Skip to main content

Advertisement

Log in

Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Electrochemical carbon dioxide reduction (ECR) is an attractive pathway to synthesize useful fuels and chemical feedstocks, especially when paired with renewable electricity as the energy source. In this overview, we examine the recently witnessed advances and on-going pursuits of ECR in terms of the key fundamental mechanisms, basic experimentation principles, electrocatalysts and the electrochemical setup for ECR, aiming at offering timely key insights into solving the unsettled bottleneck issues. The reaction pathways are discussed in relation to the generation of single-, double- and multi-carbon products by the ECR, as well as the underlying principles in catalyst design to form them both efficiently and selectively. For the rational design of electrocatalysis, we look into the critically important roles played by various in situ and operando experimental techniques and computational simulations, where the key priorities are to engineer the highly active and selective ECR catalysts for the specifically targeted products. Indeed, with the purposely designed high activity and selectivity, one would be able to “magically” transform a bottle of CO2-riched “coke drink” to a glass of “beer” with the desired alcohol product in a layman term, instead of a bottle of formic acid. Nonetheless, there are still considerable complications and challenges ahead. As a dynamically rapid-advancing research frontier for both energy and the environment, there are great opportunities and obstacles in the ECR scale up.

Graphic Abstract

Electrochemical CO2 reduction, where the “spirit” is brewing on electrocatalytic activity and selectivity. With the designed catalytic activity and selectivity, one would be able to magically transform a bottle of CO2-riched “coke” into a glass of “beer”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted with permission from Ref. [10]. Copyright © 2020, Springer Nature

Fig. 2
Fig. 3

Adapted with permission from Refs. [13, 74,75,76]. Copyright © 2018, IOP Publishing. Copyright © 2019, Springer Nature. Copy right © 2015, Royal Society of Chemistry. Copyright © 2020, Springer Nature

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Copyright © 2020, Springer Nature. Reproduction with permission from Ref. [13]. g Schematic of carbon intermediates that are confined in the nanocavities, which locally protect the copper oxidation state during ECR. White—hydrogen; gray—carbon; red—oxygen; violet—copper. Adapted with permission from Ref. [171]. Copyright©2020, American Chemical Society

Similar content being viewed by others

References

  1. Yan, Z.F., Hitt, J.L., Turner, J.A., et al.: Renewable electricity storage using electrolysis. PNAS 117, 12558–12563 (2020). https://doi.org/10.1073/pnas.1821686116

    Article  CAS  PubMed  Google Scholar 

  2. Peter, S.C.: Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 3, 1557–1561 (2018). https://doi.org/10.1021/acsenergylett.8b00878

    Article  CAS  Google Scholar 

  3. Glenk, G., Reichelstein, S.: Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019). https://doi.org/10.1038/s41560-019-0326-1

    Article  CAS  Google Scholar 

  4. Cano, Z.P., Banham, D., Ye, S.Y., et al.: Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018). https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  5. Nguyen, C.T.K., Quang Tran, N., Seo, S., et al.: Highly efficient nanostructured metal-decorated hybrid semiconductors for solar conversion of CO2 with almost complete CO selectivity. Mater. Today 35, 25–33 (2020). https://doi.org/10.1016/j.mattod.2019.11.005

    Article  CAS  Google Scholar 

  6. Birdja, Y.Y., Pérez-Gallent, E., Figueiredo, M.C., et al.: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  CAS  Google Scholar 

  7. Song, R.B., Zhu, W.L., Fu, J.J., et al.: Electrocatalytic CO2 reduction: electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency. Adv. Mater. 32, 2070202 (2020). https://doi.org/10.1002/adma.202070202

    Article  CAS  Google Scholar 

  8. Li, L.G., Huang, Y., Li, Y.G.: Carbonaceous materials for electrochemical CO2 reduction. EnergyChem 2, 100024 (2020). https://doi.org/10.1016/j.enchem.2019.100024

    Article  Google Scholar 

  9. Kibria, M.G., Edwards, J.P., Gabardo, C.M., et al.: Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, e1807166 (2019). https://doi.org/10.1002/adma.201807166

    Article  CAS  PubMed  Google Scholar 

  10. Li, F.W., Li, Y.C., Wang, Z.Y., et al.: Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020). https://doi.org/10.1038/s41929-019-0383-7

    Article  CAS  Google Scholar 

  11. Li, Y.G., Wang, Z.Y., Yuan, T.G., et al.: Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 141, 8584–8591 (2019). https://doi.org/10.1021/jacs.9b02945

    Article  CAS  PubMed  Google Scholar 

  12. Fan, L., Xia, C., Yang, F.Q., et al.: Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, eaay3111 (2020). https://doi.org/10.1126/sciadv.aay3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, X., Wang, Z.Y., García de Arquer, F.P., et al.: Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8

    Article  CAS  Google Scholar 

  14. Li, J., Xu, A.N., Li, F.W., et al.: Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 11, 1–8 (2020). https://doi.org/10.1038/s41467-020-17499-5

