Skip to main content

Advertisement

Log in

Reevaluating Flexible Lithium-Ion Batteries from the Insights of Mechanics and Electrochemistry

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The emerging direction toward the ever-growing market of wearable electronics has contributed to the progress made in energy storage systems that are flexible while maintaining their electrochemical performance. Endowing lithium-ion batteries with high flexibility is currently considered to be one of the most essential choices in future. Here, we first propose the basic deformation mode according to the manifestation of flexibility and constructively reevaluate the concept of flexible lithium-ion batteries. Furthermore, the failure mechanism of flexible lithium-ion batteries is investigated with regard to their mechanical failure and electrochemical failure, and the related strategies of battery design and manufacturing are analyzed. More importantly, an in-depth analysis is conducted on the approaches to overcome mechanical failure through stress dispersion, stress absorption, prestress concentration, stress transfer, and other flexible reinforcement methods. Additionally, the advantages of suppressing electrochemical failure are discussed by enhancing the surface roughness, pore formation, surface coating, chemical bonding, in situ encapsulation, etc. Regarding self-healing technology, the general approaches taken for self-healing batteries to achieve flexibility are explained through the classification of macroscopic self-healing (to avert mechanical failure) and microscopic self-healing (to respond to electrochemical failure). Finally, after considering the current state of flexible lithium-ion batteries, future challenges are presented.

Graphical abstract

The flexible lithium-ion batteries were re-evaluated from the insights of mechanics and electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2014, Nature Publishing Group. d Foldable patterns are designed with three topologies. Reprinted with permission from Ref. [49]. Copyright 2015, Nature Publishing Group. e Optical images of edge-cut and center-cut kirigami cathodes in bent, twisted, and stretched states. f Illustration of the electrode microstructure. g Simulation results of electrode strain by FEA. h Kirigami LIBs light up an LED in static and stretched states. Reprinted with permission from Ref. [50]. Copyright 2020, American Chemical Society

Fig. 3

Copyright 2017, Wiley–VCH. d Schematic of the structure and fabrication process of spine-like integrated FLIBs. e Simulation results of battery strain by FEA. Reprinted with permission from Ref. [52]. Copyright 2018, Wiley–VCH. f Fabrication process and g schematic diagram of the accordion-like integrated FLIB structure. h Stress contours of the stretchable layers without (left) and with (right) tape protection. SEM images of the i unprotected and j protected electrodes after stretching. Reprinted with permission from Ref. [53]. Copyright 2019, Elsevier

Fig. 4

Copyright 2021, Royal Society of Chemistry. i Snake-origami batteries and their structural parameters. j, k Different types of snake-origami batteries with bidirectional deformation. Reprinted with permission from Ref. [54]. Copyright 2021, Wiley–VCH. l Internal structure of sawtooth-like FLIBs and m digital photographs. n Schematic of a battery in a bent state. o Changes in the open-circuit voltage as a function of the number of bending cycles. Reprinted with permission from Ref. [55]. Copyright 2017, Wiley–VCH

Fig. 5

Copyright © 2015, American Chemical Society

Fig. 6

Copyright 2009, American Chemical Society. b SEM image of a flexible cellulose/graphite paper electrode. Reprinted with permission from Ref. [58]. Copyright 2012, Royal Society of Chemistry. c Micropores and cracks on the surface of graphene film and d its rate performance. Reprinted with permission from Ref. [59]. Copyright 2012, American Chemical Society. e SEM and f TEM images of a highly porous CNF. Reprinted with permission from Ref. [60]. Copyright 2015, Elsevier. g Relative flexibility of the porous structure as a function of porosity. Reprinted with permission from Ref. [62]. Copyright 2019, American Chemical Society. h Graded structure of bamboo. i Schematic of the bamboo-inspired nanostructure design. j TEM image of a bamboo-like CNF. k Results from three-point bending simulations of different fiber geometries. Reprinted with permission from Ref. [63]. Copyright 2015, American Chemical Society

Fig. 7

Copyright 2014, Wiley–VCH. c SEM images (top view) of patterned Al (left) and Cu (right) foils. d Cycle capacity of the battery. Reprinted with permission from Ref. [66]. Copyright 2014, American Chemical Society. e Fabrication process and f surface topography of the patterned current collector. g Plot of the surface coverage of electrodes versus the bending/twisting cycle. Reprinted with permission from Ref. [67]. Copyright 2014, Wiley–VCH. h Schematic of the 3D interlocking full cell. Adhesion force curves of the i LCO cathode and j graphite anode. k Voltage profiles of 5 000 flexing cycles for 40 h at the fully charged state of the unstressed, normal, and 3D interlocking full cell. Reprinted with permission from Ref. [68]. Copyright 2018, Wiley–VCH

Fig. 8

Copyright 2019, Elsevier. d Surface stress on curved electrode structures. Illustration of the e structural damage of an electrode and f vertical array of an electrode surface. g Synthesis process of the in situ growth of L-LCO nanosheet arrays. h, i FESEM images of the L-LCO nanosheet arrays. j Cycling performance of a full cell. k Discharge curves of the nanosheet-based full cell. Reprinted with permission from Ref. [88]. Copyright 2018, Wiley–VCH

