Skip to main content

Advertisement

Log in

Forecasting, Detecting, and Tracking Volcanic Eruptions from Space

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

Satellite monitoring of volcanic activity typically includes four primary observations: (1) deformation and surface change, (2) gas emissions, (3) thermal anomalies, and (4) ash plumes. These phenomena are imaged by remote sensing data that span the electromagnetic spectrum, from microwave to ultraviolet energy and including visible and infrared wavelengths. The primary uses of satellite data in volcanology are forecasting, detecting, and tracking eruptive activity. Eruptions are often preceded by a number of indicators that are detectable from space, including surface deformation, subtle increases in surface temperature, and elevated gas emissions. The first indications of eruption, especially at remote volcanoes, are often identified in satellite data by strong thermal anomalies and/or the presence of ash and gas in the atmosphere, the recognition of which can be automated for rapid eruption detection. Once an eruption is in progress, space-based imagery of all types can track activity over time, providing information on the emplacement of volcanic deposits, the presence and character of ash plumes, and potential changes in the character of the eruption, all of which aid hazards assessment. Activity at Agung volcano, Indonesia, during 2017–2019, offers an excellent example of the importance of remote sensing datasets for forecasting, detecting, and tracking eruptions. Challenges to exploiting current and future satellite data include ensuring regular acquisitions over active volcanoes and developing tools for automated analysis of the massive volume of imagery for volcano-related signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Afe OT, Richter A, Sierk B, Wittrock F, Burrows JP (2004) BrO emission from volcanoes: a survey using GOME and SCIAMACHY measurements. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020994

  2. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118. https://doi.org/10.1130/G24149A.1

    Article  Google Scholar 

  3. Albino F, Smets B, d'Oreye N, Kervyn F (2015) High-resolution TanDEM-X DEM: an accurate method to estimate lava flow volumes at Nyamulagira volcano (D.R. Congo). J Geophys Res 120:4189–4207. https://doi.org/10.1002/2015JB011988

    Article  Google Scholar 

  4. Albino F, Biggs J, Syahbana DK (2019) Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung. Nat Commun 10:748. https://doi.org/10.1038/s41467-019-08564-9

    Article  Google Scholar 

  5. Aminou DM, Bézy J-L, Bensi P, Stuhlmann R, Rodriguez A (2017) Meteosat third generation: preliminary imagery and sounding mission concepts and performances. Proc. SPIE 10567, International Conference on Space Optics — ICSO 2006, 1056706 (21 November 2017). https://doi.org/10.1117/12.2308182

  6. Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res 123:6592–6606. https://doi.org/10.1029/2018JB015911

    Article  Google Scholar 

  7. Anantrasirichai N, Biggs J, Albino F, Bull D (2019) The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series. Geophys Res Lett 46:11,850–11,858. https://doi.org/10.1029/2019GL084993

    Article  Google Scholar 

  8. Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea volcano, 2000–2012. Earth Planet Sci Lett 447:161–171. https://doi.org/10.1016/j.epsl.2016.04.029

    Article  Google Scholar 

  9. Arnold DWD, Biggs J, Wadge G, Ebmeier SK, Odbert HM, Poland MP (2016) Dome growth, collapse, and valley fill at Soufrière Hills volcano, Montserrat, from 1995 to 2013: contributions from satellite radar measurements of topographic change. Geosphere 12:1300–1315. https://doi.org/10.1130/GES01291.1

    Article  Google Scholar 

  10. Arnold DWD, Biggs J, Anderson K, Vallejo Vargas S, Wadge G, Ebmeier SK, Naranjo MF, Mothes P (2017) Decaying lava extrusion rate at El Reventador volcano, Ecuador, measured using high-resolution satellite radar. J Geophys Res 122:9966–9988. https://doi.org/10.1002/2017JB014580

    Article  Google Scholar 

  11. Arnold DW, Biggs J, Wadge G, Mothes P (2018) Using satellite radar amplitude imaging for monitoring syn-eruptive changes in surface morphology at an ice-capped stratovolcano. Remote Sens Environ 209:480–488. https://doi.org/10.1016/j.rse.2018.02.040

    Article  Google Scholar 

  12. Arzilli F, Morgavi D, Petrelli M, Polacci M, Burton M, Di Genova D, Spina L, La Spina G, Hartley ME, Romero JE, Fellowes J, Diaz-Alvarado J, Perugini D (2019) The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): triggering mechanism implications. J Volcanol Geotherm Res 378:35–50. https://doi.org/10.1016/j.jvolgeores.2019.04.006

    Article  Google Scholar 

  13. Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19:2194–2211. https://doi.org/10.1029/2018GC007585

    Article  Google Scholar 

  14. Bagnardi M, González PJ, Hooper A (2016) High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo volcano. Geophys Res Lett 43:6267–6275. https://doi.org/10.1002/2016GL069457

    Article  Google Scholar 

  15. Baker S, Amelung F (2012) Top-down inflation and deflation at the summit of Kīlauea Volcano, Hawaii observed with InSAR. J Geophys Res 117. https://doi.org/10.1029/2011JB009123

  16. Bessho K, Date K, Hayashi M, Ikeda A, Imai T, Inoue H, Kumagai Y, Miyakawa T, Murata H, Ohno T, Okuyama A, Oyama R, Sasaki Y, Shimazu Y, Shimoji K, Sumida Y, Suzuki M, Taniguchi H, Tsuchiyama H, Uesawa D, Yokota H, Yoshida R (2016) An introduction to Himawari-8/9—Japan's new-generation geostationary meteorological satellites. J Meteorol Soc Jpn 94:151–183. https://doi.org/10.2151/jmsj.2016-009

    Article  Google Scholar 

  17. Biggs J, Pritchard ME (2017) Global volcano monitoring: what does it mean when volcanoes deform? Elements 13:17–22. https://doi.org/10.2113/gselements.13.1.17

    Article  Google Scholar 

  18. Biggs J, Ebmeier SK, Aspinall WP, Lu Z, Pritchard ME, Sparks RSJ, Mather TA (2014) Global link between deformation and volcanic eruption quantified by satellite imagery. Nat Commun 5:3471. https://doi.org/10.1038/ncomms4471

    Article  Google Scholar 

  19. Bluth GJ, Casadevall TJ, Schnetzler CC, Doiron SD, Walter LS, Krueger AJ, Badruddin M (1994) Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982–1983 eruptions of Galunggung, Java, Indonesia. J Volcanol Geotherm Res 63:243–256. https://doi.org/10.1016/0377-0273(94)90077-9

    Article  Google Scholar 

  20. Bonny E, Wright R (2017) Predicting the end of lava flow-forming eruptions from space. Bull Volcanol 79:52. https://doi.org/10.1007/s00445-017-1134-8

    Article  Google Scholar 

  21. Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede AP SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56:127–150. https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2

  22. Brenot H, Theys N, Clarisse L, van Geffen J, van Gent J, van Roozendael M, van der AR, Hurtmans D, Coheur P-F, Clerbaux C, Valks P, Hedelt P, Prata F, Rasson O, Sievers K, Zehner C (2014) Support to aviation control service (SACS): an online service for near real-time satellite monitoring of volcanic plumes. Nat Hazards Earth Syst Sci 14:1099–1123. https://doi.org/10.5194/nhess-14-1099-2014

    Article  Google Scholar 

  23. Brown SK, Auker MR, Sparks RSJ (2015a) Populations around Holocene volcanoes and development of a population exposure index. In: Loughlin SC, Sparks RSJ, Brown SK, Jenkins SF, Vye-Brown C (eds) Global Volcanic Hazards and Risk. Cambridge University Press, pp. 223–232. https://doi.org/10.1017/CBO9781316276273.006

  24. Brown SK, Loughlin SC, Sparks RSJ, Vye-Brown C, Barclay J, Caldera E, Cottrell E, Jolly G, Komorowski J-C, Mandeville C, Newhall CG, Palma JL, Potter S, Valentine G (2015b) Global volcanic hazard and risk. In: Loughlin SC, Sparks RSJ, Brown SK, Jenkins SF, Vye-Brown C (eds) Global Volcanic Hazards and Risk. Cambridge University Press, pp. 81–172. https://doi.org/10.1017/CBO9781316276273.004

  25. Bull KF, Buurman H (2013) An overview of the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:2–15. https://doi.org/10.1016/j.jvolgeores.2012.06.024

    Article  Google Scholar 

  26. Calvari S, Ganci G, Victória S, Hernandez P, Perez N, Barrancos J, Alfama V, Dionis S, Cabral J, Cardoso N, Fernandes P (2018) Satellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014–2015 Effusive Eruption at Fogo Volcano (Cape Verde). Remote Sens 10:1115. https://doi.org/10.3390/rs10071115

    Article  Google Scholar 

  27. Cameron CE, Dixon JP, Neal CA, Waythomas CF, Schaefer JR, McGimsey RG (2017) 2014 Volcanic activity in Alaska—summary of events and response of the Alaska Volcano Observatory. U.S. Geological Survey Scientific Investigations Report 2017–5077. https://doi.org/10.3133/sir20175077