    Article  CAS  Google Scholar 

  15. Zhang, L., Zhao, Z.J., Gong, J.: Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 56, 11326–11353 (2017). https://doi.org/10.1002/anie.201612214

    Article  CAS  Google Scholar 

  16. Zhang, Y., Guo, S.X., Zhang, X.L., et al.: Mechanistic understanding of the electrocatalytic CO2 reduction reaction: new developments based on advanced instrumental techniques. Nano Today 31, 100835 (2020). https://doi.org/10.1016/j.nantod.2019.100835

    Article  CAS  Google Scholar 

  17. Liang, S.Y., Altaf, N., Huang, L., et al.: Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 35, 90–105 (2020). https://doi.org/10.1016/j.jcou.2019.09.007

    Article  CAS  Google Scholar 

  18. Weekes, D.M., Salvatore, D.A., Reyes, A., et al.: Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010

    Article  CAS  PubMed  Google Scholar 

  19. Li, X.D., Wang, S.M., Li, L., et al.: Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020). https://doi.org/10.1021/jacs.0c02973

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, Y.P., Wang, J.L., Chu, H., et al.: In situ/operando studies for designing next-generation electrocatalysts. ACS Energy Lett. 5, 1281–1291 (2020). https://doi.org/10.1021/acsenergylett.0c00305

    Article  CAS  Google Scholar 

  21. Handoko, A.D., Wei, F.X., Jenndy, et al.: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6

    Article  CAS  Google Scholar 

  22. Rendón-Calle, A., Builes, S., Calle-Vallejo, F.: A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Curr. Opin. Electrochem. 9, 158–165 (2018). https://doi.org/10.1016/j.coelec.2018.03.012

    Article  CAS  Google Scholar 

  23. Xu, S.Z., Carter, E.A.: Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019). https://doi.org/10.1021/acs.chemrev.8b00481

    Article  CAS  PubMed  Google Scholar 

  24. Lee, K.J., Elgrishi, N., Kandemir, B., et al.: Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 1–14 (2017). https://doi.org/10.1038/s41570-017-0039

    Article  CAS  Google Scholar 

  25. Chen, C., Khosrowabadi Kotyk, J.F., Sheehan, S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019

    Article  CAS  Google Scholar 

  26. Matsuoka, S., Kohzuki, T., Pac, C., et al.: Photocatalysis of oligo(p-phenylenes): photochemical reduction of carbon dioxide with triethylamine. J. Phys. Chem. 96, 4437–4442 (1992). https://doi.org/10.1021/j100190a057

    Article  CAS  Google Scholar 

  27. Whipple, D.T., Kenis, P.J.A.: Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010). https://doi.org/10.1021/jz1012627

    Article  CAS  Google Scholar 

  28. Ringe, S., Clark, E.L., Resasco, J., et al.: Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019). https://doi.org/10.1039/c9ee01341e

    Article  CAS  Google Scholar 

  29. Varela, A.S., Kroschel, M., Leonard, N.D., et al.: pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018). https://doi.org/10.1021/acsenergylett.8b00273

    Article  CAS  Google Scholar 

  30. Waldie, K.M., Ostericher, A.L., Reineke, M.H., et al.: Hydricity of transition-metal hydrides: thermodynamic considerations for CO2 reduction. ACS Catal. 8, 1313–1324 (2018). https://doi.org/10.1021/acscatal.7b03396

    Article  CAS  Google Scholar 

  31. Liu, X., Xiao, J., Peng, H., et al.: Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017). https://doi.org/10.1038/ncomms15438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren, W.H., Zhao, C.: Paths towards enhanced electrochemical CO2 reduction. Natl. Sci. Rev. 7, 7–9 (2020). https://doi.org/10.1093/nsr/nwz121

    Article  PubMed  Google Scholar 

  33. Bagger, A., Ju, W., Varela, A.S., et al.: Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017). https://doi.org/10.1002/cphc.201700736

    Article  CAS  PubMed  Google Scholar 

  34. Pan, Y., Lin, R., Chen, Y., et al.: Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 140, 4218–4221 (2018). https://doi.org/10.1021/jacs.8b00814

    Article  CAS  PubMed  Google Scholar 

  35. Han, N., Wang, Y., Yang, H., et al.: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kou, Z.K., Zhang, L., Ma, Y.Y., et al.: 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl. Catal. B Environ. 243, 678–685 (2019). https://doi.org/10.1016/j.apcatb.2018.11.008

    Article  CAS  Google Scholar 

  37. Dinh, C.T., Burdyny, T., Kibria, M.G., et al.: CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018). https://doi.org/10.1126/science.aas9100

