Skip to main content
Log in

Weighted spiking neural P systems with polarizations and anti-spikes

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Taking neuron-associated polarizations as the firing condition of neuron rules, the concept of polarization is applied to spiking neural P systems (SN P systems), which is adopted to effectively simulate the biological fact that every neuron in the nervous system contains electrical charges. In addition, in biological neural systems, neurons are always connected by multiple synapses. Therefore, a novel computational model referred to as the weighted spiking neural P systems with polarizations and anti-spikes (PAWSN P systems) is obtained by introducing weighted synapses and anti-spikes. The application of anti-spikes further optimizes the computational performance of the systems. We investigate the computational universality of PAWSN P systems. By simulating the register machine, it is verified that PAWSN P systems are able to accomplish the generation and acceptance of numbers, which provides justification for stating that the PAWSN P systems have Turing universality. With further exploration, we apply three types of polarizations and 98 neurons to construct a small universal PAWSN P system, which is capable of computing functions. By comparing several kinds of extended SN P systems, the results show that the PAWSN P systems achieve universality using fewer computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61(1), 108–143. https://doi.org/10.1006/jcss.1999.1693

    Article  MATH  Google Scholar 

  2. Jiang, S., Wang, Y., Xu, J., & Xu, F. (2019). The computational power of cell-like p systems with symport/antiport rules and promoters. Fundamenta Informaticae, 164(2–3), 207–225. https://doi.org/10.3233/Fi-2019-1763

    Article  MATH  Google Scholar 

  3. Liu, L., Yi, W., Yang, Q., Peng, H., & Wang, J. (2020). Small universal numerical p systems with thresholds for computing functions. Fundamenta Informaticae, 176(1), 43–59. https://doi.org/10.3233/fi-2020-1962

    Article  MATH  Google Scholar 

  4. Pan, L., & Song, B. (2020). P systems with rule production and removal. Fundamenta Informaticae, 171(1–4), 313–329. https://doi.org/10.3233/Fi-2020-1885

    Article  MATH  Google Scholar 

  5. Liu, L., Yi, W., Yang, Q., Peng, H., & Wang, J. (2019). Numerical p systems with boolean condition. Theoretical Computer Science, 785, 140–149. https://doi.org/10.1016/j.tcs.2019.03.021

    Article  MATH  Google Scholar 

  6. Jiang, S., Wang, Y., Xu, F., & Deng, J. (2019). Communication p systems with channel states working in flat maximally parallel manner. Fundamenta Informaticae, 168(1), 1–24. https://doi.org/10.3233/Fi-2019-1821

    Article  MATH  Google Scholar 

  7. Luo, Y., Zhao, Y., & Chen, C. (2021). Homeostasis tissue-like p systems. IEEE Trans Nanobioscience, 20(1), 126–136. https://doi.org/10.1109/TNB.2020.3025921

    Article  Google Scholar 

  8. Pan, L., Alhazov, A., Su, H., & Song, B. (2020). Local synchronization on asynchronous tissue p systems with symport/antiport rules. IEEE Trans Nanobioscience, 19(2), 315–320. https://doi.org/10.1109/TNB.2020.2973332.Epub2020Feb11

    Article  Google Scholar 

  9. Zhang, Z., Su, Y., & Pan, L. (2018). The computational power of enzymatic numerical p systems working in the sequential mode. Theoretical Computer Science, 724, 3–12. https://doi.org/10.1016/j.tcs.2017.12.016

    Article  MATH  Google Scholar 

  10. Zeng, X., Pan, L., & Perez-Jimenez, M. J. (2014). Small universal simple spiking neural p systems with weights. Science China-Information Sciences. https://doi.org/10.1007/s11432-013-4848-z

    Article  MATH  Google Scholar 

  11. Zhang, X., Luo, B., Fang, X., & Pan, L. (2012). Sequential spiking neural p systems with exhaustive use of rules. Biosystems, 108(1–3), 52–62. https://doi.org/10.1016/j.biosystems.2012.01.007

    Article  Google Scholar 

  12. Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2019). A path to computational efficiency through membrane computing. Theoretical Computer Science, 777, 443–453. https://doi.org/10.1016/j.tcs.2018.12.024