Fig. 9

Copyright 2018, Royal Society of Chemistry. b Preparation process and c cycling stability of bendable coaxial fiber LIBs. Reprinted with permission from Ref. [92]. Copyright 2014, American Chemical Society. d Schematic diagram and side-view photograph of a bendable coaxial cable LIB. Reprinted with permission from Ref. [93]. Copyright 2018, Wiley–VCH. e Schematic illustration of a twisted structure. Reprinted with permission from Ref. [90]. Copyright 2018, Royal Society of Chemistry. f Schematic illustration of a wire-shaped LIB fabricated by twisting an aligned MWCNT/MnO2 composite fiber and Li wire as positive and negative electrodes, respectively. The inserted top left image shows the charge–discharge process. Reprinted with permission from Ref. [94]. Copyright 2013, Wiley–VCH. g Schematic illustration of a half LIB based on an aligned MWCNT/Si composite fiber as the working electrode and lithium wire as both the counter and reference electrodes. Reprinted with permission from Ref. [95]. Copyright 2014, Wiley–VCH. h Structure of a flexible wire-shaped LIB. The aligned MWCNT/LTO and MWCNT/LMO composite yarns are paired as the anode and cathode, respectively. Reprinted with permission from Ref. [96]. Copyright 2014, Wiley–VCH. i Fabrication process illustration and j photographs of a super-stretchy LIB. Reprinted with permission from Ref. [98]. Copyright 2014, Royal Society of Chemistry. k SEM images of fiber at different strains. Reprinted with permission from Ref. [99]. Copyright 2014, Wiley–VCH. l–o 1D battery being woven into a textile. Reprinted with permission from Ref. [92]. Copyright 2014, American Chemical Society. Reprinted with permission from Ref. [96]. Copyright 2014, Wiley–VCH. Reprinted with permission from Ref. [98]. Copyright 2014, Royal Society of Chemistry. Reprinted with permission from Ref. [101]. Copyright 2016, Royal Society of Chemistry

Fig. 10

Copyright 2017, Wiley–VCH. e SEM image of MoSe2/SWCNT. f C K-edge X-ray absorption near-edge structures. g Schematic illustration and h rate performance of a 1 T-MoSe2/SWCNT electrode. Reprinted with permission from Ref. [103]. Copyright 2017, American Chemical Society. The SEM images of the electrode were derived from i ZIF-67@PAN and j MIL-88@PAN. k Cycling stability of ZIF-67@PAN, MIL-88@PAN, and PAN electrodes. Reprinted with permission from Ref. [104]. Copyright 2018, Wiley–VCH. l Schematic diagram of a single nanocable where V2O5 is uniformly encapsulated in a graphitic nanotube. m TEM image of V2O5@CNT. n Cycling life and o rate performance of V2O5@CNT. Reprinted with permission from Ref. [105]. Copyright 2016, Royal Society of Chemistry

Fig. 11

Copyright 2017, Wiley–VCH. Schematic diagram of the c flexible substrate/active material/flexible substrate structure and d active material/flexible/active material structure. Reprinted with permission from Ref. [108]. Copyright 2016, Royal Society of Chemistry. Reprinted with permission from Ref. [107]. Copyright 2019, American Chemical Society. e Schematic illustration of the assembly of hierarchical chiral architectures and the fabrication of a flexible SnO2/CNC/rGO film and fiber electrodes with hierarchical chiral structures. f, g Polarized optical microscopy images of GO and CNCs. h 3D AFM image and i small-angle X-ray scattering (SAXS) pattern of CNC/GO. j Cycling performance and k stress–strain curves of samples. Reprinted with permission from Ref. [109]. Copyright 2017, Royal Society of Chemistry

Fig. 12

Copyright 2015, Wiley–VCH. Enlarged views of the wavy structure e before and f after 1 000 stretching cycles at a strain of 400%. g Schematic showing the fabrication of a stretchable CNT electrode. h SEM images of CNT/LTO. i Normalized resistance changes of prestrained CNT/LTO and CNT/NCM electrodes on different axes. j Illuminated LED powered by stretchable NCM/LTO batteries with strain along both the X and Y axes. Reprinted with permission from Ref. [115]. Copyright 2018, Royal Society of Chemistry

Fig. 13

Copyright 2013, Nature Publishing Group. e Schematic illustration of a spin-coating procedure to assemble a film battery. f Stacked film layer battery configuration of the anode–SiO2–MPE–cathode layers. g Conductivity of the film at various geometrical states. h Charge–discharge capacities as a function of the cycle number for the integrated full cell model. Reprinted with permission from Ref. [124]. Copyright 2019, Wiley–VCH

Fig. 14

Copyright 2016, Wiley–VCH. e Schematic illustration of the PVA/PA gel self-healing mechanism. f Stress–strain curves of the obtained gel. Reprinted with permission from Ref. [131]. Copyright 2019, Elsevier. g Illustration showing the formation of dynamic borate ester bonding between SH chains. h Optical image of a twisted SIB. i Cycling characteristics and Nyquist plots of a battery. Reprinted with permission from Ref. [132]. Copyright 2019, American Chemical Society

Fig. 15

Copyright 2013, Nature Publishing Group. c Electrode design toward tuning the spatial distribution of self-healing polymer (SHP)/carbon black in the Si layer. Reprinted with permission from Ref. [134]. Copyright 2015, Wiley–VCH. d Synthesis procedure of an rGO/CNT-supported liquid metal nanoparticle anode. e–g Morphological changes of the electrode surface. h EIS tests of the battery before and after cycling. Reprinted with permission from Ref. [135]. Copyright 2017, Royal Society of Chemistry. i In situ TEM press experiment of a yolk-shell Si@TiO2 nanocluster. j Schematic illustrations of the self-healing mechanism. k Cycling life and corresponding Coulombic efficiency. Reprinted with permission from Ref. [136]. Copyright 2017, Royal Society of Chemistry

Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Park, S.I., Xiong, Y.J., Kim, R.H., et al.: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009). https://doi.org/10.1126/science.117569010.1126/science.1175690

    Article  CAS  Google Scholar 

  2. Kim, D.H., Lu, N.S., Huang, Y.G., et al.: Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37, 226–235 (2012). https://doi.org/10.1557/mrs.2012.36

    Article  CAS  Google Scholar 

  3. Khan, Y., Ostfeld, A.E., Lochner, C.M., et al.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016). https://doi.org/10.1002/adma.201504366

    Article  CAS  Google Scholar 

  4. Wen, L., Chen, J., Liang, J., et al.: Flexible batteries ahead. Natl. Sci. Rev. 4, 20–23 (2017). https://doi.org/10.1093/nsr/nww041

    Article  CAS  Google Scholar 

  5. Zhang, P.P., Wang, F.X., Yang, S., et al.: Flexible in-plane micro-supercapacitors: progresses and challenges in fabrication and applications. Energy Storage Mater. 28, 160–187 (2020). https://doi.org/10.1016/j.ensm.2020.02.029

    Article  CAS  Google Scholar 

  6. Chen, D., Lou, Z., Jiang, K., et al.: Device configurations and future prospects of flexible/stretchable lithium-ion batteries. Adv. Funct. Mater. 28, 1805596 (2018). https://doi.org/10.1002/adfm.201805596

    Article  CAS  Google Scholar 

  7. Liu, W., Song, M.S., Kong, B., et al.: Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). https://doi.org/10.1002/adma.201603436

    Article  CAS  Google Scholar 

  8. Wu, Z.P., Wang, Y.L., Liu, X.B., et al.: Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 31, 1800716 (2019). https://doi.org/10.1002/adma.201800716

    Article  CAS  Google Scholar 

  9. Gao, M.Y., Wang, P., Jiang, L.L., et al.: Power generation for wearable systems. Energy Environ. Sci. 14, 2114–2157 (2021). https://doi.org/10.1039/d0ee03911j

    Article  Google Scholar 

  10. Zhang, W., Liu, T.F., Wang, Y., et al.: Strategies to improve the performance of phosphide anodes in sodium-ion batteries. Nano Energy 90, 106475 (2021). https://doi.org/10.1016/j.nanoen.2021.106475

    Article  CAS  Google Scholar 

  11. Zheng, M.T., Salim, H., Liu, T.F., et al.: Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy Environ. Sci. 14, 5801–5815 (2021). https://doi.org/10.1039/d1ee01812d

    Article  CAS  Google Scholar 

  12. Sheng, O.W., Jin, C.B., Ding, X.F., et al.: A decade of progress on solid-state electrolytes for secondary batteries: advances and contributions. Adv. Funct. Mater. 31, 2100891 (2021). https://doi.org/10.1002/adfm.202100891

    Article  CAS  Google Scholar 

  13. Ma, Q.X., Chen, Z.J., Zhong, S.W., et al.: Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 81, 105622 (2021). https://doi.org/10.1016/j.nanoen.2020.105622

    Article  CAS  Google Scholar 

  14. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  15. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  16. Yao, B., Zhang, J., Kou, T.Y., et al.: Flexible electrodes: paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017). https://doi.org/10.1002/advs.201770032

    Article  Google Scholar 

  17. Zeng, L.C., Qiu, L., Cheng, H.M.: Towards the practical use of flexible lithium ion batteries. Energy Storage Mater. 23, 434–438 (2019). https://doi.org/10.1016/j.ensm.2019.04.019

    Article  Google Scholar 

  18. Cha, H., Kim, J., Lee, Y., et al.: Issues and challenges facing flexible lithium-ion batteries for practical application. Small 14, 1702989 (2018). https://doi.org/10.1002/smll.201702989

    Article  CAS  Google Scholar 

  19. Lou, S.F., Cheng, X.Q., Zhao, Y., et al.: Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15–25 (2017). https://doi.org/10.1016/j.nanoen.2017.01.058

    Article  CAS  Google Scholar 

  20. Sun, B.Y., Lou, S.F., Qian, Z.Y., et al.: Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy 66, 104179 (2019). https://doi.org/10.1016/j.nanoen.2019.104179

    Article  CAS  Google Scholar 

  21. Zhou, G.M., Li, F., Cheng, H.M.: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/c3ee43182g

    Article  CAS  Google Scholar 

  22. Wen, L., Li, F., Cheng, H.M.: Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016). https://doi.org/10.1002/adma.201504225

    Article  CAS  Google Scholar 

  23. Zhang, F., Lou, S.F., Li, S., et al.: Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-16824-2

    Article  CAS  Google Scholar 

  24. Lou, S.F., Yu, Z.J., Liu, Q.S., et al.: Multi-scale imaging of solid-state battery interfaces: from atomic scale to macroscopic scale. Chem 6, 2199–2218 (2020). https://doi.org/10.1016/j.chempr.2020.06.030

    Article  CAS  Google Scholar 

  25. Lou, S.F., Liu, Q.W., Zhang, F., et al.: Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nat. Commun. 11, 1–10 (2020). https://doi.org/10.1038/s41467-020-19528-9

    Article  CAS  Google Scholar 

  26. Lou, S.F., Zhang, F., Fu, C.K., et al.: Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 33, 2000721 (2021). https://doi.org/10.1002/adma.202000721

    Article  CAS  Google Scholar 

  27. Zhao, Y.F., Guo, J.C.: Development of flexible Li-ion batteries for flexible electronics. InfoMat 2, 866–878 (2020). https://doi.org/10.1002/inf2.12117