  28. Cameron CE, Prejean SG, Coombs ML, Wallace KL, Power JA, Roman DC (2018) Alaska Volcano Observatory alert and forecasting timeliness: 1989–2017. Front Earth Sci 6:86. https://doi.org/10.3389/feart.2018.00086

    Article  Google Scholar 

  29. Campion R, Salerno GG, Coheur PF, Hurtmans D, Clarisse L, Kazahaya K, Burton M, Caltabiano T, Clerbaux C, Bernard A (2010) Measuring volcanic degassing of SO2 in the lower troposphere with ASTER band ratios. J Volcanol Geotherm Res 194:42–54. https://doi.org/10.1016/j.jvolgeores.2010.04.010

    Article  Google Scholar 

  30. Cappello A, Ganci G, Calvari S, Pérez NM, Hernández PA, Silva SV, Cabral J, Del Negro C (2016) Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verde. J Geophys Res 121:2290–2303. https://doi.org/10.1002/2015JB012666

  31. Carn SA, Krotkov NA (2016) Ultraviolet satellite measurements of volcanic ash. In: Mackie A, Cashman K, Ricketts H, Rust A, Watson M (eds) Volcanic ash: hazard observation. Elsevier, Amsterdam, pp 217–231. https://doi.org/10.1016/B978-0-08-100405-0.00018-5

    Chapter  Google Scholar 

  32. Carn SA, Strow LD, de Souza-Machado S, Edmonds Y, Hannon S (2005) Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy). Geophys Res Lett 32. https://doi.org/10.1029/2004GL021034

  33. Carn SA, Krotkov NA, Yang K, Krueger AJ (2013) Measuring global volcanic degassing with the ozone monitoring instrument (OMI). In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of Volcanoes and volcanic processes: integrating observation and modeling. Geological Society London Special Publications 380:229–257. https://doi.org/10.1144/SP380.12

  34. Carn SA, Yang K, Prata AJ, Krotkov NA (2015) Extending the long-term record of volcanic SO2 emissions with the ozone mapping and profiler suite nadir mapper. Geophys Res Lett 42:925–932. https://doi.org/10.1002/2014GL062437

    Article  Google Scholar 

  35. Carn SA, Clarisse L, Prata AJ (2016) Multi-decadal satellite measurements of global volcanic degassing. J Volcanol Geotherm Res 311:99–134. https://doi.org/10.1016/j.jvolgeores.2016.01.002

    Article  Google Scholar 

  36. Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep 7:44095. https://doi.org/10.1038/srep44095

    Article  Google Scholar 

  37. Carn SA, Krotkov NA, Fisher BL, Li C, Prata AJ (2018) First observations of volcanic eruption clouds from the L1 Earth-Sun Lagrange point by DSCOVR/EPIC. Geophys Res Lett 45:11,456–11,464. https://doi.org/10.1029/2018GL079808

    Article  Google Scholar 

  38. Cervelli PF, Fournier T, Freymueller J, Power JA (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027219

  39. Chaussard E (2016) Subsidence in the Parícutin lava field: causes and implications for interpretation of deformation fields at volcanoes. J Volcanol Geotherm Res 320:1–11. https://doi.org/10.1016/j.jvolgeores.2016.04.009

    Article  Google Scholar 

  40. Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys Res Lett:39. https://doi.org/10.1029/2012GL053817

  41. Choi Y-S, Ho C-H (2015) Earth and environmental remote sensing community in South Korea: a review. Remote Sens App Soc Environ 2:66–76. https://doi.org/10.1016/j.rsase.2015.11.003

    Article  Google Scholar 

  42. Choi YH, Lee WJ, Park SC, Sun J, Lee DK (2017) Retrieving volcanic ash information using COMS satellite (MI) and Landsat-8 (OLI, TIRS) satellite imagery: a case study of Sakurajima volcano. Korean J Remote Sens 33:587–598

    Google Scholar 

  43. Clarisse L, Prata F (2016) Infrared sounding of volcanic ash. In: Mackie A, Cashman K, Ricketts H, Rust A, Watson M (eds) Volcanic ash: hazard observation. Elsevier, Amsterdam, pp 189–215. https://doi.org/10.1016/B978-0-08-100405-0.00017-3

    Chapter  Google Scholar 

  44. Clarisse L, Coheur PF, Prata AJ, Hurtmans D, Razavi A, Phulpin T, Hadji-Lazaro J, Clerbaux C (2008) Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair. Atmos Chem Phys 8:7723–7734. https://doi.org/10.5194/acp-8-7723-2008

    Article  Google Scholar 

  45. Clarisse L, Coheur PF, Chefdeville S, Lacour JL, Hurtmans D, Clerbaux C (2011) Infrared satellite observations of hydrogen sulfide in the volcanic plume of the August 2008 Kasatochi eruption. Geophys Res Lett:38. https://doi.org/10.1029/2011GL047402

  46. Clarisse L, Hurtmans D, Clerbaux C, Hadji-Lazaro J, Ngadi Y, Coheur P-F (2012) Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI). Atmos Meas Tech 5:581–594. https://doi.org/10.5194/amt-5-581-2012

    Article  Google Scholar 

  47. Clerbaux C, Coheur PF, Clarisse L, Hadji-Lazaro J, Hurtmans D, Turquety S, Bowman K, Worden H, Carn SA (2008) Measurements of SO2 profiles in volcanic plumes from the NASA tropospheric emission spectrometer (TES). Geophys Res Lett 35. https://doi.org/10.1029/2008GL035566

  48. Cooke MC, Francis PN, Millington S, Saunders R, Witham C (2014) Detection of the Grímsvötn 2011 volcanic eruption plumes using infrared satellite measurements. Atmos Sci Lett 15:321–327. https://doi.org/10.1002/asl2.506

    Article  Google Scholar 

  49. Coombs ML, Wech AG, Haney MM, Lyons JJ, Schneider DJ, Schwaiger HF, Wallace KL, Fee D, Freymueller JT, Schaefer JR, Tepp G (2018) Short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front Earth Sci 6:122. https://doi.org/10.3389/feart.2018.00122

    Article  Google Scholar 

  50. Coombs M, Wallace K, Cameron C, Lyons J, Wech A, Angeli K, Cervelli C (2019) Overview, chronology, and impacts of the 2016–2017 eruption of Bogoslof volcano, Alaska. Bull Volcanol 81:62. https://doi.org/10.1007/s00445-019-1322-9

    Article  Google Scholar 

  51. Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2016) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling, and responding to effusive eruptions, vol 426. Geological society, London, Sp Pub, pp 181–205. https://doi.org/10.1144/SP426.5

    Chapter  Google Scholar 

  52. Daag AS, Tubianosa BS, Newhall CG, Tungol NM, Javier D, Dolan MT, Delos Reyes PJ, Arboleda RA, Martinez ML, Regalado TM (1996) Monitoring sulfur dioxide emission at Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 409–414

    Google Scholar 

  53. Dean KG, Dehn J (2015) Monitoring volcanoes in the North Pacific: observations from space. Springer, Berlin. https://doi.org/10.1007/978-3-540-68750-4

    Book  Google Scholar 

  54. Dean K, Dehn J, McNutt S, Neal C, Moore R, Schneider D (2002) Satellite imagery proves essential for monitoring erupting Aleutian volcano. Adv Environ Monit Model 83:241–247. https://doi.org/10.1029/2002EO000168

    Article  Google Scholar 

  55. Dean KG, Dehn J, Papp KR, Smith S, Izbekov P, Peterson R, Kearney C, Steffke A (2004) Integrated satellite observations of the 2001 eruption of Mt. Cleveland, Alaska. J Volcanol Geotherm Res 135:51–73. https://doi.org/10.1016/j.jvolgeores.2003.12.013

    Article  Google Scholar 

  56. Dehn J, Harris AJL (2015) Thermal anomalies at volcanoes: observations from space. In: Dean KG, Dehn J (eds) Monitoring volcanoes in the North Pacific. Springer, Berlin, pp 49–78. https://doi.org/10.1007/978-3-540-68750-4_3

    Chapter  Google Scholar 

  57. Dehn J, Dean K, Engle K (2000) Thermal monitoring of North Pacific volcanoes from space. Geology 28:755–758. https://doi.org/10.1130/0091-7613(2000)28<755:TMONPV>2.0.CO;2

    Article  Google Scholar 

  58. Dehn J, Dean KG, Engle K, Izbekov P (2002) Thermal precursors in satellite images of the 1999 eruption of Shishaldin volcano. Bull Volcanol 64:525–534. https://doi.org/10.1007/s00445-002-0227-0

    Article  Google Scholar 

  59. Delgado F, Pritchard ME, Ebmeier S, González P, Lara L (2017) Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (southern Andes). J Volcanol Geotherm Res 344:270–288. https://doi.org/10.1016/j.jvolgeores.2017.05.020

    Article  Google Scholar 

  60. Dietterich HR, Poland MP, Schmidt DA, Cashman KV, Sherrod DR, Espinosa AT (2012) Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2011GC004016

  61. Dubuisson P, Herbin H, Minvielle F, Compiegne M, Thieuleux F, Parol F, Pelon J (2014) Remote sensing of volcanic ash plumes from thermal infrared: a case study analysis from SEVIRI, MODIS and IASI instruments. Atmos Meas Tech 7(2):359–371. https://doi.org/10.5194/amt-7-359-2014