    Article  MATH  Google Scholar 

  13. Jiang, S., Wang, Y., & Su, Y. (2019). A uniform solution to sat problem by symport/antiport p systems with channel states and membrane division. Soft Computing, 23(12), 3903–3911. https://doi.org/10.1007/s00500-018-3254-2

    Article  MATH  Google Scholar 

  14. Ye, L., Zheng, J., Guo, P., & Pérez-Jiménez, M. J. (2019). Solving the 0–1 knapsack problem by using tissue p system with cell division. IEEE Access, 7, 66055–66067. https://doi.org/10.1109/Access.2019.2917889

    Article  Google Scholar 

  15. Díaz-Pernil, D., Christinal, H. A., & Gutiérrez-Naranjo, M. A. (2018). Solving the 3-col problem by using tissue p systems without environment and proteins on cells. Information Sciences, 430–431, 240–246. https://doi.org/10.1016/j.ins.2017.11.022

    Article  MATH  Google Scholar 

  16. Christinal, A. H., Díaz-Pernil, D., & Mathu, T. (2018). A uniform family of tissue p systems with protein on cells solving 3-coloring in linear time. Natural Computing, 17(2), 311–319. https://doi.org/10.1007/s11047-016-9590-1

    Article  MATH  Google Scholar 

  17. Buño, K. C., Cabarle, F. G. C., Calabia, M. D., & Adorna, H. N. (2018). Solving the n-queens problem using dp systems with active membranes. Theoretical Computer Science, 736, 1–14. https://doi.org/10.1016/j.tcs.2017.12.013

    Article  MATH  Google Scholar 

  18. Guo, P., Zhu, J., Chen, H., & Yang, R. (2018). A linear-time solution for all-sat problem based on p system. Chinese Journal of Electronics, 27(2), 367–373. https://doi.org/10.1049/cje.2018.01.008

    Article  Google Scholar 

  19. Luo, Y., Tan, H., Zhang, Y., & Jiang, Y. (2019). The computational power of timed p systems with active membranes using promoters. Mathematical Structures in Computer Science, 29(5), 663–680. https://doi.org/10.1017/S0960129518000282

    Article  MATH  Google Scholar 

  20. Gaol, F. L., & Matsuo, T. (2020). Solving the graph problem on the maximal clique problem on the p-systems with mitochondria enzymes layer. Applied Sciences-Basel. https://doi.org/10.3390/app10010275

    Article  Google Scholar 

  21. Song, B., & Kong, Y. (2019). Solution to pspace-complete problem using p systems with active membranes with time-freeness. Mathematical Problems in Engineering. https://doi.org/10.1155/2019/5793234

    Article  MATH  Google Scholar 

  22. Song, B., Zeng, X., & Rodríguez-Patón, A. (2021). Monodirectional tissue p systems with channel states. Information Sciences, 546, 206–219. https://doi.org/10.1016/j.ins.2020.08.030

    Article  MATH  Google Scholar 

  23. Song, B., & Zeng, X. (2021). Solving a pspace-complete problem by symport/antiport p systems with promoters and membrane division. Journal of Membrane Computing. https://doi.org/10.1007/s41965-021-00084-0

    Article  MATH  Google Scholar 

  24. Dalvand, M., Fathi, A., & Kamran, A. (2021). Flooding region growing: a new parallel image segmentation model based on membrane computing. Journal of Real-Time Image Processing, 18(1), 37–55. https://doi.org/10.1007/s11554-020-00949-0

    Article  Google Scholar 

  25. Gou, X., Liu, Q., Rong, H., Hu, M., Paul, P., Deng, F., Zhang, X., & Yu, Z. (2021). A novel spiking neural p system for image recognition. International Journal of Unconventional Computing, 16(2–3), 121–139.

