Skip to main content
Log in

Cohen–Montgomery Duality for Pseudo-actions of a Group

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Throughout this article, we fix a group G and a commutative ring \(\Bbbk \). This is an exposition on 2-equivalences between a 2-category of small \(\Bbbk \)-categories with pseudo G-actions and a 2-category of G-graded small \(\Bbbk \)-categories, which generalizes (Asashiba in Appl Categor Sturct 25(8):3278–3296, 2017). This article is a translation of some parts of Ch. 4 and 5 in the book (Asashiba in Categories and representation theory, focused on 2-categorical covering theory, SGC library 155, Saiensu-sha, 2019) in Japanese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Representations of algebras without oriented cycles in their quivers are much simpler than others.

  2. Such as a bicategory of all small categories whose 1-morphisms are bimodules over small categories, the compositions are given by tensor products, and 2-morphisms are bimodule morphisms between bimodules.

  3. I first learned how to draw string diagrams by these movies.

  4. Cones \((x, \pi )\) and \((x', \pi ')\) are called isomorphic if there exists an isomorphism \(f:x' \rightarrow x\) in \({{{\mathscr {C}}}}\), such that \(\pi ' = \pi \circ \Delta (f)\).

  5. For example, if \(R \circ \varprojlim \) has an automorphism \(\gamma \) that is not equal to \({\mathbb {1}}_{R \circ \varprojlim }\), then \(\beta := \varprojlim R^I(\pi ) \bullet \gamma \) is a natural isomorphism \(R \circ \varprojlim \Rightarrow \varprojlim \circ R^I\), but \(\beta _F\) is not a morphism from the cone \((R(\varprojlim F), R(\pi _F))\) to the cone \((\varprojlim R^I(F), \pi _{R^I(F)})\) for some F.

  6. They assume that all X(a) (\(a \in G\)) are autoequivalences, which is stronger than (a\('\)), but follows by Remark 6.2. Note that they defined a lax functor version not colax version.

References

  1. Asashiba, H.: A covering technique for derived equivalence. J. Algebra 191, 382–415 (1997)

    Article  MathSciNet  Google Scholar 

  2. Asashiba, H.: The derived equivalence classification of representation-finite selfinjective algebras. J. Algebra 214, 182–221 (1999)

    Article  MathSciNet  Google Scholar 

  3. Asashiba, H.: Derived and stable equivalence classification of twisted multifold extensions of piecewise hereditary algebras of tree type. J. Algebra 249, 345–376 (2002)

    Article  MathSciNet  Google Scholar 

  4. Asashiba, H.: A generalization of Gabriel’s Galois covering functors and derived equivalences. J. Algebra 334, 109–149 (2011)

    Article  MathSciNet  Google Scholar 

  5. Asashiba, H.: A generalization of Gabriel’s Galois covering functors II: 2-categorical Cohen–Montgomery duality. Appl. Categor. Sturct. 25(8), 3278–3296 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Asashiba, H.: Derived equivalences of actions of a category. Appl. Categor. Struct. 21(6), 811–836 (2013). https://doi.org/10.1007/s10485-012-9284-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Asashiba, H.: Gluing derived equivalences together. Adv. Math. 235, 134–160 (2013)

    Article  MathSciNet  Google Scholar 

  8. Asashiba, H., Kimura, M.: Presentations of Grothendieck constructions. Commun. Algebra 41(11), 4009–4024 (2013)

    Article  MathSciNet  Google Scholar 

  9. Asashiba, H.: Smash products of group weighted bound quivers and Brauer graphs. Commun. Algebra pp. 585–610 (2019). https://doi.org/10.1080/00927872.2018.1487562

  10. Asashiba, H.: Categores and representation theory, focused on 2-cagegorical covering theory, SGC library 155, Saiensu-sha (2019)

  11. Bongartz, K., Gabriel, P.: Covering spaces in representation theory. Invent. Math. 65, 331–378 (1982)

    Article  MathSciNet  Google Scholar 

  12. Borceux, F.: Handbook of Categorical Algebra 1 Basic Category Theory, Encyclopedia of Mathematics and its Application. Cambridge Univ. Press, Cambridge (1994)

  13. Chen, J., Chen, X., Ruan, S.: The dual actions, autoequivalences and stable tilting objects. arXiv:1708.08222

  14. Cibils, C., Marcos, E.: Skew category, Galois covering and smash product of a \(k\)-category. Proc. Am. Math. Soc. 134(1), 39–50 (2006)

    Article  MathSciNet  Google Scholar 

  15. Deligne, P.: Action du groupe des tresses sur une catégorie. Invent. Math. 128, 159–175 (1997)

    Article  MathSciNet  Google Scholar 

  16. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories, I. Sel. Math. New Ser. 16, 1–119 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gabriel, P.: The Universal Cover of a Representation-Finite Algebra. In: Lecture Notes in Mathematics, vol. 903, pp. 68–105. Springer, Berlin (1981)

  18. Green, E.L.: Graphs with relations, coverings and group-graded algebras. Trans. Am. Math. Soc. 279(1), 297–310 (1983)

    Article  MathSciNet  Google Scholar 

  19. Grothendieck, A.: Revêtements étales et groupe fondamental. Springer, Berlin (1971). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Mathematics, Vol. 224

    Book  Google Scholar 

  20. Kelly, G.M., Street, R.: Review of the Elements of 2-Categories, Lecture Notes in Mathematics, 420, pp. 75–103. Springer, Berlin (1974)

  21. Leinster, T.: Basic bicategories. arXiv:math.CT/9810017

  22. Levy, P.B.: Formulating categorical concepts using classes. arXiv:1801.08528

  23. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5. Springer, New York ix+262 pp (1971)

  24. Marsden, D.: Category theory using string diagrams. arXiv:1401.7220v2 [math.CT]

  25. Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Commun. Math. Helv. 55, 199–224 (1980)

    Article  Google Scholar 

  26. Riedtmann, Ch.: Representation-finite selfinjective algebras of class \(A_n\). In: Lecture Notes in Mathematics, vol. 832, pp. 449–520. Springer, Berlin (1980)

  27. Riedtmann, C.: Representation-finite selfinjective algebras of class \(D_n\). Compos. Math. 49, 231–282 (1983)

    MATH  Google Scholar 

  28. TheCasters: String diagrams, 1 – 4, YouTube videos. https://www.youtube.com/watch?v=USYRDDZ9yEc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Asashiba.

Additional information

Communicated by Javad Asadollahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by a Grant-in-Aid for Scientific Research (C) 18K03207 from JSPS and by JST CREST Mathematics (15656429).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asashiba, H. Cohen–Montgomery Duality for Pseudo-actions of a Group. Bull. Iran. Math. Soc. 47, 767–842 (2021). https://doi.org/10.1007/s41980-020-00413-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-020-00413-6

Keywords

Mathematics Subject Classification

Navigation