    Article  Google Scholar 

  62. Dumont S, Sigmundsson F, Parks MM, Drouin VJP, Pedersen GBM, Jónsdóttir I, Höskuldsson Á, Hooper A, Spaans K, Bagnardi M, Gudmundsson MT, Barsotti S, Jónsdóttir K, Högnadóttir T, Magnússon E, Hjartardóttir ÁR, Dürig T, Rossi C, Oddsson B (2018) Integration of SAR data into monitoring of the 2014–2015 Holuhraun eruption, Iceland: contribution of the Icelandic volcanoes supersite and the FutureVolc projects. Front Earth Sci 6:231. https://doi.org/10.3389/feart.2018.00231

    Article  Google Scholar 

  63. Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophs 41. https://doi.org/10.1029/2001RG000107

  64. Ebmeier SK, Biggs J, Mather TA, Amelung F (2013) On the lack of InSAR observations of magmatic deformation at Central American volcanoes. J Geophys Res 118:2571–2585. https://doi.org/10.1002/jgrb.50195

    Article  Google Scholar 

  65. Ebmeier SK, Elliott JR, Nocquet J-M, Biggs J, Mothes P, Jarrín P, Yépez M, Aguaiza S, Lundgren P, Samsonov SV (2016) Shallow earthquake inhibits unrest near Chiles–Cerro Negro volcanoes, Ecuador–Colombian border. Earth Planet Sci Lett 450:283–291. https://doi.org/10.1016/j.epsl.2016.06.0466

    Article  Google Scholar 

  66. Ebmeier SK, Andrews BJ, Araya MC, Arnold DWD, Biggs J, Cooper C, Cottrell E, Furtney M, Hickey J, Jay J, Lloyd R, Parker AL, Pritchard ME, Robertson E, Venzke E, Williamson JL (2018) Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. J Appl Volcanol 7:2. https://doi.org/10.1186/s13617-018-0071-3

    Article  Google Scholar 

  67. Edmonds M, Oppenheimer C, Pyle DM, Herd RA, Thompson G (2003) SO2 emissions from Soufrière Hills volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J Volcanol Geotherm Res 124:23–43. https://doi.org/10.1016/S0377-0273(03)00041-6

    Article  Google Scholar 

  68. Eisinger M, Burrows JP (1998) Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument. Geophys Res Lett 25:4177–4180. https://doi.org/10.1029/1998GL900128

    Article  Google Scholar 

  69. Ellrod GP (2004) Impact on volcanic ash detection caused by the loss of the 12.0 μm “split window” band on GOES imagers. J Volcanol Geotherm Res 135:91–103. https://doi.org/10.1016/j.jvolgeores.2003.12.009

    Article  Google Scholar 

  70. Ellrod GP, Schreiner AJ (2004) Volcanic ash detection and cloud top height estimates from the GOES-12 imager: Coping without a 12 Mm infrared band. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020395

  71. Ellrod G, Connell B, Hillger D (2003) Improved detection of airborne volcanic ash using multispectral infrared satellite data. J Geophys Res:108. https://doi.org/10.1029/2002JD002802

  72. Falconieri A, Cooke MC, Filizzola C, Marchese F, Pergola N, Tramutoli V (2018) Comparing two independent satellite-based algorithms for detecting and tracking ash clouds by using SEVIRI sensor. Sensors 18:369. https://doi.org/10.3390/s18020369

    Article  Google Scholar 

  73. Fioletov V, McLinden CA, Kharol SK, Krotkov NA, Li C, Joiner J, Moran MD, Vet R, Visschedijk AJH, Denier van der Gon HAC (2017) Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions. Atmos Chem Phys 17:12597–12616. https://doi.org/10.5194/acp-17-12597-2017

    Article  Google Scholar 

  74. Fischer TP, Roggensack K, Kyle PR (2002) Open and almost shut case for explosive eruptions: vent processes determined by SO2 emission rates at Karymsky volcano, Kamchatka. Geology 30:1059–1062. https://doi.org/10.1130/0091-7613(2002)030<1059:OAASCF>2.0.CO;2

    Article  Google Scholar 

  75. Fischer TP, Arellano S, Carn S, Aiuppa A, Galle B, Allard P, Lopez T, Shinohara H, Kelly P, Werner C, Cardellini C (2019) The emissions of CO2 and other volatiles from the world’s subaerial volcanoes. Sci Rep 9:18716. https://doi.org/10.1038/s41598-019-54682-1

    Article  Google Scholar 

  76. Francis P, Rothery D (2000) Remote sensing of active volcanoes. Annu Rev Earth Planet Sci 28:81–106. https://doi.org/10.1146/annurev.earth.28.1.81

    Article  Google Scholar 

  77. Francis PW, Wadge G, Mouginis-Mark PJ (1996) Satellite monitoring of volcanoes. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, Heidelberg, pp 257–298

    Chapter  Google Scholar 

  78. Francis PN, Cooke MC, Saunders RW (2012) Retrieval of physical properties of volcanic ash using Meteosat: a case study from the 2010 Eyjafjallajökull eruption. J Geophys Res 117. https://doi.org/10.1029/2011JD016788

  79. Furtney MA, Pritchard ME, Biggs J, Carn SA, Ebmeier SK, Jay JA, McCormick Kilbride BT, Reath KA (2018) Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. J Volcanol Geotherm Res 365:38–56. https://doi.org/10.1016/j.jvolgeores.2018.10.002

    Article  Google Scholar 

  80. Garthwaite MC, Miller VL, Saunders S, Parks MM, Hu G, Parker AL (2019) A simplified approach to operational InSAR monitoring of volcano deformation in low-and middle-income countries: case study of Rabaul Caldera, Papua New Guinea. Front Earth Sci 6:240. https://doi.org/10.3389/feart.2018.00240

    Article  Google Scholar 

  81. Gertisser R (2010) Eyjafjallajökull volcano causes widespread disruption to European air traffic. Geol Today 26:94–95. https://doi.org/10.1111/j.1365-2451.2010.00757.x

    Article  Google Scholar 

  82. Global Volcanism Program (2013a) In: Venzke E (ed) Volcanoes of the world, v.4.8.0. Smithsonian Institution, Washington D.C. https://doi.org/10.5479/si.GVP.VOTW4-2013

    Chapter  Google Scholar 

  83. Global Volcanism Program (2013b) In: Venzke E (ed) Nabro (221101) in Volcanoes of the world, v. 4.8.0. Smithsonian Institution. Downloaded 13 Jun 2019 (https://volcano.si.edu/volcano.cfm?vn=221101). https://doi.org/10.5479/si.GVP.VOTW4-2013. Accessed 17 Mar 2020

  84. Global Volcanism Program (2017a) Report on Soputan (Indonesia). In: Venzke E (ed) Bulletin of the global volcanism network, 42:3. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN201703-266030. Accessed 17 Mar 2020

  85. Global Volcanism Program (2017b) Report on Bogoslof (United States). In: Venzke E (ed) Bulletin of the global volcanism network, 42:12. Smithsonian Institution. https://doi.org/10.5479/si.GVP.BGVN201712-311300. Accessed 17 Mar 2020

  86. Goitom B, Oppenheimer C, Hammond JO, Grandin R, Barnie T, Donovan A, Ogubazghi G, Yohannes E, Kibrom G, Kendall JM, Carn SA (2015) First recorded eruption of Nabro volcano, Eritrea, 2011. Bull Volcanol 77:85. https://doi.org/10.1007/s00445-015-0966-3

    Article  Google Scholar 

  87. Goodman SJ, Blakeslee RJ, Koshak WJ, Mach D, Bailey J, Buechler D, Carey L, Schultz C, Bateman M, McCaul E, Stano G (2013) The GOES-R geostationary lightning mapper (GLM). Atmos Res 125:34–49. https://doi.org/10.1016/j.atmosres.2013.01.006

    Article  Google Scholar 

  88. Gouhier M, Guéhenneux Y, Labazuy P, Cacault P, Decriem J, Rivet S (2016) HOTVOLC: a web-based monitoring system for volcanic hot spots. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions, vol 426. Geological Society, London, Special Publication, pp 223–241. https://doi.org/10.1144/SP426.31

    Chapter  Google Scholar 

  89. Grainger RG, Peter DM, Thomas GE, Smith AJA, Dissans R, Carbone E, Dudhia A (2013) Measuring volcanic plume and ash properties from space. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and Modelling. Geol Soc Lond, Spec Publ 380:293–320. doi: https://doi.org/10.1144/SP380.7

  90. Grapenthin R, Freymueller JT, Kaufman AM (2013) Geodetic observations during the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:115–132. https://doi.org/10.1016/j.jvolgeores.2012.04.021

    Article  Google Scholar 

  91. Gu Y, Rose W, Schneider D, Bluth G, Watson I (2005) Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001. Geophys Res Lett 32. https://doi.org/10.1029/2004GL021651