    Google Scholar 

  26. Yuan, J., Guo, D., Zhang, G., Paul, P., Zhu, M., & Yang, Q. (2019). A resolution-free parallel algorithm for image edge detection within the framework of enzymatic numerical p systems. Molecules. https://doi.org/10.3390/molecules24071235

    Article  Google Scholar 

  27. Li, B., Peng, H., Luo, X., Wang, J., Song, X., Pérez-Jiménez, M. J., & Riscos-N’uñez, A. (2021). Medical image fusion method based on coupled neural p systems in nonsubsampled shearlet transform domain. International Journal of Neural Systems. https://doi.org/10.1142/s0129065720500501

    Article  Google Scholar 

  28. Hao, L., & Liu, J. (2019). Enhanced membrane computing algorithm for sat problems based on the splitting rule. Symmetry-Basel. https://doi.org/10.3390/sym11111412

    Article  Google Scholar 

  29. Zhu, M., Yang, Q., Dong, J., Zhang, G., Gou, X., Rong, H., Paul, P., & Neri, F. (2021). An adaptive optimization spiking neural p system for binary problems. International Journal of Neural Systems. https://doi.org/10.1142/s0129065720500549

    Article  Google Scholar 

  30. Song, T., Luo, L., He, J., Chen, Z., & Zhang, K. (2014). Solving subset sum problems by time-free spiking neural p systems. Applied Mathematics & Information Sciences, 8(1), 327–332.

    Article  Google Scholar 

  31. Ramachandranpillai, R., & Arock, M. (2021). A solution to dynamic green vehicle routing problems with time windows using spiking neural p systems with modified rules and learning. The Journal of Supercomputing, 77(9), 9689–9720. https://doi.org/10.1007/s11227-021-03635-5

    Article  Google Scholar 

  32. RamachandranPillai, R., & Arock, M. (2021). Spiking neural firefly optimization scheme for the capacitated dynamic vehicle routing problem with time windows. Neural Computing and Applications, 33(1), 409–432. https://doi.org/10.1007/s00521-020-04983-8

    Article  Google Scholar 

  33. Wang, X., Zhang, G., Gou, X., Paul, P., Neri, F., Rong, H., Yang, Q., & Zhang, H. (2021). Multi-behaviors coordination controller design with enzymatic numerical p systems for robots. Integrated Computer-Aided Engineering, 28(2), 119–140. https://doi.org/10.3233/Ica-200627

    Article  Google Scholar 

  34. Xu, J., Huang, Y., & Liu, Y. (2020). Attitude optimization control of unmanned helicopter in coal mine using membrane computing. Mathematical Problems in Engineering. https://doi.org/10.1155/2020/3820896.

    Article  Google Scholar 

  35. Niu, Y., Zhang, Y., Zhang, J., & Xiao, J. (2018). Running cells with decision-making mechanism: Intelligence decision p system for evacuation simulation. International Journal of Computers Communications & Control, 13(5), 865–880.

    Article  Google Scholar 

  36. Sapp, K., Sodt, A. J., & Maibaum, L. (2019). Modeling relaxation timescales of coupled membrane/protein systems. Biophysical Journal, 116(3), 363–363. https://doi.org/10.1016/j.bpj.2018.11.1975

    Article  Google Scholar 

  37. Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., & Lefticaru, R. (2018). Kernel p systems: From modelling to verification and testing. Theoretical Computer Science, 724, 45–60. https://doi.org/10.1016/j.tcs.2017.12.010

    Article  MATH  Google Scholar 

  38. Liu, W., Wang, T., Zang, T., Huang, Z., Wang, J., Huang, T., et al. (2020). A fault diagnosis method for power transmission networks based on spiking neural p systems with self-updating rules considering biological apoptosis mechanism. Complexity. https://doi.org/10.1155/2020/2462647.

    Article  Google Scholar 

  39. Huang, Z., Wang, T., Liu, W., Valencia-Cabrera, L., Perez-Jimenez, M. J., & Li, P. (2021). A fault analysis method for three-phase induction motors based on spiking neural p systems. Complexity. https://doi.org/10.1155/2021/2087027.