    Article  CAS  PubMed  Google Scholar 

  38. Zhuang, T.T., Liang, Z.Q., Seifitokaldani, A., et al.: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7

    Article  CAS  Google Scholar 

  39. Sun, Z.Y., Ma, T., Tao, H.C., et al.: Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009

    Article  CAS  Google Scholar 

  40. Ross, M.B., de Luna, P., Li, Y.F., et al.: Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7

    Article  CAS  Google Scholar 

  41. Medford, A.J., Vojvodic, A., Hummelshøj, J.S., et al.: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015). https://doi.org/10.1016/j.jcat.2014.12.033

    Article  CAS  Google Scholar 

  42. Han, N., Ding, P., He, L., et al.: Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10, 1902338 (2020). https://doi.org/10.1002/aenm.201902338

    Article  CAS  Google Scholar 

  43. Lee, C.W., Cho, N.H., Yang, K.D., et al.: Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 4, 2130–2136 (2017). https://doi.org/10.1002/celc.201700335

    Article  CAS  Google Scholar 

  44. Baruch, M.F., Pander, J.E., White, J.L., et al.: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015). https://doi.org/10.1021/acscatal.5b00402

    Article  CAS  Google Scholar 

  45. Feaster, J.T., Shi, C., Cave, E.R., et al.: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7, 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687

    Article  CAS  Google Scholar 

  46. Wang, Y.F., Chen, Z., Han, P., et al.: Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018). https://doi.org/10.1021/acscatal.8b01014

    Article  CAS  Google Scholar 

  47. Li, Y.W., Sun, Q.: Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 6, 1600463 (2016). https://doi.org/10.1002/aenm.201600463

    Article  CAS  Google Scholar 

  48. Garza, A.J., Bell, A.T., Head-Gordon, M.: Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477

    Article  CAS  Google Scholar 

  49. Todorova, T.K., Schreiber, M.W., Fontecave, M.: Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10, 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746

    Article  CAS  Google Scholar 

  50. Popović, S., Smiljanić, M., Jovanovič, P., et al.: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59, 14736–14746 (2020). https://doi.org/10.1002/anie.202000617

    Article  CAS  Google Scholar 

  51. Torelli, D.A., Francis, S.A., Crompton, J.C., et al.: Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016). https://doi.org/10.1021/acscatal.5b02888

    Article  CAS  Google Scholar 

  52. Kortlever, R., Peters, I., Balemans, C., et al.: Palladium-gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52, 10229–10232 (2016). https://doi.org/10.1039/c6cc03717h

    Article  CAS  Google Scholar 

  53. Calvinho, K.U.D., Laursen, A.B., Yap, K.M.K., et al.: Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 11, 2550–2559 (2018). https://doi.org/10.1039/c8ee00936h

    Article  CAS  Google Scholar 

  54. Fan, Q., Zhang, M.L., Jia, M.W., et al.: Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018). https://doi.org/10.1016/j.mtener.2018.10.003

    Article  Google Scholar 

  55. Goodpaster, J.D., Bell, A.T., Head-Gordon, M.: Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358

    Article  CAS  PubMed  Google Scholar 

  56. Ledezma-Yanez, I., Gallent, E.P., Koper, M.T.M., et al.: Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction. Catal. Today 262, 90–94 (2016). https://doi.org/10.1016/j.cattod.2015.09.029

    Article  CAS  Google Scholar 

  57. Calle-Vallejo, F., Koper, M.T.: Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013). https://doi.org/10.1002/anie.201301470

    Article  CAS  Google Scholar 

  58. Hanselman, S., Koper, M.T.M., Calle-Vallejo, F.: Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species. ACS Energy Lett. 3, 1062–1067 (2018). https://doi.org/10.1021/acsenergylett.8b00326

    Article  CAS  Google Scholar 

  59. Hahn, C., Hatsukade, T., Kim, Y.G., et al.: Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. PNAS 114, 5918–5923 (2017). https://doi.org/10.1073/pnas.1618935114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, Y.M., Chen, S., Quan, X., et al.: Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975

    Article  CAS  PubMed  Google Scholar 

  61. Genovese, C., Ampelli, C., Perathoner, S., et al.: Mechanism of C–C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 19, 2406–2415 (2017). https://doi.org/10.1039/c6gc03422e

    Article  CAS  Google Scholar 

  62. Birdja, Y.Y., Koper, M.T.M.: The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139, 2030–2034 (2017). https://doi.org/10.1021/jacs.6b12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhuang, T.T., Pang, Y.J., Liang, Z.Q., et al.: Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Catal. 1, 946–951 (2018). https://doi.org/10.1038/s41929-018-0168-4

    Article  CAS  Google Scholar 

  64. Kuhl, K.P., Cave, E.R., Abram, D.N., et al.: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012). https://doi.org/10.1039/c2ee21234j

    Article  CAS  Google Scholar 

  65. Ren, D., Wong, N.T., Handoko, A.D., et al.: Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2016). https://doi.org/10.1021/acs.jpclett.5b02554

    Article  CAS  PubMed  Google Scholar 

  66. Hori, Y., Kikuchi, K., Suzuki, S.: Production of CO and CH4IN electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 14, 1695–1698 (1985). https://doi.org/10.1246/cl.1985.1695