  92. Gudmundsson M, Thordarson T, Hoskuldsson A, Larsen G, Bjornsson H, Prata F, Oddsson B, Magnusson E, Hognadottir T, Petersen G, Hayward C, Stevenson J, Jonsdottir I (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Sci Rep 2:572. https://doi.org/10.1038/srep00572

    Article  Google Scholar 

  93. Guehenneux Y, Gouhier M, Labazuy P (2015) Improved space borne detection of volcanic ash for real-time monitoring using 3-band method. J Volcanol Geotherm Res 293:25–45. https://doi.org/10.1016/j.jvolgeores.2015.01.005

    Article  Google Scholar 

  94. Guffanti M, Tupper A (2015) Volcanic ash hazards and aviation risk. In: Shroder JF, Papale P (eds) Volcanic Hazards, Risks and Disasters. Elsevier, Amsterdam, pp 87–108. https://doi.org/10.1016/B978-0-12-396453-3.00004-6

    Chapter  Google Scholar 

  95. Guffanti M, Casadevall TJ, Budding K (2010a) Encounters of aircraft with volcanic ash cloud; a compilation of known incidents, 1953–2009. U.S. Geological Survey Data Series 545. https://doi.org/10.3133/ds545

  96. Guffanti M, Schneider DJ, Wallace KL, Hall T, Bensimon DR, Salinas LJ (2010b) Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA. J Geophys Res 115. https://doi.org/10.1029/2010JD013868

  97. Guo S, Bluth GJS, Rose WI, Watson IM, Prata AJ (2004) Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem Geophys Geosyst:5. https://doi.org/10.1029/2003GC000654

  98. Hanssen R (2001) Radar interferometry: data interpretation and error analysis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  99. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139029346

    Book  Google Scholar 

  100. Harris AJL, Baloga SM (2009) Lava discharge rates from satellite-measured heat flux. Geophys Res Lett:36. https://doi.org/10.1029/2009GL039717

  101. Harris AJ, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geotherm Res 76:175–198. https://doi.org/10.1016/S0377-0273(96)00097-2

    Article  Google Scholar 

  102. Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar, and Erebus. Bull Volcanol 59:49–64. https://doi.org/10.1007/s004450050174

    Article  Google Scholar 

  103. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. https://doi.org/10.1007/s00445-007-0120-y

    Article  Google Scholar 

  104. Hayer CS, Wadge G, Edmonds M, Christopher T (2016) Sensitivity of OMI SO2 measurements to variable eruptive behaviour at Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 312:1–10. https://doi.org/10.1016/j.jvolgeores.2016.01.014

    Article  Google Scholar 

  105. Henney LA, Rodríguez LA, Watson IM (2009) A comparison of SO2 retrieval techniques using mini-UV spectrometers and ASTER imagery at Lascar volcano, Chile. Bull Volcanol 74:589–594. https://doi.org/10.1007/s00445-011-0552-2

    Article  Google Scholar 

  106. Heue KP, Brenninkmeijer CA, Wagner T, Mies K, Dix B, Frieß U, Martinsson BG, Slemr F, van Velthoven PF (2010) Observations of the 2008 Kasatochi volcanic SO2 plume by CARIBIC aircraft DOAS and the GOME-2 satellite. Atmos Chem Phys 10:4699–4713. https://doi.org/10.5194/acp-10-4699-2010

    Article  Google Scholar 

  107. Hillger DW, Clark JD (2002a) Principal component image analysis of MODIS for volcanic ash. Part I: Most important bands and implications for future GOES imagers. J Appl Meteorol 41(10):985–1001

    Article  Google Scholar 

  108. Hillger DW, Clark JD (2002b) Principal component image analysis of MODIS for volcanic ash. Part II: Simulation of current GOES and GOES-M imagers. J Appl Meteorol 41:1003–1010. https://doi.org/10.1175/1520-0450(2002)041<1003:PCIAOM>2.0.CO;2

    Article  Google Scholar 

  109. Hjaltadóttir S, Vogfjörd KS, Hreinsdóttir S, Slunga R (2015) Reawakening of a volcano: activity beneath Eyjafjallajökull volcano from 1991 to 2009. J Volcanol Geotherm Res 304:194–205. https://doi.org/10.1016/j.jvolgeores.2015.08.001

    Article  Google Scholar 

  110. Hooper A, Prata F, Sigmundsson F (2012) Remote sensing of volcanic hazards and their precursors. Proc IEEE 100:2,908–2,930. https://doi.org/10.1109/JPROC.2012.2199269

    Article  Google Scholar 

  111. Jay JA, Delgado FJ, Torres JL, Pritchard ME, Macedo O, Aguilar V (2015) Deformation and seismicity near Sabancaya volcano, southern Peru, from 2002-2015. Geophys Res Lett 120:2780–2788. https://doi.org/10.1002/2015GL063589

    Article  Google Scholar 

  112. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2001) Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO reference series no. 01-06. Scripps Institution of Oceanography, San Diego Retrieved from https://escholarship.org/uc/item/09v319r9. Accessed 17 Mar 2020

  113. Kervyn M, Harris AJL, Belton F, Mbede E, Jacobs P, Ernst GGJ (2006) MODLEN: a semi-automated algorithm for monitoring small-scale thermal activity at Oldoinyo Lengai volcano, Tanzania. Int Assoc for Mathematical Geology, XIth International Congress. Université de Liège, Belgium

    Google Scholar 

  114. Khokhar MF, Frankenberg C, Van Roozendael M, Beirle S, Kühl S, Richter A, Platt U, Wagner T (2005) Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002. Adv Space Res 36:879–887. https://doi.org/10.1016/j.asr.2005.04.114

    Article  Google Scholar 

  115. Kobayashi T (2018) Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis. J Volcanol Geotherm Res 357:213–223. https://doi.org/10.1016/j.jvolgeores.2018.04.023

    Article  Google Scholar 

  116. Kobayashi T, Morishita Y, Munekane H (2018) First detection of precursory ground inflation of a small phreatic eruption by InSAR. Earth Planet Sci Lett 491:244–254. https://doi.org/10.1016/j.epsl.2018.03.041

    Article  Google Scholar 

  117. Krueger AJ (1983) Sighting of El Chichón sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science 220:1377–1379. https://doi.org/10.1126/science.220.4604.1377

    Article  Google Scholar 

  118. Krueger AJ, Walter LS, Bhartia PK, Schnetzler CC, Krotkov NA, Sprod IT, Bluth GJ (1995) Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments. J Geophys Res 100:14057–14076. https://doi.org/10.1029/95JD01222

    Article  Google Scholar 

  119. Kubanek J, Westerhaus M, Heck B (2017) TanDEM-X time series analysis reveals lava flow volume and effusion rates of the 2012-2013 Tolbachik, Kamchatka fissure eruption. J Geophys Res 122:7754–7774. https://doi.org/10.1002/2017JB014309

    Article  Google Scholar 

  120. Lalli K (2018) The Arkyd-6 mid-wave infrared instrument: ground testing, commissioning, and operations (conference presentation). In: CubeSats and NanoSats for Remote Sensing II, vol 10769. International Society for Optics and Photonics, Proc. SPIE 10769, p 107690F. https://doi.org/10.1117/12.2318992

  121. Larson KM (2013) A new way to detect volcanic plumes. Geophys Res Lett 40(11):2657–2660. https://doi.org/10.1002/grl.50556

    Article  Google Scholar 

  122. Lechner P, Tupper A, Guffanti M, Loughlin S, Casadevall T (2018) Volcanic ash and aviation—the challenges of real-time, global communication of a natural hazard. In: Fearnley CJ, Bird DK, Haynes K, McGuire WJ, Jolly G (eds) Observing the volcano world: volcano crisis communication. Springer International Publishing, Cham, pp 51–64. https://doi.org/10.1007/11157_2016_49

    Chapter  Google Scholar 

  123. Lee KH, Lee KT, Chung SR (2016) Time-resolved observation of volcanic ash using COMS/MI: a case study from the 2011 Shinmoedake eruption. Remote Sens Environ 173:122–132. https://doi.org/10.1016/j.rse.2015.11.014

    Article  Google Scholar 

  124. Lopez T, Carn S, Werner C, Fee D, Kelly P, Doukas M, Pfeffer M, Webley P, Cahill C, Schneider D (2013) Evaluation of Redoubt volcano’s sulfur dioxide emissions by the ozone monitoring instrument. J Volcanol Geotherm Res 259:290–307. https://doi.org/10.1016/j.jvolgeores.2012.03.002

  125. Lopez T, Clarisse L, Schwaiger H, Van Eaton A, Loewen M, Fee D, Lyons J, Wallace K, Searcy C, Wech A, Haney M, Schneider D, Graham N (2020) Constraints on eruption processes and event masses for the 2016-2017 eruption of Bogoslof volcano, Alaska, through evaluation of IASI satellite SO2 masses and complementary datasets. Bull Volcanol 82:17. https://doi.org/10.1007/s00445-019-1348-z

    Article  Google Scholar 

  126. Lu Z, Dzurisin D (2014) InSAR imaging of Aleutian volcanoes: monitoring a volcanic arc from space. Springer-Verlag, Berlin