    Article  CAS  Google Scholar 

  28. Wehner, L.A., Mittal, N., Liu, T., et al.: Multifunctional batteries: flexible, transient, and transparent. ACS Cent. Sci. 7, 231–244 (2021). https://doi.org/10.1021/acscentsci.0c01318

    Article  CAS  Google Scholar 

  29. Pomerantseva, E., Bonaccorso, F., Feng, X.L., et al.: Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019). https://doi.org/10.1126/science.aan8285

    Article  CAS  Google Scholar 

  30. Zhang, P.P., Wang, F.X., Yu, M.H., et al.: Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018). https://doi.org/10.1039/c8cs00561c

    Article  CAS  Google Scholar 

  31. Mackanic, D.G., Chang, T.H., Huang, Z.J., et al.: Stretchable electrochemical energy storage devices. Chem. Soc. Rev. 49, 4466–4495 (2020). https://doi.org/10.1039/d0cs00035c

    Article  CAS  Google Scholar 

  32. Zhang, L.H., Qin, X.Y., Zhao, S.Q., et al.: Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater. 32, 1908445 (2020). https://doi.org/10.1002/adma.201908445

    Article  CAS  Google Scholar 

  33. Chen, S., Qiu, L., Cheng, H.M.: Carbon-based fibers for advanced electrochemical energy storage devices. Chem Rev 120, 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466

    Article  CAS  Google Scholar 

  34. Mo, F.N., Liang, G.J., Huang, Z.D., et al.: An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 32, 1902151 (2020). https://doi.org/10.1002/adma.201902151

    Article  CAS  Google Scholar 

  35. Zhang, W., Feng, P., Chen, J., et al.: Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 88, 220–240 (2019). https://doi.org/10.1016/j.progpolymsci.2018.09.001

    Article  CAS  Google Scholar 

  36. Liu, Z., Xu, J., Chen, D., et al.: Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161–192 (2015). https://doi.org/10.1039/c4cs00116h

    Article  CAS  Google Scholar 

  37. Guo, X.T., Zheng, S.S., Zhang, G.X., et al.: Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater. 9, 150–169 (2017). https://doi.org/10.1016/j.ensm.2017.07.006

    Article  Google Scholar 

  38. Liu, B., Zhang, J.G., Shen, G.Z.: Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today 11, 82–97 (2016). https://doi.org/10.1016/j.nantod.2016.02.003

    Article  CAS  Google Scholar 

  39. Dai, C.L., Sun, G.Q., Hu, L.Y., et al.: Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2, 509–526 (2020). https://doi.org/10.1002/inf2.12039

    Article  CAS  Google Scholar 

  40. Mong, A.L., Shi, Q.X., Jeon, H., et al.: Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv. Funct. Mater. 31, 2008586 (2021). https://doi.org/10.1002/adfm.202008586

    Article  CAS  Google Scholar 

  41. Zhai, Q.F., Xiang, F.W., Cheng, F., et al.: Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Mater. 33, 116–138 (2020). https://doi.org/10.1016/j.ensm.2020.07.003

    Article  Google Scholar 

  42. Wegst, U.G.K., Bai, H., Saiz, E., et al.: Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015). https://doi.org/10.1038/nmat4089

    Article  CAS  Google Scholar 

  43. Liu, Y.Q., He, K., Chen, G., et al.: Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117, 12893–12941 (2017). https://doi.org/10.1021/acs.chemrev.7b00291

    Article  CAS  Google Scholar 

  44. Chen, A., Guo, X., Yang, S., et al.: Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy Environ. Sci. 14, 3599–3608 (2021). https://doi.org/10.1039/d1ee00480h

    Article  CAS  Google Scholar 

  45. Han, A.: Folding paper: the infinite possibilities of origami touring exhibition, 2012–2016. J. Math. Arts 7, 136–143 (2013). https://doi.org/10.1080/17513472.2013.857511

    Article  Google Scholar 

  46. Li, S.Y., Fang, H.B., Sadeghi, S., et al.: Architected origami materials: how folding creates sophisticated mechanical properties. Adv. Mater. 31, 1805282 (2019). https://doi.org/10.1002/adma.201805282

    Article  CAS  Google Scholar 

  47. Xu, L.Z., Shyu, T.C., Kotov, N.A.: Origami and kirigami nanocomposites. ACS Nano 11, 7587–7599 (2017). https://doi.org/10.1021/acsnano.7b03287

    Article  CAS  Google Scholar 

  48. Song, Z.M., Ma, T., Tang, R., et al.: Origami lithium-ion batteries. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms4140

    Article  CAS  Google Scholar 

  49. Song, Z.M., Wang, X., Lv, C., et al.: Kirigami-based stretchable lithium-ion batteries. Sci. Rep. 5, 1–9 (2015). https://doi.org/10.1038/srep10988

    Article  CAS  Google Scholar 

  50. Bao, Y.H., Hong, G.Q., Chen, Y., et al.: Customized kirigami electrodes for flexible and deformable lithium-ion batteries. ACS Appl. Mater. Interfaces 12, 780–788 (2020). https://doi.org/10.1021/acsami.9b18232

    Article  CAS  Google Scholar 

  51. Park, M., Cha, H., Lee, Y., et al.: Lithium-ion batteries: postpatterned electrodes for flexible node-type lithium-ion batteries. Adv. Mater. 29, 1605773 (2017). https://doi.org/10.1002/adma.201770072

    Article  CAS  Google Scholar 

  52. Qian, G.Y., Zhu, B., Liao, X.B., et al.: Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Adv. Mater. 31, 1903093 (2019). https://doi.org/10.1002/adma.201704947