    Article  Google Scholar 

  67. Li, Y.C., Yan, Z.F., Hitt, J., et al.: Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018). https://doi.org/10.1002/adsu.201700187

    Article  CAS  Google Scholar 

  68. Lum, Y., Yue, B.B., Lobaccaro, P., et al.: Optimizing C–C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. J. Phys. Chem. C 121, 14191–14203 (2017). https://doi.org/10.1021/acs.jpcc.7b03673

    Article  CAS  Google Scholar 

  69. Lee, S.Y., Jung, H., Kim, N.K., et al.: Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140, 8681–8689 (2018). https://doi.org/10.1021/jacs.8b02173

    Article  CAS  PubMed  Google Scholar 

  70. Lobaccaro, P., Singh, M.R., Clark, E.L., et al.: Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. Phys. Chem. Chem. Phys. 18, 26777–26785 (2016). https://doi.org/10.1039/C6CP05287H

    Article  CAS  PubMed  Google Scholar 

  71. Kas, R., Kortlever, R., Yılmaz, H., et al.: Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem 2, 354–358 (2015). https://doi.org/10.1002/celc.201402373

    Article  CAS  Google Scholar 

  72. Jayashree, R.S., Yoon, S.K., Brushett, F.R., et al.: On the performance of membraneless laminar flow-based fuel cells. J. Power Sources 195, 3569–3578 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.029

    Article  CAS  Google Scholar 

  73. Whipple, D.T., Finke, E.C., Kenis, P.J.A.: Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem. Solid State Lett. 13, B109–B111 (2010). https://doi.org/10.1149/1.3456590

    Article  CAS  Google Scholar 

  74. Grimaud, A., Yin, W., Lepoivre, F., et al.: Controlling the specific CO2 adsorption on electrochemically formed metallic copper surfaces. J. Electrochem. Soc. 165, H163–H169 (2018). https://doi.org/10.1149/2.0031805jes

    Article  CAS  Google Scholar 

  75. Kahsay, A.W., Ibrahim, K.B., Tsai, M.C., et al.: Selective and low overpotential electrochemical CO2 reduction to formate on CuS decorated CuO heterostructure. Catal. Lett. 149, 860–869 (2019). https://doi.org/10.1007/s10562-019-02657-2

    Article  CAS  Google Scholar 

  76. Zhou, L.Q., Ling, C., Jones, M., et al.: Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chem. Commun. 51, 17704–17707 (2015). https://doi.org/10.1039/c5cc06752a

    Article  CAS  Google Scholar 

  77. Wei, C., Rao, R.R., Peng, J.Y., et al.: Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, e1806296 (2019). https://doi.org/10.1002/adma.201806296

    Article  CAS  PubMed  Google Scholar 

  78. McCrory, C.C.L., Jung, S., Ferrer, I.M., et al.: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015). https://doi.org/10.1021/ja510442p

    Article  CAS  PubMed  Google Scholar 

  79. Yang, F., Hu, W.H., Yang, C.Q., et al.: Tuning internal strain in metal-organic frameworks via vapor phase infiltration for CO2 reduction. Angew. Chem. Int. Ed. 59, 4572–4580 (2020). https://doi.org/10.1002/anie.202000022

    Article  CAS  Google Scholar 

  80. Chen, L.D., Urushihara, M., Chan, K.R., et al.: Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016). https://doi.org/10.1021/acscatal.6b02299

    Article  CAS  Google Scholar 

  81. Ananthaneni, S., Rankin, R.B.: Computational screening of transition metal/p-block hybrid electrocatalysts for CO2 reduction. J. Comput. Chem. 41, 1384–1394 (2020). https://doi.org/10.1002/jcc.26182

    Article  CAS  PubMed  Google Scholar 

  82. Abild-Pedersen, F., Greeley, J., Studt, F., et al.: Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007). https://doi.org/10.1103/physrevlett.99.016105

    Article  CAS  PubMed  Google Scholar 

  83. Göttle, A.J., Koper, M.T.M.: Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 8, 458–465 (2017). https://doi.org/10.1039/c6sc02984a

    Article  PubMed  Google Scholar 

  84. Bushuyev, O.S., de Luna, P., Dinh, C.T., et al.: What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003

    Article  CAS  Google Scholar 

  85. Xiao, H., Cheng, T., Goddard, W.A.: Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017). https://doi.org/10.1021/jacs.6b06846

    Article  CAS  PubMed  Google Scholar 

  86. Calle-Vallejo, F., Krabbe, A., García-Lastra, J.M.: How covalence breaks adsorption-energy scaling relations and solvation restores them. Chem. Sci. 8, 124–130 (2017). https://doi.org/10.1039/C6SC02123A

    Article  CAS  PubMed  Google Scholar 

  87. Akhade, S.A., McCrum, I.T., Janik, M.J.: The impact of specifically adsorbed ions on the copper-catalyzed electroreduction of CO2. J. Electrochem. Soc. 163, F477–F484 (2016). https://doi.org/10.1149/2.0581606jes