    Book  Google Scholar 

  127. Marchese F, Ciampa M, Filizzola C, Lacava T, Mazzeo G, Pergola N, Tramutoli V (2010) On the exportability of robust satellite techniques (RST) for active volcano monitoring. Remote Sens 2(6):1575–1588. https://doi.org/10.3390/rs2061575

    Article  Google Scholar 

  128. Marchese F, Falconieri A, Pergola N, Tramutoli V (2014) A retrospective analysis of the Shinmoedake (Japan) eruption of 26-27 January 2011 by means of Japanese geostationary satellite data. J Volcanol Geotherm Res 269:1–13. https://doi.org/10.1016/j.jvolgeores.2013.10.011

    Article  Google Scholar 

  129. Marchese F, Falconieri A, Pergola N, Tramutoli V (2018) Monitoring the Agung (Indonesia) ash plume of November 2017 by means of infrared Himawari 8 data. Remote Sens 10:919. https://doi.org/10.3390/rs10060919

    Article  Google Scholar 

  130. Marzano FS, Corradini S, Mereu L, Kylling A, Montopoli M, Cimini D, Merucci L, Stelitano D (2018) Multisatellite multisensor observations of a sub-Plinian volcanic eruption: the 2015 Calbuco explosive event in Chile. IEEE Trans Geosci Remote Sens 56:2597–2612. https://doi.org/10.1109/TGRS.2017.2769003

    Article  Google Scholar 

  131. Mattioli GS, Herd RA, Strutt MH, Ryan G, Widiwijayanti C, Voight B (2010) Long term surface deformation of Soufrière Hills volcano, Montserrat from GPS geodesy: inferences from simple elastic inverse models. Geophys Res Lett 37(L00E13). https://doi.org/10.1029/2009GL042268

  132. McAlpin D, Meyer FJ (2013) Multi-sensor data fusion for remote sensing of post-eruptive deformation and depositional features at redoubt volcano. J Volcanol Geotherm Res 259:414–423. https://doi.org/10.1016/j.jvolgeores.2012.08.006

    Article  Google Scholar 

  133. McCormick BT, Edmonds M, Mather TA, Carn SA (2012) First synoptic analysis of volcanic degassing in Papua New Guinea. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2011GC003945

  134. McCormick BT, Edmonds M, Mather TA, Campion R, Hayer CS, Thomas HE, Carn SA (2013) Volcano monitoring applications of the ozone monitoring instrument. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and Modelling. Geol Soc Lond, Spec Publ 380:259–291. https://doi.org/10.1144/SP380.11

  135. Menzel WP, Purdom JFW (1994) Introducing GOES-I: the first of a new generation of geostationary operational environmental satellites. Bull Am Meteorol Soc 75:757–781. https://doi.org/10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2

    Article  Google Scholar 

  136. Meyer FJ, McAlpin DB, Gong W, Ajadi O, Arko S, Webley PW, Dehn J (2015) Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS J Photogramm Remote Sens 100:106–117. https://doi.org/10.1016/j.isprsjprs.2014.05.009

    Article  Google Scholar 

  137. Mouginis-Mark PJ, Crisp JA, Fink JH (2000) Remote sensing of active volcanism. American Geophysical Union, Washington, D.C., Geophysical Monograph, p 116

    Book  Google Scholar 

  138. Murphy SW, de Souza Filho CR, Wright R, Sabatino G, Pabon RC (2016) HOTMAP: global hot target detection at moderate spatial resolution. Remote Sens Environ 177:78–88. https://doi.org/10.1016/j.rse.2016.02.027

    Article  Google Scholar 

  139. Murphy S, Wright R, Rouwet D (2018) Color and temperature of the crater lakes at Kelimutu volcano through time. Bull Volcanol 80:2. https://doi.org/10.1007/s00445-017-1172-2

    Article  Google Scholar 

  140. Naeger AR, Christopher SA (2014) The identification and tracking of volcanic ash using the Meteosat second generation (MSG) spinning enhanced visible and infrared imager (SEVIRI). Atmos Meas Technol 7:581–597. https://doi.org/10.5194/amtd-6-5577-2013

    Article  Google Scholar 

  141. Neal CA, McGimsey RG, Dixon JP, Manevich A, Rybin A (2009) 2006 volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory. U.S. Geological Survey Scientific Investigations Report 2008–5214, 102 p.

  142. Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238. https://doi.org/10.1029/JC087iC02p01231

    Article  Google Scholar 

  143. Norton GE, Watts RB, Voight B, Mattioli G, Herd RA, Young SR, Aspinall WP, Bonadonna C, Baptie B, Edmonds M, Harford CL, Jolly AD, Loughlin SC, Luckett R, RSJ S (2002) Pyroclastic flow and explosive activity of the lava dome of Soufrière Hills volcano, Montserrat, during a period of virtually no magma extrusion (March 1998 to November 1999). In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999, Geol Soc Lon Mem 21:467–481. https://doi.org/10.1144/GSL.MEM.2002.021.01.21

  144. Novak MM, Watson IM, Delgado-Granados H, Rose WI, Cárdenas-González L, Realmuto VJ (2008) Volcanic emissions from Popocatépetl volcano, Mexico, quantified using moderate resolution imaging spectroradiometer (MODIS) infrared data: a case study of the December 2000–January 2001 emissions. J Volcanol Geotherm Res 170:76–85. https://doi.org/10.1016/j.jvolgeores.2007.09.010

    Article  Google Scholar 

  145. Odbert HM, Ryan GA, Mattioli GS, Hautmann S, Gottsmann J, Fournier N, Herd RA (2014) Volcano geodesy at the Soufrière Hills volcano, Montserrat: a review. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills volcano, Montserrat from 2000 to 2010, Geol Soc Lon Mem 39:195–217. https://doi.org/10.1144/M39.11

  146. Oppenheimer C, Francis PW, Rothery DA, Carlton RW, Glaze LS (1993) Infrared image analysis of volcanic thermal features: Lascar volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286. https://doi.org/10.1029/92JB02134

    Article  Google Scholar 

  147. Oxford Economics (2010) The economic impacts of air travel restrictions due to volcanic ash, report for Airbus. http://www.bevoelkerungsschutz.admin.ch/internet/bs/de/home/themen/ski/aktuell.parsys.9107.DownloadFile.tmp/economicimpactsofvolcanoinisland2010.pdf. Accessed 17 Mar 2020

  148. Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CG, Ratdomopurbo A (2013) Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144–152. https://doi.org/10.1016/j.jvolgeores.2012.07.012

    Article  Google Scholar 

  149. Patrick MR, Witzke C-N (2011) Thermal mapping of Hawaiian volcanoes with ASTER satellite data. U.S. Geological Survey Scientific Investigations Report 2011–5110. http://pubs.usgs.gov/sir/2011/5110/

  150. Patrick MR, Smellie JL, Harris AJL, Wright R, Dean K, Izbekov P, Garbeil H, Pilger E (2005) First recorded eruption of Mount Belinda volcano (Montagu Island), South Sandwich Islands. Bull Volcanol 67:415–422. https://doi.org/10.1007/s00445-004-0382-6

    Article  Google Scholar 

  151. Patrick MR, Kauahikaua J, Orr T, Davies A, Ramsey M (2016) Operational thermal remote sensing and lava flow monitoring at the Hawaiian volcano observatory. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions, Geol Soc Lond, Spec Publ 426:489–503. https://doi.org/10.1144/SP426.17

  152. Pavolonis MJ (2010) Advances in extracting cloud composition information from spaceborne infrared radiances—a robust alternative to brightness temperatures. Part I. Theory. J Appl Meteorol Clim 49:1992–2012. https://doi.org/10.1175/2010JAMC2433.1

    Article  Google Scholar 

  153. Pavolonis MJ, Feltz WF, Heidinger AK, Gallina GM (2006) A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J Atmos Ocean Technol 23:1422–1444

    Article  Google Scholar 

  154. Pavolonis M, Heidinger A, Sieglaff J (2013) Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J Geophys Res 118:1436–1458. https://doi.org/10.1002/jgrd.50173

    Article  Google Scholar 

  155. Pavolonis MJ, Sieglaff J, Cintineo J (2015a) Spectrally enhanced cloud objects: a generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 1. Multispectral analysis. J Geophys Res 120:7813–7841. https://doi.org/10.1002/2014JD022968

    Article  Google Scholar 

  156. Pavolonis MJ, Sieglaff J, Cintineo J (2015b) Spectrally enhanced cloud objects: a generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements: 2. Cloud object analysis and global application. J Geophys Res 120:7842–7870. https://doi.org/10.1002/2014JD022969

    Article  Google Scholar 

  157. Pavolonis MJ, Sieglaff J, Cintineo J (2018) Automated detection of explosive volcanic eruptions using satellite-derived cloud vertical growth rates. Earth Space Sci 5:903–928. https://doi.org/10.1029/2018EA000410

    Article  Google Scholar 

  158. Pavolonis MJ, Sieglaff JM, Cintineo JL (2019) Remote sensing of volcanic ash with the GOES-R series. In: Goodman S, Schmit T, Daniels J, Redmon R (eds) The GOES-R series: a new generation of geostationary environmental satellites (1st edition). Elsevier, Amsterdam https://www.elsevier.com/books/the-goes-r-series/goodman/978-0-12-814327-8