    Article  CAS  Google Scholar 

  53. Shi, C.M., Wang, T.Y., Liao, X.B., et al.: Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Mater. 17, 136–142 (2019). https://doi.org/10.1016/j.ensm.2018.11.019

    Article  Google Scholar 

  54. Li, N., Chen, H.S., Yang, S.Q., et al.: Bidirectional planar flexible snake-origami batteries. Adv. Sci. 8, 2101372 (2021). https://doi.org/10.1002/advs.202101372

    Article  CAS  Google Scholar 

  55. Meng, Q.H., Wu, H.P., Mao, L.J., et al.: Combining electrode flexibility and wave-like device architecture for highly flexible Li-ion batteries. Adv. Mater. Technol. 2, 1700032 (2017). https://doi.org/10.1002/admt.201700032

    Article  CAS  Google Scholar 

  56. Kim, J.S., Ko, D., Yoo, D.J., et al.: A half millimeter thick coplanar flexible battery with wireless recharging capability. Nano Lett. 15, 2350–2357 (2015). https://doi.org/10.1021/nl5045814

    Article  CAS  Google Scholar 

  57. Wang, C.Y., Li, D., Too, C.O., et al.: Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. 21(2604), 2606 (2009). https://doi.org/10.1021/cm900764n

    Article  CAS  Google Scholar 

  58. Jabbour, L., Destro, M., Gerbaldi, C., et al.: Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J. Mater. Chem. 22, 3227–3233 (2012). https://doi.org/10.1039/c2jm15117k

    Article  CAS  Google Scholar 

  59. Mukherjee, R., Thomas, A.V., Krishnamurthy, A., et al.: Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6, 7867–7878 (2012). https://doi.org/10.1021/nn303145j

    Article  CAS  Google Scholar 

  60. Li, W.H., Li, M.S., Wang, M., et al.: Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 13, 693–701 (2015). https://doi.org/10.1016/j.nanoen.2015.03.027

    Article  CAS  Google Scholar 

  61. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M., et al.: Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater. Sci. Eng. 60, 163–183 (2016). https://doi.org/10.1016/j.msec.2015.11.001

    Article  CAS  Google Scholar 

  62. Qian, G.Y., Liao, X.B., Zhu, Y.X., et al.: Designing flexible lithium-ion batteries by structural engineering. ACS Energy Lett. 4, 690–701 (2019). https://doi.org/10.1021/acsenergylett.8b02496

    Article  CAS  Google Scholar 

  63. Sun, Y.M., Sills, R.B., Hu, X.L., et al.: A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett. 15, 3899–3906 (2015). https://doi.org/10.1021/acs.nanolett.5b00738

    Article  CAS  Google Scholar 

  64. Zimmerman, R.W.: Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12, 17–24 (1991). https://doi.org/10.1016/0167-6636(91)90049-6

    Article  Google Scholar 

  65. Kim, S.W., Yun, J.H., Son, B., et al.: Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries. Adv. Mater. 26, 2977–2982 (2014). https://doi.org/10.1002/adma.201305600

    Article  CAS  Google Scholar 

  66. Park, M.H., Noh, M., Lee, S., et al.: Flexible high-energy Li-ion batteries with fast-charging capability. Nano Lett. 14, 4083–4089 (2014). https://doi.org/10.1021/nl501597s

    Article  CAS  Google Scholar 

  67. Choi, S., Kim, T.H., Lee, J.I., et al.: General approach for high-power Li-ion batteries: multiscale lithographic patterning of electrodes. ChemSusChem 7, 3483–3490 (2014). https://doi.org/10.1002/cssc.201402448

    Article  CAS  Google Scholar 

  68. Cha, H., Lee, Y., Kim, J., et al.: Flexible 3D interlocking lithium-ion batteries. Adv. Energy Mater. 8, 1870131 (2018). https://doi.org/10.1002/aenm.201870131

    Article  CAS  Google Scholar 

  69. Yi, Z., Lin, N., Zhao, Y.Y., et al.: A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Mater. 17, 93–100 (2019). https://doi.org/10.1016/j.ensm.2018.07.025

    Article  Google Scholar 

  70. Lin, X.P., Xue, D.Y., Zhao, L.Z., et al.: In-situ growth of 1T/2H-MoS2 on carbon fiber cloth and the modification of SnS2 nanoparticles: a three-dimensional heterostructure for high-performance flexible lithium-ion batteries. Chem. Eng. J. 356, 483–491 (2019). https://doi.org/10.1016/j.cej.2018.08.208

    Article  CAS  Google Scholar 

  71. Guo, W.L., Si, W.P., Zhang, T., et al.: Ultrathin NixCoy-silicate nanosheets natively anchored on CNTs films for flexible lithium ion batteries. J. Energy Chem. 54, 746–753 (2021). https://doi.org/10.1016/j.jechem.2020.06.026

    Article  CAS  Google Scholar 

  72. Yu, X.L., Deng, J.J., Yang, X., et al.: A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion batteries with high areal capacity. Nano Energy 67, 104256 (2020). https://doi.org/10.1016/j.nanoen.2019.104256

    Article  CAS  Google Scholar 

  73. Huang, Y.C., Yang, H., Xiong, T.Z., et al.: Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries. Energy Storage Mater. 25, 41–51 (2020). https://doi.org/10.1016/j.ensm.2019.11.001

    Article  Google Scholar 

  74. Mo, R.W., Rooney, D., Sun, K.N.: Hierarchical graphene-scaffolded mesoporous germanium dioxide nanostructure for high-performance flexible lithium-ion batteries. Energy Storage Mater. 29, 198–206 (2020). https://doi.org/10.1016/j.ensm.2020.04.031