    Article  CAS  Google Scholar 

  88. Yang, C.W., Wöll, C.: IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Adv. Phys. X 2, 373–408 (2017). https://doi.org/10.1080/23746149.2017.1296372

    Article  CAS  Google Scholar 

  89. Hori, Y., Koga, O., Yamazaki, H., et al.: Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta 40, 2617–2622 (1995). https://doi.org/10.1016/0013-4686(95)00239-b

    Article  CAS  Google Scholar 

  90. Zhu, S.Q., Jiang, B., Cai, W.B., et al.: Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017). https://doi.org/10.1021/jacs.7b10462

    Article  CAS  PubMed  Google Scholar 

  91. Pérez-Gallent, E., Figueiredo, M.C., Calle-Vallejo, F., et al.: Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017). https://doi.org/10.1002/anie.201700580

    Article  CAS  Google Scholar 

  92. Stöckle, R.M., Suh, Y.D., Deckert, V., et al.: Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). https://doi.org/10.1016/s0009-2614(99)01451-7

    Article  Google Scholar 

  93. Zang, W.J., Yang, T., Zou, H.Y., et al.: Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 9, 10166–10173 (2019). https://doi.org/10.1021/acscatal.9b02944

    Article  CAS  Google Scholar 

  94. Kou, Z.K., Zang, W.J., Pei, W., et al.: A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. J. Mater. Chem. A 8, 3071–3082 (2020). https://doi.org/10.1039/C9TA12838G

    Article  CAS  Google Scholar 

  95. Matsui, H., Ishiguro, N., Uruga, T., et al.: Operando 3D visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew. Chem.- Int. Ed. 56, 9371–9375 (2017). https://doi.org/10.1002/anie.201703940

    Article  CAS  Google Scholar 

  96. Siegbahn, H., Siegbahn, K.: ESCA applied to liquids. J. Electron Spectrosc. Relat. Phenom. 2, 319–325 (1973). https://doi.org/10.1016/0368-2048(73)80023-4

    Article  CAS  Google Scholar 

  97. Velasco-Velez, J.J., Pfeifer, V., Hävecker, M., et al.: Photoelectron spectroscopy at the graphene-liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015). https://doi.org/10.1002/anie.201506044

    Article  CAS  Google Scholar 

  98. Ustarroz, J., Geboes, B., Vanrompay, H., et al.: Electrodeposition of highly porous Pt nanoparticles studied by quantitative 3D electron tomography: influence of growth mechanisms and potential cycling on the active surface area. ACS Appl. Mater. Interfaces 9, 16168–16177 (2017). https://doi.org/10.1021/acsami.7b01619

    Article  CAS  PubMed  Google Scholar 

  99. Zang, W.J., Kou, Z.K., Pennycook, S.J., et al.: Single atom electrocatalysis: heterogeneous single atom electrocatalysis, where “singles” are “married.” Adv. Energy Mater. 10, 2070037 (2020). https://doi.org/10.1002/aenm.202070037

    Article  CAS  Google Scholar 

  100. Kou, Z.K., Zang, W.J., Wang, P.K., et al.: Single atom catalysts: a surface heterocompound perspective. Nanoscale Horiz. 5, 757–764 (2020). https://doi.org/10.1039/D0NH00088D

    Article  CAS  PubMed  Google Scholar 

  101. Ouyang, Y.X., Shi, L., Bai, X.W., et al.: Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem. Sci. 11, 1807–1813 (2020). https://doi.org/10.1039/C9SC05236D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng, T.T., Jiang, K., Ta, N., et al.: Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019). https://doi.org/10.1016/j.joule.2018.10.015

    Article  CAS  Google Scholar 

  103. Back, S., Lim, J., Kim, N.Y., et al.: Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 8, 1090–1096 (2017). https://doi.org/10.1039/c6sc03911a

    Article  CAS  PubMed  Google Scholar 

  104. Jia, M.W., Fan, Q., Liu, S.Z., et al.: Single-atom catalysis for electrochemical CO2 reduction. Curr. Opin. Green Sustain. Chem. 16, 1–6 (2019). https://doi.org/10.1016/j.cogsc.2018.11.002

    Article  Google Scholar 

  105. Geng, Z.G., Cao, Y.J., Chen, W.X., et al.: Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B Environ. 240, 234–240 (2019). https://doi.org/10.1016/j.apcatb.2018.08.075

    Article  CAS  Google Scholar 

  106. Zhu, H.J., Lu, M., Wang, Y.R., et al.: Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat. Commun. 11, 1–10 (2020). https://doi.org/10.1038/s41467-019-14237-4

    Article  CAS  Google Scholar 

  107. Liu, S., Yang, H.B., Hung, S.F., et al.: Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 59, 510 (2020). https://doi.org/10.1002/anie.201915193

