Skip to main content
Log in

Numerical spiking neural P systems with weights

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Numerical spiking neural (NSN) P systems are a novel type of distributed parallel membrane computing models, where numerical variables and continuous production functions are employed instead of spikes and evolution rules in traditional spiking neural (SN) P systems. The values of numerical variables are used to encode information, continuous production functions are used to describe the procedure of processing information. In this work, an improvement is made to NSN P systems, a weight is placed on the synapse connecting two neurons, a modified computing model of numerical spiking neural P systems is constructed, called numerical spiking neural P systems with weights (NSNW P systems, for short). We show that the introduction of weights not only makes NSNW P systems be still Turing universal, but also makes the computing process more simple, that is the computational power of NSNW P systems is investigated by using fewer neurons. Especially, the weights used as restrictive conditions only is 1 or \(-1\), in this case, NSNW P systems as number generating devices and number accepting devices are still universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta informaticae, 71(2, 3), 279–308.

    MathSciNet  MATH  Google Scholar 

  2. Song, T., & Wang, X. (2015). Homogenous spiking neural P systems with inhibitory synapses. Neural Processing Letters, 42(1), 199–214.

    Article  Google Scholar 

  3. Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural P systems with thresholds. Neural Computation, 26(7), 1340–1361.

    Article  MathSciNet  MATH  Google Scholar 

  4. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

    Article  Google Scholar 

  5. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Article  MATH  Google Scholar 

  6. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Luo, X., & Huang, X. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71.

    Article  MATH  Google Scholar 

  7. Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2010). Spiking neural P systems with weights. Neural Computation, 22(10), 2615–2646.

    Article  MathSciNet  MATH  Google Scholar 

  8. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P systems with weighted synapses. Neural Processing Letters, 35(1), 13–27.

    Article  Google Scholar 

  9. Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95.

    Article  MathSciNet  MATH  Google Scholar 

  10. Song, T., & Pan, L. (2014). Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Transactions on Nanobioscience, 14(1), 38–44.

    Article  Google Scholar 

  11. Peng, H., Chen, R., Wang, J., Song, X., Wang, T., Yang, F., & Sun, Z. (2017). Competitive spiking neural P systems with rules on synapses. IEEE Transactions on NanoBioscience, 16(8), 888–895.

    Article  Google Scholar 

  12. Song, T., & Pan, L. (2016). Spiking neural P systems with request rules. Neurocomputing, 193, 193–200.

    Article  Google Scholar 

  13. Pan, L., Wu, T., Su, Y., & Vasilakos, A. V. (2017). Cell-like spiking neural p systems with request rules. IEEE Transactions on Nanobioscience, 16(6), 513–522.

    Article  Google Scholar 

  14. Pan, L., & Păun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

    Article  Google Scholar 

  15. Jiang, K., & Pan, L. (2016). Spiking neural P systems with anti-spikes working in sequential mode induced by maximum spike number. Neurocomputing, 171, 1674–1683.

    Article  Google Scholar 

  16. Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on Nanobioscience, 16(8), 792–801.

    Article  Google Scholar 

  17. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24–25), 2352–2364.

    Article  MathSciNet  MATH  Google Scholar 

  18. Wu, T., Păun, A., Zhang, Z., & Pan, L. (2017). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    MathSciNet  Google Scholar 

  19. Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042.

    Article  Google Scholar 

  20. Wu, T., Bîlbîe, F.-D., Păun, A., Pan, L., & Neri, F. (2018). Simplified and yet Turing universal spiking neural P systems with communication on request. International Journal of Neural Systems, 28(08), 1850013.

    Article  Google Scholar 

  21. Pan, T., Shi, X., Zhang, Z., & Xu, F. (2018). A small universal spiking neural P system with communication on request. Neurocomputing, 275, 1622–1628.

    Article  Google Scholar 

  22. Song, T., Pan, L., & Păun, G. (2013). Asynchronous spiking neural P systems with local synchronization. Information Sciences, 219, 197–207.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, T., Zhang, L., Lyu, Q., & Jin, Y. (2022). Asynchronous spiking neural P systems with local synchronization of rules. Information Sciences, 588, 1–12.

    Article  Google Scholar 

  24. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., & Rodríguez-Patón, A. (2019). Spiking neural P systems with learning functions. IEEE Transactions on Nanobioscience, 18(2), 176–190.

    Article  Google Scholar 

  25. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(05), 1440006.

    Article  Google Scholar 

  26. Song, T., Zheng, P., Wong, M. D., & Wang, X. (2016). Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Information Sciences, 372, 380–391.

    Article  MATH  Google Scholar 

  27. Wang, J., & Peng, H. (2013). Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. International Journal of Computer Mathematics, 90(4), 857–868.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2014). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Article  Google Scholar 

  29. Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91.

    Article  Google Scholar 

  30. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., De La Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A web-based visual simulator for spiking neural P systems. Journal of Membrane Computing, 4(1), 21–40.

    Article  MathSciNet  Google Scholar 

  31. Diaz, C., Sanchez, G., Avalos, J.-G., Sanchez, G., Sanchez, J.-C., & Perez, H. (2017). Spike-based compact digital neuromorphic architecture for efficient implementation of high order FIR filters. Neurocomputing, 251, 90–98.

