\). Similarly to proof of Theorem 3.1, it leads to the unconditional stability of difference scheme (A.3) in the maximum- and discrete \(L^2\)-norm.

Case 2: If \(c_0^{(\alpha )} < c_1^{(\alpha )}\), then

$$\begin{aligned} \frac{1}{2}\Vert \beta ^{k+1} \Vert ^2&\leqslant (1-\frac{1}{2} c^{ (\alpha )}_1)\Vert \beta ^{k+1} \Vert ^2 \leqslant 4 \sum _{j=1}^{k-1} (c^{ (\alpha )}_{k-j} - c^{ (\alpha )}_{k-j+1})\, \Vert \beta ^{j} \Vert ^2 + 4 c_{k}^{(\alpha )} \Vert \beta ^{0} \Vert ^2 + \frac{17 }{8} c^{ (\alpha )}_{1} \Vert \beta ^{k} \Vert ^2,\nonumber \\&\leqslant 4 \sum _{j=1}^{k-1} (c^{ (\alpha )}_{k-j} - c^{ (\alpha )}_{k-j+1})\, \Vert \beta ^{j} \Vert ^2 + 4 c_{k}^{(\alpha )} \Vert \beta ^{0} \Vert ^2 + 5 \Vert \beta ^{k} \Vert ^2, \end{aligned}$$
(A.7)

where Lemma A.1 was used. For \(\varepsilon \ge 0\), we now get \( \Vert \beta ^{k+1} \Vert ^2\, \leqslant \varepsilon \, \Vert \beta ^{0}\Vert ^2+ \sum _{j=0}^{k} w_j \,\Vert \beta ^{j}\Vert ^2, \) where

$$\begin{aligned} w_j = 2\left\{ \begin{array}{l@{\qquad }l} 4 c_k^{(\alpha )}, &{} j=0,\\ 5, &{} j = k, \\ 4 (c_{k-j}^{(\alpha )} - c_{k-j+1}^{(\alpha )}) , &{} \text {otherwise}. \end{array} \right. \end{aligned}$$

According to Lemma A.1, \(w_j\)’s are nonnegative and using Lemma 2.4, we have

$$\begin{aligned} \Vert \beta ^{k+1} \Vert ^2\, \leqslant \varepsilon \exp \Big (\sum _{j=0}^{k} w_j\Big ) \, \Vert \beta ^{0}\Vert ^2=\varepsilon \exp (C) \, \Vert \beta ^{0}\Vert ^2, \end{aligned}$$

where \(C = 2 (4 c_{1}^{(\alpha )} + 5)\). Obviously, \(C>0\) and choosing \(\varepsilon \le 1/\exp (C)\) gives \(\Vert \beta ^{k+1}\Vert \leqslant \Vert \beta ^{0}\Vert \) for \(k = 1, \ldots , n\). Then the same way as in Case 1 applies to show that the difference scheme (A.3) is unconditionally stable in the maximum- and discrete \(L^2\)-norm in this Case. \(\square \)

Now, we consider the local truncation error and define

$$\begin{aligned} \tau (x,t)&:= D^{\alpha , 2}_t {u}(x,s) - \frac{1}{h^2} \big (b(x+h/2,t) {u}(x+h,t) - (b(x-h/2,t) \nonumber \\&\quad + b(x+h/2,t)) {u}(x,t)+ b(x-h/2,t) {u}(x-h,t)\big ) - f(x,t), \end{aligned}$$
(A.8)

to establish an error estimate for difference scheme (A.3). Let \(e_i^k =u(x_i,t_k) - u_i^k \), where \(u(x_i,t_k)\) and \(u_i^k\) are the solutions of problem (1.1) at grid point \((x_i,t_k)\) and the difference scheme (A.3), repectively. Subtracting Eq. (A.3) from Eq. (A.8) for \(x=x_i\) and \(t=t_k\) leads to

$$\begin{aligned} \tau _i^k= D^{\alpha , 2}_t e_i^k - L e_i^k. \end{aligned}$$
(A.9)

Obviously, boundary conditions imply \( e_0^k = e_m^k= 0\) for \(k=1,\ldots ,n\) which leads to

$$\begin{aligned} D^{\alpha , 2}_t e_i^k = \dfrac{\Delta t^{-\alpha }}{\Gamma (3-\alpha )} \left( {\mathcal {E}}^{k+1}_{i} - \sum _{j=2}^{k} (c^{ (\alpha )}_{k-j} - c^{ (\alpha )}_{k-j+1}) \, {\mathcal {E}}^{j}_{i} - (c_{k-1}^{(\alpha )} - 2c_{k}^{(\alpha )}) \, {\mathcal {E}}^{1}_i \right) . \end{aligned}$$