    Article  Google Scholar 

  108. Wang, T.T., Zhao, Q.D., Fu, Y.Y., et al.: Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 3, 1970033 (2019). https://doi.org/10.1002/smtd.201970033

    Article  Google Scholar 

  109. Kwon, K.C., Suh, J.M., Varma, R.S., et al.: Electrocatalytic water splitting and CO2 reduction: sustainable solutions via single-atom catalysts supported on 2D materials. Small Methods 3, 1800492 (2019). https://doi.org/10.1002/smtd.201800492

    Article  CAS  Google Scholar 

  110. Millet, M.M., Algara-Siller, G., Wrabetz, S., et al.: Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 141, 2451–2461 (2019). https://doi.org/10.1021/jacs.8b11729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cheng, Y., Zhao, S.Y., Li, H.B., et al.: Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 243, 294–303 (2019). https://doi.org/10.1016/j.apcatb.2018.10.046

    Article  CAS  Google Scholar 

  112. Ren, W., Tan, X., Yang, W., et al.: Isolated diatomic Ni–Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019). https://doi.org/10.1002/anie.201901575

    Article  CAS  Google Scholar 

  113. Zhu, Y.Z., Peng, W.C., Li, Y., et al.: Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3, 1800438 (2019). https://doi.org/10.1002/smtd.201800438

    Article  CAS  Google Scholar 

  114. Zhang, B., Fan, T., Xie, N., et al.: Versatile applications of metal single-atom @ 2D material nanoplatforms. Adv. Sci. (Weinh) 6, 1901787 (2019). https://doi.org/10.1002/advs.201901787

    Article  CAS  Google Scholar 

  115. Alarawi, A., Ramalingam, V., He, J.H.: Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater. Today Energy 11, 1–23 (2019). https://doi.org/10.1016/j.mtener.2018.10.014

    Article  CAS  Google Scholar 

  116. Li, F.W., Thevenon, A., Rosas-Hernández, A., et al.: Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2

    Article  CAS  PubMed  Google Scholar 

  117. Corbin, N., Zeng, J., Williams, K., et al.: Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 12, 2093–2125 (2019). https://doi.org/10.1007/s12274-019-2403-y

    Article  CAS  Google Scholar 

  118. Chen, Y.J., Ji, S.F., Chen, C., et al.: Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019

    Article  CAS  Google Scholar 

  119. Wu, J.J., Yadav, R.M., Liu, M.J., et al.: Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9, 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079

    Article  CAS  PubMed  Google Scholar 

  120. Peterson, A.A., Nørskov, J.K.: Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012). https://doi.org/10.1021/jz201461p

    Article  CAS  Google Scholar 

  121. Gauthier, J.A., Fields, M., Bajdich, M., et al.: Facile electron transfer to CO2 during adsorption at the Metal|Solution interface. J. Phys. Chem. C 123, 29278–29283 (2019). https://doi.org/10.1021/acs.jpcc.9b10205

    Article  CAS  Google Scholar 

  122. Yang, X.X., Deng, P.L., Liu, D.Y., et al.: Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 8, 2472–2480 (2020). https://doi.org/10.1039/c9ta11363k

    Article  CAS  Google Scholar 

  123. Wang, H., Tzeng, Y.K., Ji, Y., et al.: Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 15, 131–137 (2020). https://doi.org/10.1038/s41565-019-0603-y

    Article  CAS  PubMed  Google Scholar 

  124. Bai, X.W., Li, Q., Shi, L., et al.: Hybrid Cu0 and Cux+ as atomic interfaces promote high-selectivity conversion of CO2 to C2H5OH at low potential. Small 16, 1901981 (2020). https://doi.org/10.1002/smll.201901981

    Article  CAS  Google Scholar 

  125. Parastaev, A., Muravev, V., Huertas Osta, E., et al.: Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020). https://doi.org/10.1038/s41929-020-0459-4

    Article  CAS  Google Scholar 

  126. Yang, F., Ma, X.Y., Cai, W.B., et al.: Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO2 reduction reaction. J. Am. Chem. Soc. 141, 20451–20459 (2019). https://doi.org/10.1021/jacs.9b11123

    Article  CAS  PubMed  Google Scholar 

  127. Vennekötter, J.B., Scheuermann, T., Sengpiel, R., et al.: The electrolyte matters: stable systems for high rate electrochemical CO2 reduction. J. CO2 Util. 32, 202–213 (2019). https://doi.org/10.1016/j.jcou.2019.04.007

    Article  CAS  Google Scholar 

  128. Gao, D.F., Zhang, Y., Zhou, Z.W., et al.: Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 139, 5652–5655 (2017). https://doi.org/10.1021/jacs.7b00102

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y.H., Liu, J.L., Wang, Y.F., et al.: Tuning of CO2 reduction selectivity on metal electrocatalysts. Small 13, 1701809 (2017). https://doi.org/10.1002/smll.201701809