    Google Scholar 

  159. Pinel V, Poland MP, Hooper A (2014) Volcanology: lessons learned from synthetic aperture radar imagery. J Volcanol Geotherm Res 289:81–113. https://doi.org/10.1016/j.jvolgeores.2014.10.010

    Article  Google Scholar 

  160. Poland MP (2014) Time-averaged discharge rate of subaerial lava at Kīlauea volcano, Hawai‘i, measured from TanDEM-X interferometry: implications for magma supply and storage during 2011–2013. J Geophys Res 119:5464–5481. https://doi.org/10.1002/2014JB011132

    Article  Google Scholar 

  161. Poland MP, Anderson KR (2020) Partly cloudy with a chance of lava flows: forecasting volcanic eruptions in the twenty-first century. J Geophys Res 125(1):e2018JB016974. https://doi.org/10.1029/2018JB016974

    Article  Google Scholar 

  162. Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. In: Poland MP, Landowski CM, Takahashi TJ (eds) Characteristics of Hawaiian volcanoes, U.S. Geol Surv Prof Pap 1801:179–234. https://doi.org/10.3133/pp18015

  163. Poret M, Corradini S, Merucci L, Costa A, Andronico D, Montopoli M, Vulpiani G, Freret-Lorgeril V (2018) Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption. Atmos Chem Phys 18:4695–4714. https://doi.org/10.5194/acp-18-4695-2018

    Article  Google Scholar 

  164. Power JA, Stihler SD, Chouet BA, Haney MM, Ketner DM (2013) Seismic observations of redoubt volcano, Alaska — 1989–2010 and a conceptual model of the redoubt magmatic system. J Volcanol Geotherm Res 259:31–44. https://doi.org/10.1016/j.jvolgeores.2012.09.014

    Article  Google Scholar 

  165. Prata A (1989a) Infrared radiative-transfer calculations for volcanic ash clouds. Geophys Res Lett 16:1293–1296. https://doi.org/10.1029/GL016i011p01293

    Article  Google Scholar 

  166. Prata A (1989b) Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data. Int J Remote Sens 10:751–761. https://doi.org/10.1080/01431168908903916

    Article  Google Scholar 

  167. Prata A (2009) Satellite detection of hazardous volcanic clouds and the risk to global air traffic. Nat Hazards 51:303–324. https://doi.org/10.1007/s11069-008-9273-z

    Article  Google Scholar 

  168. Prata AJ, Bernardo C (2007) Retrieval of volcanic SO2 column abundance from atmospheric infrared sounder data. J Geophys Res 112. https://doi.org/10.1029/2006JD007955

  169. Prata AJ, Kerkmann J (2007) Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys Res Lett 34. https://doi.org/10.1029/2006GL028691

  170. Prata AJ, Prata AT (2012) Eyjafjallajökull volcanic ash concentrations determined using spin enhanced visible and infrared imager measurements. J Geophys Res:117. https://doi.org/10.1029/2011JD016800

  171. Prata AJ, O Brien DM, Rose WI, Self S (2003) Global, long-term sulphur dioxide measurements from TOVS data: a new tool for studying explosive volcanism and climate. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s atmosphere, American Geophysical Union Monograph, vol 139, pp 75–92. https://doi.org/10.1029/139GM05

    Chapter  Google Scholar 

  172. Prata F, Woodhouse M, Huppert HE, Prata A, Thordarson T, Carn S (2017) Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption. Atmos Chem Phys 17:10,709–10,732. https://doi.org/10.5194/acp-17-10709-2017

    Article  Google Scholar 

  173. Prata AJ, Kristiansen N, Thomas HE, Stohl A (2018) Ash metrics for European and trans-Atlantic air routes during the Eyjafjallajökull eruption 14 April to 23 May 2010. J Geophys Res 123:5469–5483. https://doi.org/10.1002/2017JD028199

    Article  Google Scholar 

  174. Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418:167–171. https://doi.org/10.1038/nature00872

    Article  Google Scholar 

  175. Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosyst:5. https://doi.org/10.1029/2003GC000610

  176. Pritchard ME, Biggs J, Wauthier C, Sansosti E, Arnold DWD, Delgado F, Ebmeier SK, Henderson ST, Stephens K, Cooper C, Wnuk K, Amelung F, Aguilar V, Mothes P, Macedo O, Lara LE, Poland MP, Zoffoli S (2018) Towards coordinated regional multi-satellite InSAR volcano observations: results from the Latin America pilot project. J Appl Volcanol 7:5. https://doi.org/10.1186/s13617-018-0074-0

    Article  Google Scholar 

  177. Queißer M, Burton M, Theys N, Pardini F, Salerno G, Caltabiano T, Varnam M, Esse B, Kazahaya R (2019) TROPOMI enables high resolution SO2 flux observations from Mt. Etna, Italy, and beyond. Sci Rep 9:957. https://doi.org/10.1038/s41598-018-37807-w

    Article  Google Scholar 

  178. Ramsey MS, Harris AJL (2013) Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over the next decade? J Volcanol Geotherm Res 249:217–223. https://doi.org/10.1016/j.jvolgeores.2012.05.011

    Article  Google Scholar 

  179. Read WG, Froidevaux L, Waters JW (1993) Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo volcano. Geophys Res Lett 20:1299–1302. https://doi.org/10.1029/93GL00831

    Article  Google Scholar 

  180. Realmuto VJ, Dennison PE, Foote M, Ramsey MS, Wooster MJ, Wright R (2015) Specifying the saturation temperature for the HyspIRI 4-μm channel. Remote Sens Environ 167:40–52. https://doi.org/10.1016/j.rse.2015.04.028

    Article  Google Scholar 

  181. Reath KA, Ramsey MS, Dehn J, Webley PW (2016) Predicting eruptions from precursory activity using remote sensing data hybridization. J Volcanol Geotherm Res 321:18–30. https://doi.org/10.1016/j.jvolgeores.2016.04.027

    Article  Google Scholar 

  182. Reath K, Pritchard M, Poland M, Delgado F, Carn S, Coppola D, Andrews B, Ebmeier SK, Rumpf E, Henderson S, Baker S, Lundgren P, Wright R, Biggs J, Lopez T, Wauthier C, Moruzzi S, Alcott A, Wessels R, Griswold J, Ogburn S, Loughlin S, Meyer F, Vaughan G, Bagnardi M (2019a) Thermal, deformation, and degassing remote sensing time-series (A.D. 2000-2017) at the 47 most active volcanoes in Latin America: implications for volcanic systems. J Geophys Res 124:195–218. https://doi.org/10.1029/2018JB016199

    Article  Google Scholar 

  183. Reath K, Pritchard ME, Moruzzi S, Alcott A, Coppola D, Pieri D (2019b) The AVTOD (ASTER volcanic thermal output database) Latin America archive. J Volcanol Geotherm Res 376:62–74. https://doi.org/10.1016/j.jvolgeores.2019.03.019

    Article  Google Scholar 

  184. Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat (2019) Deep learning and process understanding for data-driven earth system science. Nature 566:195–204. https://doi.org/10.1038/s41586-019-0912-1

    Article  Google Scholar 

  185. Richter N, Poland MP, Lundgren PR (2013) TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea volcano, Hawai‘i. Geophys Res Lett 40:1279–1283. https://doi.org/10.1002/grl.50286

    Article  Google Scholar 

  186. Richter N, Favalli M, de Zeeuw-van Dalfsen E, Fornaciai A, Fernandes RM, Pérez NM, Levy J, Victória SS, Walter TR (2016) Lava flow hazard at Fogo volcano, Cabo Verde, before and after the 2014-2015 eruption. Nat Hazards Earth Syst Sci 16:1925–1951. https://doi.org/10.5194/nhess-16-1925-2016

    Article  Google Scholar 

  187. Richter N, Salzer JT, de Zeeuw-van Dalfsen E, Perissin D, Walter TR (2018) Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry. Bull Volcanol 80:21. https://doi.org/10.1007/s00445-018-1195-3

    Article  Google Scholar 

  188. Rothery D, Coltelli M, Pirie D, Wooster M, Wright R (2001) Documenting surface magmatic activity at Mount Etna using ATSR remote sensing. Bull Volcanol 63:387–397. https://doi.org/10.1007/s004450100153

    Article  Google Scholar 

  189. Ruch J, Wang T, Xu W, Hensch M, Jónsson S (2016) Oblique rift opening revealed by reoccurring magma injection in Central Iceland. Nat Commun 7:12352. https://doi.org/10.1038/ncomms12352

    Article  Google Scholar 

  190. Rudlosky SD, Goodman SJ, Virts KS, Bruning EC (2019) Initial geostationary lightning mapper observations. Geophys Res Lett 46:1097–1104. https://doi.org/10.1029/2018GL081052

    Article  Google Scholar 

  191. Salzer JT, Nikkhoo M, Walter TR, Sudhaus H, Reyes-Dávila G, Bretón M, Arambula R (2014) Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico. Front Earth Sci 2:12. https://doi.org/10.3389/feart.2014.00012