Theorem A.2

[28] If \(v \in \mathrm{{C}}^3[0, t_k]\) and \(R_2(v(t_k)) = {\mathcal {D}}^{\alpha }_t v(t)\big \vert _{t = t_k} - D ^{\alpha ,2}_t v(t)\big \vert _{t = t_k} \) then

$$\begin{aligned} \vert R_2(v(t_k)) \vert \leqslant \dfrac{M_{ttt}}{2} \Delta t^{3 - \alpha }, \qquad M_{ttt} = \max _{0 \leqslant t \leqslant t_k} |v^{(3)}(t)|. \end{aligned}$$

Theorem A.3

If \(u\in \mathrm{{C}}^{4,3}(\Omega \times I)\), difference scheme (A.3) is consistent with \(3-\alpha \) order accuracy.

Proof

The proof is the same way as Theorem 3.4. \(\square \)

Theorem A.4

Under the condition of Theorem A.3, difference scheme (A.3) is convergent.

Proof

Taking the inner product of (A.9) with \( e^k\), and using the same way as in the proof of Theorem 3.1 leads to the following cases.

Case 1: If \(c_{0}^{(\alpha )} \ge c_{1}^{(\alpha )}\), then \( \Vert {\mathcal {E}}^{k+1} \Vert ^2 \leqslant \dfrac{4}{ c_{k}^{(\alpha )}} \mu ^2 \Vert \mathcal {\tau }^{k} \Vert ^2 + \sum _{j=1}^{k}w_j \Vert {\mathcal {E}}^{j} \Vert ^2, \) where

$$\begin{aligned} w_j =\dfrac{1}{c_{k}^{(\alpha )}}\left\{ \begin{array}{l@{\qquad }l} 4 c_{k-1}^{(\alpha )}, &{} j = 1, \\ 6 - 4 c_{1}^{(\alpha )}, &{} j = k, \\ 4\left( c_{k-j}^{(\alpha )} - c_{k-j+1}^{(\alpha )} \right) , &{} \text {otherwise}. \end{array} \right. \end{aligned}$$

Using Lemma 2.4, we have \( \Vert {\mathcal {E}}^{k+1} \Vert \leqslant \frac{2 \mu }{\sqrt{c_{k}^{(\alpha )}}}\Vert \tau ^k \Vert \exp (3) \leqslant 2 \mu \exp (3) \Vert \tau ^k \Vert \) and utilizing Theorem A.3, complete the proof.

Case 2: If \(c_{0}^{(\alpha )} < c_{1}^{(\alpha )} \), then \( \Vert {\mathcal {E}}^{k+1} \Vert ^2 \leqslant 8 \mu ^2 \Vert \mathcal {\tau }^{k} \Vert ^2 + \sum _{j=1}^{k}w_j \Vert {\mathcal {E}}^{j} \Vert ^2, \) where

$$\begin{aligned} w_j = 4 \left\{ \begin{array}{l@{\qquad }l} c_{k-1}^{(\alpha )}, &{} j = 1, \\ 2, &{} j = k, \\ (c_{k-j}^{(\alpha )} - c_{k-j+1}^{(\alpha )}), &{} \text {otherwise}. \end{array} \right. \end{aligned}$$

Using Lemma 2.4, we have

$$\begin{aligned} \Vert {\mathcal {E}}^{k+1} \Vert \leqslant \sqrt{8} \mu \exp (C_1) \Vert \tau ^k \Vert , \end{aligned}$$
(A.10)

where \(C_1 = (4 + 2 c_{1}^{(\alpha )})\). Using Theorem A.3, \(\Vert {\mathcal {E}}^k \Vert \leqslant C\Delta t^{3-\alpha }\) for \(k=1, 2, \ldots , n\). Eventually \(\Vert e^k \Vert \leqslant C\Delta t^{3-\alpha }\) and due to Lemma 2.2, the scheme has the convergence order \({\mathcal {O}}(3 - \alpha )\) in the maximum- and \(L^2\)-norm. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M., Mokhtari, R. A Novel High-Order Finite-Difference Method for the Time-Fractional Diffusion Equation with Smooth/Nonsmooth Solutions. Bull. Iran. Math. Soc. 48, 3987–4013 (2022). https://doi.org/10.1007/s41980-022-00729-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-022-00729-5

Keywords

Mathematics Subject Classification

Navigation