    Article  CAS  Google Scholar 

  130. Raciti, D., Wang, C.: Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018). https://doi.org/10.1021/acsenergylett.8b00553

    Article  CAS  Google Scholar 

  131. Wu, Y.A., McNulty, I., Liu, C., et al.: Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019). https://doi.org/10.1038/s41560-019-0490-3

    Article  CAS  Google Scholar 

  132. Gao, Y.G., Wu, Q., Liang, X.Z., et al.: Cu2O nanoparticles with both 100 and 111 facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 7, 1902820 (2020). https://doi.org/10.1002/advs.201902820

    Article  CAS  Google Scholar 

  133. Mezzavilla, S., Horch, S., Stephens, I.E.L., et al.: Structure sensitivity in the electrocatalytic reduction of CO2 with gold catalysts. Angew. Chem. Int. Ed. 58, 3774–3778 (2019). https://doi.org/10.1002/anie.201811422

    Article  CAS  Google Scholar 

  134. Gong, Y.N., Jiao, L., Qian, Y., et al.: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59, 2705–2709 (2020). https://doi.org/10.1002/anie.201914977

    Article  CAS  Google Scholar 

  135. Hori, Y., Takahashi, I., Koga, O., et al.: Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002). https://doi.org/10.1021/jp013478d

    Article  CAS  Google Scholar 

  136. Roberts, F.S., Kuhl, K.P., Nilsson, A.: High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54, 5179–5182 (2015). https://doi.org/10.1002/anie.201412214

    Article  CAS  Google Scholar 

  137. Gao, D.F., Zegkinoglou, I., Divins, N.J., et al.: Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017). https://doi.org/10.1021/acsnano.7b01257

    Article  CAS  PubMed  Google Scholar 

  138. Montoya, J.H., Shi, C., Chan, K.R., et al.: Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722

    Article  CAS  PubMed  Google Scholar 

  139. Sandberg, R.B., Montoya, J.H., Chan, K.R., et al.: CO–CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016). https://doi.org/10.1016/j.susc.2016.08.006

    Article  CAS  Google Scholar 

  140. Luo, W.J., Nie, X.W., Janik, M.J., et al.: Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967

    Article  CAS  Google Scholar 

  141. Schouten, K.J.P., Qin, Z.S., Pérez Gallent, E., et al.: Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012). https://doi.org/10.1021/ja302668n

    Article  CAS  PubMed  Google Scholar 

  142. Yang, M., Zhang, J.Z., Cao, Y.Y., et al.: Facet sensitivity of capping ligand-free Ag crystals in CO2 electrochemical reduction to CO. ChemCatChem 10, 5128–5134 (2018). https://doi.org/10.1002/cctc.201801423

    Article  CAS  Google Scholar 

  143. Lee, H.E., Yang, K.D., Yoon, S.M., et al.: Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 9, 8384–8393 (2015). https://doi.org/10.1021/acsnano.5b03065

    Article  CAS  PubMed  Google Scholar 

  144. Hoshi, N., Noma, M., Suzuki, T., et al.: Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium. J. Electroanal. Chem. 421, 15–18 (1997). https://doi.org/10.1016/s0022-0728(96)01023-6

    Article  CAS  Google Scholar 

  145. Won, D.H., Shin, H., Koh, J., et al.: Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. Int. Ed. 55, 9297–9300 (2016). https://doi.org/10.1002/anie.201602888

    Article  CAS  Google Scholar 

  146. Liu, S.H., Lu, J.S., Pu, Y.C., et al.: Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. J. CO2 Util. 33, 171–178 (2019). https://doi.org/10.1016/j.jcou.2019.05.020

    Article  CAS  Google Scholar 

  147. Wang, H.X., Liang, Z., Tang, M., et al.: Self-selective catalyst synthesis for CO2 reduction. Joule 3, 1927–1936 (2019). https://doi.org/10.1016/j.joule.2019.05.023

    Article  CAS  Google Scholar 

  148. He, J., Johnson, N.J.J., Huang, A., et al.: Electrocatalytic alloys for CO2 reduction. Chemsuschem 11, 48–57 (2018). https://doi.org/10.1002/cssc.201701825

    Article  CAS  PubMed  Google Scholar 

  149. Lee, C.W., Yang, K.D., Nam, D.H., et al.: Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 30, 1704717 (2018). https://doi.org/10.1002/adma.201704717

    Article  CAS  Google Scholar 

  150. Zhang, Y.J., Sethuraman, V., Michalsky, R., et al.: Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts. ACS Catal. 4, 3742–3748 (2014). https://doi.org/10.1021/cs5012298

    Article  CAS  Google Scholar 

  151. Sen, S., Liu, D., Palmore, G.T.R.: Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 4, 3091–3095 (2014). https://doi.org/10.1021/cs500522g

    Article  CAS  Google Scholar 

  152. Chang, Z.Y., Huo, S.J., Zhang, W., et al.: The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 121, 11368–11379 (2017). https://doi.org/10.1021/acs.jpcc.7b01586