    Article  Google Scholar 

  75. Wang, Y.L., Zheng, Y.C., Zhao, J.P., et al.: Assembling free-standing and aligned tungstate/MXene fiber for flexible lithium and sodium-ion batteries with efficient pseudocapacitive energy storage. Energy Storage Mater. 33, 82–87 (2020). https://doi.org/10.1016/j.ensm.2020.06.018

    Article  Google Scholar 

  76. Liu, X.G., Guo, J.M., Liu, T., et al.: Mechanical simulation informed rational design of a soft-and-hard double-jacketed SnO2 flexible electrode for high performance lithium-ion battery. Energy Storage Mater. 35, 520–529 (2021). https://doi.org/10.1016/j.ensm.2020.09.012

    Article  Google Scholar 

  77. Cheng, Y., Shu, J., Xu, L., et al.: Flexible nanowire cathode membrane with gradient interfaces and rapid electron/ion transport channels for solid-state lithium batteries. Adv. Energy Mater. 11, 2100026 (2021). https://doi.org/10.1002/aenm.202100026

    Article  CAS  Google Scholar 

  78. Chen, H.H., He, J., Li, Y.L., et al.: Hierarchical CuOx-Co3O4 heterostructure nanowires decorated on 3D porous nitrogen-doped carbon nanofibers as flexible and free-standing anodes for high-performance lithium-ion batteries. J. Mater. Chem. A 7, 7691–7700 (2019). https://doi.org/10.1039/c9ta00275h

    Article  CAS  Google Scholar 

  79. Zhang, Z.W., Zhang, M., Lu, P.X., et al.: CuO nanorods growth on folded Cu foil as integrated electrodes with high areal capacity for flexible Li-ion batteries. J. Alloy. Compd. 809, 151823 (2019). https://doi.org/10.1016/j.jallcom.2019.151823

    Article  CAS  Google Scholar 

  80. Sekitani, T., Kato, Y., Iba, S., et al.: Bending experiment on pentacene field-effect transistors on plastic films. Appl. Phys. Lett. 86, 073511 (2005). https://doi.org/10.1063/1.186886810.1063/1.1868868

    Article  Google Scholar 

  81. Suo, Z., Ma, E.Y., Gleskova, H., et al.: Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177–1179 (1999). https://doi.org/10.1063/1.12347810.1063/1.123478

    Article  CAS  Google Scholar 

  82. Wong, W.S., Salleo, A. (eds.): Flexible electronics: materials and applications. Springer Science+Business Media, LLC (2009). https://doi.org/10.1007/978-0-387-74363-9

  83. Chang, W.C., Kao, T.L., Lin, Y., et al.: A flexible all inorganic nanowire bilayer mesh as a high-performance lithium-ion battery anode. J. Mater. Chem. A 5, 22662–22671 (2017). https://doi.org/10.1039/c7ta07472g

    Article  CAS  Google Scholar 

  84. Lu, B., Liu, J., Hu, R.Z., et al.: C@MoS2@PPy sandwich-like nanotube arrays as an ultrastable and high-rate flexible anode for Li/Na-ion batteries. Energy Storage Mater. 14, 118–128 (2018). https://doi.org/10.1016/j.ensm.2018.02.022

    Article  Google Scholar 

  85. Xue, L., Zhang, Q.H., Zhu, X.H., et al.: 3D LiCoO2 nanosheets assembled nanorod arrays via confined dissolution-recrystallization for advanced aqueous lithium-ion batteries. Nano Energy 56, 463–472 (2019). https://doi.org/10.1016/j.nanoen.2018.11.085

    Article  CAS  Google Scholar 

  86. Xia, Q.Y., Ni, M.Z., Chen, M.H., et al.: Low-temperature synthesized self-supported single-crystalline LiCoO2 nanoflake arrays as advanced 3D cathodes for flexible lithium-ion batteries. J. Mater. Chem. A 7, 6187–6196 (2019). https://doi.org/10.1039/c9ta00351g

    Article  CAS  Google Scholar 

  87. Wang, C., Wang, X.F., Lin, C.F., et al.: Lithium titanate cuboid arrays grown on carbon fiber cloth for high-rate flexible lithium-ion batteries. Small 15, 1902183 (2019). https://doi.org/10.1002/smll.201902183

    Article  CAS  Google Scholar 

  88. Xue, L., Savilov, S.V., Lunin, V.V., et al.: Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv. Funct. Mater. 28, 1705836 (2018). https://doi.org/10.1002/adfm.201705836

    Article  CAS  Google Scholar 

  89. Jin, S., Jiang, Y., Ji, H.X., et al.: Advanced 3D current collectors for lithium-based batteries. Adv. Mater. 30, 1802014 (2018). https://doi.org/10.1002/adma.201802014

    Article  CAS  Google Scholar 

  90. Sumboja, A., Liu, J.W., Zheng, W.G., et al.: Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem. Soc. Rev. 47, 5919–5945 (2018). https://doi.org/10.1039/c8cs00237a

    Article  CAS  Google Scholar 

  91. Sun, H., Zhang, Y., Zhang, J., et al.: Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 1–12 (2017). https://doi.org/10.1038/natrevmats.2017.23

    Article  CAS  Google Scholar 

  92. Weng, W., Sun, Q., Zhang, Y., et al.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14, 3432–3438 (2014). https://doi.org/10.1021/nl5009647