    Article  Google Scholar 

  192. Schaefer L, Lu Z, Oommen T (2016) Post-eruption deformation processes measured using ALOS-1 and UAVSAR InSAR at Pacaya volcano, Guatemala. Remote Sens 8:73. https://doi.org/10.3390/rs8010073

    Article  Google Scholar 

  193. Schmetz J, Pili P, Tjemkes S, Just D, Kerkmann J, Rota S, Ratier A (2002) An introduction to Meteosat second generation (MSG). Bull Am Meteorol Soc 83:977–992. https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2

    Article  Google Scholar 

  194. Schmit TJ, Griffith P, Gunshor MM, Daniels JM, Goodman SJ, Lebair WJ (2017) A closer look at the ABI on the GOES-R series. Bull Am Meteorol Soc 98:681–698. https://doi.org/10.1175/BAMS-D-15-00230.1

    Article  Google Scholar 

  195. Schneider DJ, Dean KG, Dehn J, Miller TP, Kirianov VY (2000) Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: case study for Kamchatka, Russia, December 1997. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote sensing of active volcanism, Am Geophys Un Mono 116:65–85. https://doi.org/10.1029/GM116p0065

  196. Schwandner FM, Gunson MR, Miller CE, Carn SA, Eldering A, Krings T, Verhulst KR, Schimel DS, Nguyen HM, Crisp D, O'Dell CW, Osterman GB, Iraci LT, Podolske JR (2017) Spaceborne detection of localized carbon dioxide sources. Science:358. https://doi.org/10.1126/science.aam5782

  197. Seftor C, Hsu N, Herman J, Bhartia P, Torres O, Rose W, Schneider D, Krotkov N (1997) Detection of volcanic ash clouds from Nimbus 7/total ozone mapping spectrometer. J Geophys Res 102:16749–16759. https://doi.org/10.1029/97JD00925

    Article  Google Scholar 

  198. Segall P (2016) Repressurization following eruption from a magma chamber with a viscoelastic aureole. J Geophys Res 121:8501–8522. https://doi.org/10.1002/2016JB013597

    Article  Google Scholar 

  199. Self S, Rampino MR (2012) The 1963–1964 eruption of Agung volcano (Bali, Indonesia). Bull Volcanol 74:1521–1536. https://doi.org/10.1007/s00445-012-0615-z

    Article  Google Scholar 

  200. Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys 46. https://doi.org/10.1029/2007RG000244

  201. Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science 335:1310–1311. https://doi.org/10.1126/science.1219485

    Article  Google Scholar 

  202. Stevens NF, Wadge G, Williams CA, Morley JG, Muller J-P, Murray JB, Upton M (2001) Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. J Geophys Res 106:11,293–11,313. https://doi.org/10.1029/2000JB900425

    Article  Google Scholar 

  203. Stix J, Zapata GJA, Calvache VM, Cortés JGP, Fischer TP, Gómez MD, Narvaez ML, Ordoñez VM, Ortega EA, Torres CR, Williams SN (1993) A model of degassing at Galeras volcano, Colombia, 1988-1993. Geology 21:963–967. https://doi.org/10.1130/0091-7613(1993)021<0963:AMODAG>2.3.CO;2

    Article  Google Scholar 

  204. Stuhlmann R, Rodriguez A, Tjemkes S, Grandell J, Arriaga A, Bézy JL, Aminou D, Bensi P (2005) Plans for EUMETSAT’s third generation Meteosat geostationary satellite programme. Adv Space Res 36:975–981. https://doi.org/10.1016/j.asr.2005.03.091

    Article  Google Scholar 

  205. Surono JP, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135. https://doi.org/10.1016/j.jvolgeores.2012.06.018

    Article  Google Scholar 

  206. Sutton AJ, Elias T, Kauahikaua J (2003) Lava-effusion rates for the Pu‘u ‘Ō‘ō-Kupaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘Ō‘ō-Kupaianaha eruption of Kilauea volcano, Hawaii: the first 20 years, U S Geol Surv Prof Pap 1676:137–148.

  207. Syahbana DK, Kasbani K, Suantika G, Prambada O, Andreas AS, Saing UB, Kunrat SL, Andreastuti S, Martanto M, Kriswati E, Suparman Y, Humaida H, Ogburn S, Kelly PJ, Wellik J, Wright HMN, Pesicek JD, Wessels R, Kern C, Lisowski M, Diefenbach A, Poland M, Beauducel F, Pallister J, Vaughan RG, Lowenstern JB (2019) The 2017–19 activity at mount Agung in Bali (Indonesia): intense unrest, monitoring, crisis response, evacuation, and eruption. Sci Rep 9:8848. https://doi.org/10.1038/s41598-019-45295-9

    Article  Google Scholar 

  208. Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341. https://doi.org/10.1016/S0377-0273(00)00292-4

    Article  Google Scholar 

  209. Terunuma T, Nishida K, Amada T, Mizuyama T, Sato I, Urai M (2005) Detection of traces of pyroclastic flows and lahars with satellite synthetic aperture radars. Int J Remote Sens 26:1927–1942. https://doi.org/10.1080/01431160512331326576

    Article  Google Scholar 

  210. Theys N, Van Roozendael M, Dils B, Hendrick F, Hao N, De Maziere M (2009) First satellite detection of volcanic bromine monoxide emission after the Kasatochi eruption. Geophys Res Lett 36. https://doi.org/10.1029/2008GL036552

  211. Theys N, Campion R, Clarisse L, Brenot H, Van Gent J, Dils B, Corradini S, Merucci L, Coheur PF, Van Roozendael M, Hurtmans D (2013) Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos Chem Phys 13:5945–5968. https://doi.org/10.5194/acp-13-5945-2013

    Article  Google Scholar 

  212. Theys N, Smedt ID, Yu H, Danckaert T, Gent JV, Hörmann C, Wagner T, Hedelt P, Bauer H, Romahn F, Pedergnana M (2017) Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 precursor: algorithm theoretical basis. Atmos Meas Tech 10:119–153. https://doi.org/10.5194/amt-10-119-2017

    Article  Google Scholar 

  213. Theys N, Hedelt P, De Smedt I, Lerot C, Yu H, Vlietinck J, Pedergnana M, Arellano S, Galle B, Fernandez D, Carlito CJM, Barrington C, Taisne B, Delgado-Granados H, Loyola D, Van Roozendael M (2019) Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 precursor. Sci Rep 9:2643. https://doi.org/10.1038/s41598-019-39279-y

    Article  Google Scholar 

  214. Thomas H, Prata A (2011) Sulphur dioxide as a volcanic ash proxy during the April-May 2010 eruption of Eyjafjallajökull volcano, Iceland. Atmos Chem Phys 11:6871–6880. https://doi.org/10.5194/acp-11-6871-2011

    Article  Google Scholar 

  215. Thomas HE, Watson IM (2010) Observations of volcanic emissions from space: current and future perspectives. Nat Hazards 54:323–354. https://doi.org/10.1007/s11069-009-9471-3

    Article  Google Scholar 

  216. Tupper A, Itikarai I, Richards M, Prata F, Carn S, Rosenfeld D (2007) Facing the challenges of the international airways volcano watch: the 2004/05 eruptions of Manam, Papua New Guinea. Weather Forecast 22:175–191. https://doi.org/10.1175/WAF974.1

    Article  Google Scholar 

  217. Van Eaton AR, Amigo A, Bertin D, Mastin LG, Giacosa RE, Gonzalez J, Valderrama O, Fontijn K, Behnke SA (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43:3563–3571. https://doi.org/10.1002/2016GL068076

    Article  Google Scholar 

  218. Van Eaton AR, Schneider DJ, Smith CM, Haney MM, Lyons JJ, Said R, Fee D, Holzworth RH, Mastin LG (2020) Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska? Bull Volcanol 82:24. https://doi.org/10.1007/s00445-019-1350-5

    Article  Google Scholar 

  219. Vaughan RG, Hook SJ (2006) Using satellite data to characterize the temporal thermal behavior of an active volcano: Mount St. Helens, WA. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027957

  220. Vaughan RG, Keszthelyi LP, Lowenstern JB, Jaworowski C, Heasler H (2012) Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park. J Volcanol Geotherm Res 233–234:72–89. https://doi.org/10.1016/j.jvolgeores.2012.04.022

    Article  Google Scholar 

  221. Vaughan RG, Heasler H, Jaworowski C, Lowenstern JB, Keszthelyi LP (2014) Provisional maps of thermal areas in Yellowstone National Park based on satellite thermal infrared imaging and field observations. U.S. Geol Surv Sci Invest Rep 2014–5137. https://doi.org/10.3133/sir20145137

  222. Wadge G, Mattioli GS, Herd RA (2006) Ground deformation at Soufrière Hills volcano, Montserrat during 1998-2000 measured by radar interferometry and GPS. J Volcanol Geotherm Res 152:157–173. https://doi.org/10.1016/j.jvolgeores.2005.11.007

    Article  Google Scholar 

  223. Wadge G, Voight B, Sparks RSJ, Cole PD, Loughlin SC, Robertson REA (2014) An overview of the eruption of Soufrière Hills volcano, Montserrat from 2000 to 2010. In: Wadge G, Robertson REA Voight B (eds) The eruption of Soufrière Hills volcano, Montserrat from 2000 to 2010, Geol Soc Lon Mem 39:1–40. https://doi.org/10.1144/M39.1