    Article  Google Scholar 

  40. Aman, B., & Ciobanu, G. (2020). Spiking neural p systems with astrocytes producing calcium. International Journal of Neural Systems. https://doi.org/10.1142/s0129065720500665

    Article  Google Scholar 

  41. Bîlbîe, F.-D., & Păun, A. (2021). Small snq p systems with multiple types of spikes. Theoretical Computer Science, 862, 14–23. https://doi.org/10.1016/j.tcs.2020.10.014

    Article  MATH  Google Scholar 

  42. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-N’uñez, A. (2019). Dynamic threshold neural p systems. Knowledge-Based Systems, 163, 875–884. https://doi.org/10.1016/j.knosys.2018.10.016

    Article  Google Scholar 

  43. Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural p systems with thresholds. Neural Computation, 26(7), 1340–1361. https://doi.org/10.1162/NECO_a_00605

    Article  MATH  Google Scholar 

  44. Song, T., Gong, F., Liu, X., Zhao, Y., & Zhang, X. (2016). Spiking neural p systems with white hole neurons. IEEE Transactions on Nanobioscience, 15(7), 666–673. https://doi.org/10.1109/tnb.2016.2598879

    Article  Google Scholar 

  45. Wu, T., Zhang, L., & Pan, L. (2021). Spiking neural p systems with target indications. Theoretical Computer Science, 862, 250–261. https://doi.org/10.1016/j.tcs.2020.07.016

    Article  MATH  Google Scholar 

  46. Wu, T., Lyu, Q., & Pan, L. (2021). Evolution-communication spiking neural p systems. International Journal of Neural Systems. https://doi.org/10.1142/S0129065720500641

    Article  Google Scholar 

  47. Yang, Q., Li, B., Huang, Y., Peng, H., & Wang, J. (2020). Spiking neural p systems with structural plasticity and anti-spikes. Theoretical Computer Science, 801, 143–156. https://doi.org/10.1016/j.tcs.2019.08.034

    Article  MATH  Google Scholar 

  48. Zhang, X., Wang, B., & Pan, L. (2014). Spiking neural p systems with a generalized use of rules. Neural Computation, 26(12), 2925–2943. https://doi.org/10.1162/NECO_a_00665

    Article  MATH  Google Scholar 

  49. Lv, Z., Bao, T., Zhou, N., Peng, H., Huang, X., Riscos-N’uñez, A., & Pérez-Jiménez, M. J. (2021). Spiking neural p systems with extended channel rules. International Journal of Neural Systems. https://doi.org/10.1142/s0129065720500495

    Article  Google Scholar 

  50. Song, X., Valencia-Cabrera, L., Peng, H., Wang, J., & Pérez-Jiménez, M. J. (2021). Spiking neural p systems with delay on synapses. International Journal of Neural Systems. https://doi.org/10.1142/s0129065720500422

    Article  Google Scholar 

  51. Garcia, L., Sanchez, G., Vazquez, E., Avalos, G., Anides, E., Nakano, M., Sanchez, G., & Perez, H. (2021). Small universal spiking neural p systems with dendritic/axonal delays and dendritic trunk/feedback. Neural networks : the official journal of the International Neural Network Society, 138, 126–139. https://doi.org/10.1016/j.neunet.2021.02.010

    Article  Google Scholar 

  52. Lv, Z., Kou, J., Yi, W., Peng, H., Song, X., & Wang, J. (2020). Sequential coupled neural p systems. International Journal of Unconventional Computing, 15(3), 157–191.

    Google Scholar 

  53. Song, T., Pang, S., Hao, S., Rodriguez-Paton, A., & Zheng, P. (2019). A parallel image skeletonizing method using spiking neural p systems with weights. Neural Processing Letters, 50(2), 1485–1502. https://doi.org/10.1007/s11063-018-9947-9

    Article  Google Scholar 

  54. Zeng, X., Song, T., Zhang, X., & Pan, L. (2012). Performing four basic arithmetic operations with spiking neural p systems. IEEE Transactions on Nanobioscience, 11(4), 366–374. https://doi.org/10.1109/tnb.2012.2211034

    Article  Google Scholar 

  55. Song, T., Zeng, X., Zheng, P., Jiang, M., & Rodriguez-Paton, A. (2018). A parallel workflow pattern modeling using spiking neural p systems with colored spikes. IEEE Transactions on Nanobioscience, 17(4), 474–484. https://doi.org/10.1109/tnb.2018.2873221

    Article  Google Scholar 

  56. Zhang, G., Zhang, X., Rong, H., Paul, P., Zhu, M., Neri, F., & Ong, Y.-S. (2022). A layered spiking neural system for classification problems. International journal of neural systems. https://doi.org/10.1142/s012906572250023x

    Article  Google Scholar 

  57. Rong, H., Yi, K., Zhang, G., Dong, J., Paul, P., & Huang, Z. (2019). Automatic implementation of fuzzy reasoning spiking neural p systems for diagnosing faults in complex power systems. Complexity. https://doi.org/10.1155/2019/2635714.