    Article  CAS  Google Scholar 

  153. Rasul, S., Anjum, D.H., Jedidi, A., et al.: A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem. Int. Ed. 54, 2146–2150 (2015). https://doi.org/10.1002/anie.201410233

    Article  CAS  Google Scholar 

  154. Kim, D., Resasco, J., Yu, Y., et al.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 1–8 (2014). https://doi.org/10.1038/ncomms5948

    Article  CAS  Google Scholar 

  155. Vasileff, A., Xu, C.C., Jiao, Y., et al.: Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001

    Article  CAS  Google Scholar 

  156. Chen, Z., Zhang, X., Lu, G.: Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires. Chem. Sci. 6, 6829–6835 (2015). https://doi.org/10.1039/c5sc02667a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kim, D., Xie, C.L., Becknell, N., et al.: Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017). https://doi.org/10.1021/jacs.7b03516

    Article  CAS  PubMed  Google Scholar 

  158. Mistry, H., Reske, R., Strasser, P., et al.: Size-dependent reactivity of gold–copper bimetallic nanoparticles during CO2 electroreduction. Catal. Today 288, 30–36 (2017). https://doi.org/10.1016/j.cattod.2016.09.017

    Article  CAS  Google Scholar 

  159. Monzó, J., Malewski, Y., Kortlever, R., et al.: Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J. Mater. Chem. A 3, 23690–23698 (2015). https://doi.org/10.1039/c5ta06804e

    Article  Google Scholar 

  160. Christophe, J., Doneux, T., Buess-Herman, C.: Electroreduction of carbon dioxide on copper-based electrodes: activity of copper single crystals and copper-gold alloys. Electrocatalysis 3, 139–146 (2012). https://doi.org/10.1007/s12678-012-0095-0

    Article  CAS  Google Scholar 

  161. Cheng, M.J., Clark, E.L., Pham, H.H., et al.: Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal. 6, 7769–7777 (2016). https://doi.org/10.1021/acscatal.6b01393

    Article  CAS  Google Scholar 

  162. Zang, W.J., Sumboja, A., Ma, Y.Y., et al.: Single Co atoms anchored in porous N-doped carbon for efficient zinc-Air battery cathodes. ACS Catal. 8, 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556

    Article  CAS  Google Scholar 

  163. Meng, N.N., Zhou, W., Yu, Y.F., et al.: Superficial hydroxyl and amino groups synergistically active polymeric carbon nitride for CO2 electroreduction. ACS Catal. 9, 10983–10989 (2019). https://doi.org/10.1021/acscatal.9b03895

    Article  CAS  Google Scholar 

  164. Hoang, T.T., Verma, S., Ma, S.C., et al.: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868

    Article  CAS  PubMed  Google Scholar 

  165. Han, Z.J., Kortlever, R., Chen, H.Y., et al.: CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3, 853–859 (2017). https://doi.org/10.1021/acscentsci.7b00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xie, M.S., Xia, B.Y., Li, Y.W., et al.: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9, 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a

    Article  CAS  Google Scholar 

  167. Booth, N.A., Woodruff, D.P., Schaff, O., et al.: Determination of the local structure of glycine adsorbed on Cu(110). Surf. Sci. 397, 258–269 (1998). https://doi.org/10.1016/s0039-6028(97)00742-5

    Article  CAS  Google Scholar 

  168. Xiao, J.P., Kuc, A., Frauenheim, T., et al.: CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. J. Mater. Chem. A 2, 4885–4889 (2014). https://doi.org/10.1039/C3TA14755J

    Article  CAS  Google Scholar 

  169. Gao, D.F., Scholten, F., Roldan Cuenya, B.: Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 7, 5112–5120 (2017). https://doi.org/10.1021/acscatal.7b01416

    Article  CAS  Google Scholar 

  170. Ma, W.C., Xie, S.J., Liu, T.T., et al.: Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0

    Article  CAS  Google Scholar 

  171. Yang, P.P., Zhang, X.L., Gao, F.Y., et al.: Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142, 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699

    Article  CAS  PubMed  Google Scholar 

  172. Sheng, W.C., Kattel, S., Yao, S.Y., et al.: Electrochemical reduction of CO2to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017). https://doi.org/10.1039/c7ee00071e

    Article  CAS  Google Scholar 

  173. Haas, T., Krause, R., Weber, R., et al.: Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018). https://doi.org/10.1038/s41929-017-0005-1

    Article  CAS  Google Scholar 

  174. Zhong, M., Tran, K., Min, Y., et al.: Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support of the Green Energy Programme (R284-000-185-731) supported by the National University of Singapore, and the Tier 1 Grant (R284-000-193-114), supported by MOE for research conducted at the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Wang or John Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, Z., Li, X., Wang, T. et al. Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. Electrochem. Energy Rev. 5, 82–111 (2022). https://doi.org/10.1007/s41918-021-00096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-021-00096-5

Keywords

Navigation