    Article  Google Scholar 

  32. Zeng, X., Song, T., Zhang, X., & Pan, L. (2012). Performing four basic arithmetic operations with spiking neural P systems. IEEE Transactions on Nanobioscience, 11(4), 366–374.

    Article  Google Scholar 

  33. Zhang, X., Zeng, X., Pan, L., & Luo, B. (2009). A spiking neural P system for performing multiplication of two arbitrary natural numbers. Chinese Journal of Computers, 32(12), 2362–2372.

    MathSciNet  Google Scholar 

  34. Diaz, C., Sanchez, G., Duchen, G., Nakano, M., & Perez, H. (2016). An efficient hardware implementation of a novel unary spiking neural network multiplier with variable dendritic delays. Neurocomputing, 189, 130–134.

    Article  Google Scholar 

  35. Ballesteros, K. J., Cailipan, D. P. P., de la Cruz, R. T. A., Cabarle, F. G. C., & Adorna, H. N. (2022). Matrix representation and simulation algorithm of numerical spiking neural P systems. Journal of Membrane Computing, 4(1), 41–55.

    Article  MathSciNet  Google Scholar 

  36. Leporati, A., Mauri, G., & Zandron, C. (2022). Spiking neural P systems: main ideas and results. Natural Computing, 21, 629–649.

    Article  MathSciNet  Google Scholar 

  37. Fan, S., Paul, P., Wu, T., Rong, H., & Zhang, G. (2020). On applications of spiking neural P systems. Applied Sciences, 10(20), 7011.

    Article  Google Scholar 

  38. Lv, Z., Yang, Q., Peng, H., Song, X., & Wang, J. (2021). Computational power of sequential spiking neural P systems with multiple channels. Journal of Membrane Computing, 3(4), 270–283.

    Article  MathSciNet  MATH  Google Scholar 

  39. Pavel, A. B., & Buiu, C. (2012). Using enzymatic numerical P systems for modeling mobile robot controllers. Natural Computing, 11(3), 387–393.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Wu, T., Păun, A., & Pan, L. (2018). Universal enzymatic numerical P systems with small number of enzymatic variables. Science China Information Sciences, 61(9), 1–12.

    Article  MathSciNet  Google Scholar 

  41. Păun, G., & Păun, R. (2006). Membrane computing and economics: Numerical P systems. Fundamenta Informaticae, 73(1, 2), 213–227.

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Z., & Pan, L. (2016). Numerical P systems with thresholds. International Journal of Computers Communications & Control, 11(2), 292–304.

    Article  Google Scholar 

  43. Liu, L., Yi, W., Yang, Q., Peng, H., & Wang, J. (2019). Numerical P systems with Boolean condition. Theoretical Computer Science, 785, 140–149.

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, T., Pan, L., Yu, Q., & Tan, K. C. (2020). Numerical spiking neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2443–2457.

    Article  MathSciNet  Google Scholar 

  45. Hu, M., Gou, X., Deng, F., Liu, Q., & Rong, H. (2022). Research on Compound Numerical Spiking Neural P Systems. International Journal of Unconventional Computing, 17(1/2), 61–79.

    Google Scholar 

  46. Jiang, S., Liu, Y., Xu, B., Sun, J., & Wang, Y. (2022). Asynchronous numerical spiking neural P systems. Information Sciences, 605, 1–14.

    Article  Google Scholar 

  47. Jiang, S., Xu, B., Liang, T., Zhu, X., & Wu, T. (2023). Numerical spiking neural P systems with production functions on synapses. Theoretical Computer Science, 940, 80–89.

    Article  MathSciNet  Google Scholar 

  48. Korec, I. (1996). Small universal register machines. Theoretical Computer Science, 168(2), 267–301.

    Article  MathSciNet  MATH  Google Scholar 

  49. Minsky, M. L. (1967). Computation: Finite and Infinite Machines. Prentice-Hall Inc.

    MATH  Google Scholar 

  50. Freund, R., Ibarra, O. H., Păun, G., & Yen, H. C. (2005). Matrix Languages, Register Machines, Vector Addition Systems. In Proceedings of the 3rd Brainstorming Week Membrane Computing (pp. 155–168).

  51. Păun, G. (2010). The Oxford Handbook of Membrane Computing. Oxford University Press.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work of S. Jiang was supported by National Natural Science Foundation of China (61902360), and the Foundation of Young Key Teachers from University of Henan Province (2019GGJS131).

Funding

This work was supported by National Natural Science Foundation of China (61902360), the Foundation of Young Key Teachers from University of Henan Province (2019GGJS131), and the Joint Funds of the National Natural Science Foundation of China (U1804262).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The conception and design of the work were performed by SJ and BX. Material preparation, data collection and analysis were performed by TL, ZS. The first draft of the manuscript was written by BX. Yanfeng Wang revised this work for important intellectual content.

Corresponding author

Correspondence to Suxia Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This paper is new. Neither the entire paper nor any part of its contents has been published or has been accepted elsewhere. It is not being submitted to any other journals.

Informed consent

All authors have checked the manuscript and have agreed to the submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Jiang, S., Shen, Z. et al. Numerical spiking neural P systems with weights. J Membr Comput 5, 12–24 (2023). https://doi.org/10.1007/s41965-022-00116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00116-3

Keywords

Navigation