    Article  CAS  Google Scholar 

  93. Wu, Z.P., Liu, K.X., Lv, C., et al.: Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven macrofilms. Small 14, 1800414 (2018). https://doi.org/10.1002/smll.201800414

    Article  CAS  Google Scholar 

  94. Ren, J., Li, L., Chen, C., et al.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25, 1155–1159 (2013). https://doi.org/10.1002/adma.201203445

    Article  CAS  Google Scholar 

  95. Lin, H.J., Weng, W., Ren, J., et al.: Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 26, 1217–1222 (2014). https://doi.org/10.1002/adma.201304319

    Article  CAS  Google Scholar 

  96. Ren, J., Zhang, Y., Bai, W., et al.: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53, 7864–7869 (2014). https://doi.org/10.1002/anie.201402388

    Article  CAS  Google Scholar 

  97. Zhu, Y.H., Yang, X.Y., Liu, T., et al.: Flexible 1D batteries: recent progress and prospects. Adv. Mater. 32, 1901961 (2020). https://doi.org/10.1002/adma.201901961

    Article  CAS  Google Scholar 

  98. Zhang, Y., Bai, W., Ren, J., et al.: Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2, 11054–11059 (2014). https://doi.org/10.1039/c4ta01878h

    Article  CAS  Google Scholar 

  99. Zhang, Y., Bai, W., Cheng, X.L., et al.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53, 14564–14568 (2014). https://doi.org/10.1002/anie.201409366

    Article  CAS  Google Scholar 

  100. Huang, Q.Y., Wang, D.R., Zheng, Z.J.: Textile-based electrochemical energy storage devices. Adv. Energy Mater. 6, 1600783 (2016). https://doi.org/10.1002/aenm.201600783

    Article  CAS  Google Scholar 

  101. Zhang, Y., Wang, Y.H., Wang, L., et al.: A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A 4, 9002–9008 (2016). https://doi.org/10.1039/c6ta03477b

    Article  CAS  Google Scholar 

  102. Wang, T., Li, H.G., Shi, S.J., et al.: 2D film of carbon nanofibers elastically astricted MnO microparticles: a flexible binder-free anode for highly reversible lithium ion storage. Small 13, 1604182 (2017). https://doi.org/10.1002/smll.201604182

    Article  CAS  Google Scholar 

  103. Xiang, T., Tao, S., Xu, W.Y., et al.: Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance Li-ion anode. ACS Nano 11, 6483–6491 (2017). https://doi.org/10.1021/acsnano.7b03329

    Article  CAS  Google Scholar 

  104. Du, M., Rui, K., Chang, Y.Q., et al.: Carbon necklace incorporated electroactive reservoir constructing flexible papers for advanced lithium-ion batteries. Small 14, 1702770 (2018). https://doi.org/10.1002/smll.201702770

    Article  CAS  Google Scholar 

  105. Kong, D.B., Li, X.L., Zhang, Y.B., et al.: Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 9, 906–911 (2016). https://doi.org/10.1039/c5ee03345d

    Article  CAS  Google Scholar 

  106. Chao, Y.F., Jalili, R., Ge, Y., et al.: Self-assembly of flexible free-standing 3D porous MoS2-reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 27, 1700234 (2017). https://doi.org/10.1002/adfm.201700234

    Article  CAS  Google Scholar 

  107. Cai, X., Liu, W., Zhao, Z.Q., et al.: Simultaneous encapsulation of nano-Si in redox assembled rGO film as binder-free anode for flexible/bendable lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 3897–3908 (2019). https://doi.org/10.1021/acsami.8b18134

    Article  CAS  Google Scholar 

  108. Li, S.T., Liu, G., Liu, J., et al.: Carbon fiber cloth@VO2 (B): excellent binder-free flexible electrodes with ultrahigh mass-loading. J. Mater. Chem. A 4, 6426–6432 (2016). https://doi.org/10.1039/c6ta00728g

    Article  CAS  Google Scholar 

  109. Pan, H., Ma, J., Tao, J., et al.: Hierarchical architecture for flexible energy storage. Nanoscale 9, 6686–6694 (2017). https://doi.org/10.1039/c7nr00867h

    Article  CAS  Google Scholar 

  110. Fu, K.K., Cheng, J., Li, T., et al.: Flexible batteries: from mechanics to devices. ACS Energy Lett. 1, 1065–1079 (2016). https://doi.org/10.1021/acsenergylett.6b00401

    Article  CAS  Google Scholar 

  111. Kim, D.H., Ahn, J.H., Choi, W.M., et al.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008). https://doi.org/10.1126/science.1154367

    Article  CAS  Google Scholar 

  112. Li, L., Lin, H.T., Qiao, S.T., et al.: Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014). https://doi.org/10.1038/nphoton.2014.138

    Article  CAS  Google Scholar 

  113. Bowden, N., Brittain, S., Evans, A.G., et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998). https://doi.org/10.1038/30193

    Article  CAS  Google Scholar 

  114. Weng, W., Sun, Q., Zhang, Y., et al.: A gum-like lithium-ion battery based on a novel arched structure. Adv. Mater. 27, 1363–1369 (2015). https://doi.org/10.1002/adma.201405127

    Article  CAS  Google Scholar 

  115. Yu, Y., Luo, Y.F., Wu, H.C., et al.: Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 10, 19972–19978 (2018). https://doi.org/10.1039/c8nr05241g

    Article  CAS  Google Scholar 

  116. Hong, J.Y., Kim, W., Choi, D., et al.: Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10, 9446–9455 (2016). https://doi.org/10.1021/acsnano.6b04493