    Article  Google Scholar 

  58. Wu, T., Paun, A., Zhang, Z., & Pan, L. (2018). Spiking neural p systems with polarizations. IEEE transactions on neural networks and learning systems, 29(8), 3349–3360. https://doi.org/10.1109/tnnls.2017.2726119

    Article  Google Scholar 

  59. Wu, T., Pan, L., & Alhazov, A. (2019). Computation power of asynchronous spiking neural p systems with polarizations. Theoretical Computer Science, 777, 474–489. https://doi.org/10.1016/j.tcs.2018.10.024

    Article  MATH  Google Scholar 

  60. Wu, T., & Pan, L. (2020). The computation power of spiking neural p systems with polarizations adopting sequential mode induced by minimum spike number. Neurocomputing, 401, 392–404. https://doi.org/10.1016/j.neucom.2020.03.095

    Article  Google Scholar 

  61. Yang, Q., Lv, Z., Liu, L., Peng, H., Song, X., & Wang, J. (2019). Spiking neural p systems with multiple channels and polarizations. Biosystems. https://doi.org/10.1016/j.biosystems.2019.104020

    Article  Google Scholar 

  62. Jiang, S., Fan, J., Wang, Y., & Xu, F. (2020). Spiking neural p systems with communication on request and polarizations. International Journal of Unconventional Computing, 15(1–2), 107–126.

    Google Scholar 

  63. Jiang, S., Fan, J., Liu, Y., Wang, Y., & Xu, F. (2020). Spiking neural p systems with polarizations and rules on synapses. Complexity. https://doi.org/10.1155/2020/8742308.

    Article  MATH  Google Scholar 

  64. Wu, T., Zhang, T., & Xu, F. (2020). Simplified and yet turing universal spiking neural p systems with polarizations optimized by anti-spikes. Neurocomputing, 414, 255–266. https://doi.org/10.1016/j.neucom.2020.07.051

    Article  Google Scholar 

  65. Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural p systems with weighted synapses. Neural Processing Letters, 35(1), 13–27. https://doi.org/10.1007/s11063-011-9201-1

    Article  Google Scholar 

  66. Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2010). Spiking neural p systems with weights. Neural computation, 22(10), 2615–2646. https://doi.org/10.1162/neco_a_00022

    Article  MATH  Google Scholar 

  67. Pan, L., & Paun, G. (2009). Spiking neural p systems with anti-spikes. International Journal of Computers Communications & Control 4(3), 273–282. https://doi.org/10.15837/ijccc.2009.3.2435

  68. Song, T., Jiang, Y., Shi, X., & Zeng, X. (2013). Small universal spiking neural p systems with anti-spikes. Journal of Computational and Theoretical Nanoscience, 10(4), 999–1006. https://doi.org/10.1166/jctn.2013.2799

    Article  Google Scholar 

  69. Korec, I. (1996). Small universal register machines. Theoretical Computer Science, 168(2), 267–301. https://doi.org/10.1016/S0304-3975(96)00080-1

    Article  MATH  Google Scholar 

  70. Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural p systems. Theoretical Computer Science, 410(24), 2352–2364. https://doi.org/10.1016/j.tcs.2009.02.031

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No.61806114, 61472231, 61876101, 61602282, 61402187, 61502283, 61802234, 61703251), the China Postdoctoral Science Foundation (No.2018M642695, 2019T120607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, Y. Weighted spiking neural P systems with polarizations and anti-spikes. J Membr Comput 4, 269–283 (2022). https://doi.org/10.1007/s41965-022-00112-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-022-00112-7

Keywords

Navigation