  224. Wang T, Poland MP, Lu Z (2015) Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery. Geophys Res Lett 42:10,614–10,621. https://doi.org/10.1002/2015GL066784

    Article  Google Scholar 

  225. Watson IM, Realmuto VJ, Rose WI, Prata AJ, Bluth GJ, Gu Y, Bader CE, Yu T (2004) Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J Volcanol Geotherm Res 135:75–89. https://doi.org/10.1016/j.jvolgeores.2003.12.017

    Article  Google Scholar 

  226. Watts PD, Bennartz R, Fell F (2011) Retrieval of two-layer cloud properties from multispectral observations using optimal estimation. J Geophys Res 116. https://doi.org/10.1029/2011JD015883

  227. Waythomas CF, Angeli K, Wessels RL (2020) Evolution of the submarine–subaerial edifice of Bogoslof volcano, Alaska, during its 2016–2017 eruption based on analysis of satellite imagery. Bull Volcanol 82:21. https://doi.org/10.1007/s00445-020-1363-0

    Article  Google Scholar 

  228. Webley PW, Dehn J, Lovick J, Dean KG, Bailey JE, Valcic L (2009) Near-real-time volcanic ash cloud detection: experiences from the Alaska Volcano Observatory. J Volcanol Geotherm Res 186:79–90. https://doi.org/10.1016/j.jvolgeores.2009.02.010

    Article  Google Scholar 

  229. Werner C, Evans WC, Kelly PJ, McGimsey R, Pfeffer M, Doukas M, Neal C (2012) Deep magmatic degassing versus scrubbing: elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano, Alaska. Geochem Geophys Geosyst 13. https://doi.org/10.1029/2011GC003794

  230. Werner C, Kelly PJ, Doukas M, Lopez T, Pfeffer M, McGimsey R, Neal C (2013) Degassing of CO2, SO2, and H2S associated with the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:270–284. https://doi.org/10.1016/j.jvolgeores.2012.04.012

    Article  Google Scholar 

  231. Wessels RL, Vaughan RG, Patrick MR, Coombs ML (2013) High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption at redoubt volcano, Alaska. J Volcanol Geotherm Res 259:248–269. https://doi.org/10.1016/j.jvolgeores.2012.04.014

    Article  Google Scholar 

  232. Western LM, Rougier J, Watson IM (2018) Decision theory-based detection of atmospheric natural hazards from satellite imagery using the example of volcanic ash. Q J R Meteorol Soc 144:581–587. https://doi.org/10.1002/qj.3230

    Article  Google Scholar 

  233. Wicks CW Jr, Dzurisin D, Ingebritsen S, Thatcher W, Lu Z, Iverson J (2002) Magmatic activity beneath the quiescent three sisters volcanic center, central Oregon Cascade Range. USA Geophys Res Lett 29. https://doi.org/10.1029/2001GL014205

  234. Wolpert RL, Ogburn SE, Calder ES (2016) The longevity of lava dome eruptions. J Geophys Res 121:676–686. https://doi.org/10.1002/2015JB012435

    Article  Google Scholar 

  235. Wooster MJ, Rothery DA (1997a) Thermal monitoring of Lascar volcano, Chile, using infrared data from the along-track scanning radiometer: a 1992–1995 time series. Bull Volcanol 58:566–579. https://doi.org/10.1007/s004450050163

    Article  Google Scholar 

  236. Wooster MJ, Rothery DA (1997b) Time-series analysis of effusive volcanic activity using the ERS along track scanning radiometer: the 1995 eruption of Fernandina volcano, Galápagos Islands. Remote Sens Environ 62:109–117. https://doi.org/10.1016/S0034-4257(97)00087-4

    Article  Google Scholar 

  237. Wright R (2016) MODVOLC: 14 years of autonomous observations of effusive volcanism from space. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions, Geol Soc Lon, Sp Pub 426:23–54. https://doi.org/10.1144/SP426.12

  238. Wright R, Blake S, Harris AJL, Rothery DA (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233. https://doi.org/10.1016/S0012-821X(01)00443-5

    Article  Google Scholar 

  239. Wright R, Flynn LP, Garbeil H, Harris AJL, Pilger E (2002) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155. https://doi.org/10.1016/S0034-4257(02)00030-5

    Article  Google Scholar 

  240. Wright R, Flynn LP, Garbeil H, Harris AJL, Pilger E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135:29–49. https://doi.org/10.1016/j.jvolgeores.2003.12.008

    Article  Google Scholar 

  241. Wright R, Carn SA, Flynn LP (2005) A satellite chronology of the May-June 2003 eruption of Anatahan volcano. J Volcanol Geotherm Res 146:102–116. https://doi.org/10.1016/j.jvolgeores.2004.10.021

    Article  Google Scholar 

  242. Wright R, Garbeil H, Davies AG (2010) Cooling rate of some active lavas determined using an orbital imaging spectrometer. J Geophys Res:115. https://doi.org/10.1029/2009JB006536

  243. Wright R, Blackett M, Hill-Butler C (2015) Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys Res Lett 42:282–289. https://doi.org/10.1002/2014GL061997

    Article  Google Scholar 

  244. Wright R, Lucey P, Crites S, Garbeil H, Wood M, Pilger E, Gabrieli A, Honniball C (2016) TIRCIS: thermal infrared compact imaging spectrometer for small satellite applications. In: Larar AM, Chauhan P, Suzuki M, Wang J (eds) Multispectral, hyperspectral, and ultraspectral remote sensing technology, techniques and applications VI. Proc. SPIE 9880. https://doi.org/10.1117/12.2224311

    Chapter  Google Scholar 

  245. Wright R, Lucey P, Flynn L, Nunes M, George T (2019) HYTI: thermal hyperspectral imaging from a Cubesat platform. 33rd annual AIAA/USU conference on small satellites. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4369&context=smallsat

  246. Xu W, Jónsson S (2014) The 2007–8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images. Bull Volcanol 76:795. https://doi.org/10.1007/s00445-014-0795-9

    Article  Google Scholar 

  247. Yang K, Krotkov NA, Krueger AJ, Carn SA, Bhartia PK, Levelt PF (2007) Retrieval of large volcanic SO2 columns from the Aura ozone monitoring instrument: comparison and limitations. J Geophys Res 112. https://doi.org/10.1029/2007JD008825

  248. Yang J, Zhang ZQ, Wei CY, Lu F, Guo Q (2017) Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull Am Meteorol Soc 98:1637–1658. https://doi.org/10.1175/BAMS-D-16-0065.1

    Article  Google Scholar 

  249. Yip STH, Biggs J, Albino F (2019) Re-evaluating volcanic deformation using atmospheric corrections: implications for the magmatic system of Agung volcano, Indonesia. Geophys Res Lett 46:13,704–13,711. https://doi.org/10.1029/2019GL085233

    Article  Google Scholar 

  250. Yu T, Rose W, Prata A (2002) Atmospheric correction for satellite-based volcanic ash mapping and retrievals using “split window” IR data from GOES and AVHRR. J Geophys Res 107. https://doi.org/10.1029/2001JD000706

  251. Yu C, Li Z, Penna NT, Crippa P (2018) Generic atmospheric correction model for interferometric synthetic aperture radar observations. J Geophys Res 123:9202–9222. https://doi.org/10.1029/2017JB015305

    Article  Google Scholar 

  252. Zaksek K, Hort M, Zaletelj J, Langmann B (2013) Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites. Atmos Chem Phys 13:2589–2606. https://doi.org/10.5194/acp-13-2589-2013

    Article  Google Scholar 

  253. Zebker HA, Rosen P, Hensley S, Mouginis-Mark PJ (1996) Analysis of active lava flows on Kilauea volcano, Hawaii, using SIR-C radar correlation measurements. Geology 24:495–498. https://doi.org/10.1130/0091-7613(1996)024<0495:AOALFO>2.3.CO;2

    Article  Google Scholar 

  254. Zhu L, Li J, Zhao YY, Gong H, Li WJ (2017) Retrieval of volcanic ash height from satellite-based infrared measurements. J Geophys Res 122:5364–5379. https://doi.org/10.1002/2016JD026263

    Article  Google Scholar 

Download references

Acknowledgments

Kevin Reath provided the analysis of ASTER data depicted in Fig. 18c. We would like to express our thanks to our colleagues in the USGS Powell Center project on volcano remote sensing, as well as Powell Center director Jill Baron and coordinator Leah Colasuonno, for their assistance and encouragement. Editor Tom Burbey solicited this article, and we are grateful for his invitation and patience, as well as that of editor Estelle Chaussard. Maurizio Battaglia, Glen Mattioli, Matt Pritchard, and an anonymous reviewer offered comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Poland.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poland, M.P., Lopez, T., Wright, R. et al. Forecasting, Detecting, and Tracking Volcanic Eruptions from Space. Remote Sens Earth Syst Sci 3, 55–94 (2020). https://doi.org/10.1007/s41976-020-00034-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-020-00034-x

Keywords

Navigation