    Article  CAS  Google Scholar 

  117. Yu, C.J., Masarapu, C., Rong, J.P., et al.: Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009). https://doi.org/10.1002/adma.200901775

    Article  CAS  Google Scholar 

  118. Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010). https://doi.org/10.1126/science.1182383

    Article  CAS  Google Scholar 

  119. Sun, Y.G., Choi, W.M., Jiang, H.Q., et al.: Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006). https://doi.org/10.1038/nnano.2006.131

    Article  CAS  Google Scholar 

  120. Lipomi, D.J., Tee, B.C.K., Vosgueritchian, M., et al.: Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011). https://doi.org/10.1002/adma.201004426

    Article  CAS  Google Scholar 

  121. Ko, H.C., Stoykovich, M.P., Song, J.Z., et al.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008). https://doi.org/10.1038/nature07113

    Article  CAS  Google Scholar 

  122. Choi, W.M., Song, J.Z., Khang, D.Y., et al.: Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007). https://doi.org/10.1021/nl0706244

    Article  CAS  Google Scholar 

  123. Xu, S., Zhang, Y.H., Cho, J., et al.: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1–8 (2013). https://doi.org/10.1038/ncomms2553

    Article  CAS  Google Scholar 

  124. Zhao, W., Bai, M., Li, S.W., et al.: Integrated thin film battery design for flexible lithium ion storage: optimizing the compatibility of the current collector-free electrodes. Adv. Funct. Mater. 29, 1903542 (2019). https://doi.org/10.1002/adfm.201903542

    Article  CAS  Google Scholar 

  125. Boyjoo, Y., Cheng, Y., Zhong, H., et al.: From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon 116, 490–499 (2017). https://doi.org/10.1016/j.carbon.2017.02.030

    Article  CAS  Google Scholar 

  126. Huang, Y., Zhong, M., Huang, Y., et al.: A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms10310

    Article  CAS  Google Scholar 

  127. Sun, Y.M., Lopez, J., Lee, H.W., et al.: A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater. 28, 2455–2461 (2016). https://doi.org/10.1002/adma.201504723

    Article  CAS  Google Scholar 

  128. Gong, C.K., Liang, J.J., Hu, W., et al.: A healable, semitransparent silver nanowire-polymer composite conductor. Adv. Mater. 25, 4186–4191 (2013). https://doi.org/10.1002/adma.201301069

    Article  CAS  Google Scholar 

  129. Jun, L., Zheng, Z.X., Ding, H.F., et al.: Preliminary study of the crack healing and strength recovery of Al2O3-matrix composites. Fatigue Fract. Eng. Mater. Struct. 27, 89–97 (2004). https://doi.org/10.1111/j.1460-2695.2004.00725.x

    Article  CAS  Google Scholar 

  130. Zhao, Y., Zhang, Y., Sun, H., et al.: A self-healing aqueous lithium-ion battery. Angew. Chem. Int. Ed. 55, 14384–14388 (2016). https://doi.org/10.1002/anie.201607951

    Article  CAS  Google Scholar 

  131. Hu, R.F., Zhao, J., Wang, Y.H., et al.: A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications. Chem. Eng. J. 360, 334–341 (2019). https://doi.org/10.1016/j.cej.2018.12.001

    Article  CAS  Google Scholar 

  132. Tao, F., Qin, L.M., Chu, Y., et al.: Sodium hyaluronate: a versatile polysaccharide toward intrinsically self-healable energy-storage devices. ACS Appl. Mater. Interfaces 11, 3136–3141 (2019). https://doi.org/10.1021/acsami.8b21144

    Article  CAS  Google Scholar 

  133. Wang, C., Wu, H., Chen, Z., et al.: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013). https://doi.org/10.1038/nchem.1802

    Article  CAS  Google Scholar 

  134. Chen, Z., Wang, C., Lopez, J., et al.: High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015). https://doi.org/10.1002/aenm.201401826

    Article  CAS  Google Scholar 

  135. Wu, Y.P., Huang, L., Huang, X.K., et al.: A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854–1861 (2017). https://doi.org/10.1039/c7ee01798g

    Article  CAS  Google Scholar 

  136. Jin, Y., Li, S., Kushima, A., et al.: Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 9.99%. Energy Environ. Sci. 10, 580–592 (2017). https://doi.org/10.1039/c6ee02685k

    Article  CAS  Google Scholar 

  137. Mao, L.J., Meng, Q.H., Ahmad, A., et al.: Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7, 1700535 (2017). https://doi.org/10.1002/aenm.201700535

    Article  CAS  Google Scholar 

  138. Li, H.F., Tang, Z.J., Liu, Z.X., et al.: Evaluating flexibility and wearability of flexible energy storage devices. Joule 3, 613–619 (2019). https://doi.org/10.1016/j.joule.2019.01.013

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21905071, 21773049), China Postdoctoral Science Foundation (2021T140158, 2018M640298), and Heilongjiang Postdoctoral Fund (LBH-TZ2010, LBH-Z18065).

Author information

Authors and Affiliations

Authors

Contributions

QM wrote this paper. BS, XW, and XX conducted the literature survey. YM and HH provided writing guidance. SL and GY supervised all the processes and provided financial support.

Corresponding authors

Correspondence to Shuaifeng Lou or Geping Yin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Lou, S., Shen, B. et al. Reevaluating Flexible Lithium-Ion Batteries from the Insights of Mechanics and Electrochemistry. Electrochem. Energy Rev. 5 (Suppl 2), 30 (2022). https://doi.org/10.1007/s41918-022-00150-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00150-w

Keywords

Navigation