Skip to main content
Log in

Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Pt-based catalysts are the most efficient catalysts for low-temperature fuel cells. However, commercialization is impeded by prohibitively high costs and scarcity. One of the most effective strategies to reduce Pt loading is to deposit a monolayer or a few layers of Pt over other metal cores to form core–shell-structured electrocatalysts. In core–shell-structured electrocatalysts, the compositions of the core can be divided into five classes: single-precious metallic cores represented by Pd, Ru, and Au; single-non-precious metallic cores represented by Cu, Ni, Co, and Fe; alloy cores containing 3d, 4d or 5d metals; and carbide and nitride cores. Of these, researchers have found that carbide and nitride cores can yield tremendous advantages over alloy cores in terms of cost and promotional activities of Pt shells. In addition, desirable shells with reasonable thicknesses and compositions have been recognized to play a dominant role in electrocatalytic performances. And recently, researchers have also found that the catalytic activity of core–shell-structured catalysts is dependent on the binding energy of the adsorbents, which is determined by the d-band center of Pt. The shifting of this d-band center in turn is mainly affected by strain and electronic effects, which can be adjusted by adjusting core compositions and shell thicknesses of catalysts. In the development of these core–shell structures, optimal synthesis methods are of primary concern because they directly determine the practical application potential of the resulting electrocatalysts. And in this article, the principles behind core–shell-structured low-Pt electrocatalysts and the developmental progresses of various synthesis methods along with the traits of each type of core and its effects on Pt shell catalytic activities are discussed. In addition, perspectives on this type of catalyst are discussed and future research directions are proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reprinted with permission from Ref. [37]. Copyright 2015 American Chemical Society

Fig. 5

Modified with permission from Ref. [114]. Copyright 2015 Elsevier

Fig. 6

Reprinted with permission from Ref. [139]. Copyright 2016 Elsevier

Fig. 7

Reprinted with permission from Ref. [196]. Copyright 2008 American Chemical Society

Fig. 8

(modified from Ref. [216]). Copyright 2012 American Chemical Society

Fig. 9

Reprinted with permission from Ref. [231]. Copyright 2012 American Chemical Society

Fig. 10

Reprinted with permission from Ref. [269]. Copyright 2005 American Chemical Society

Fig. 11

Reprinted with permission from Ref. [313]. Copyright 1998 Elsevier Science

Fig. 12

(modified from Ref. [329]). Copyright 2016 American Chemical Society

Fig. 13

Reprinted with permission from Ref. [340]. Copyright 2013 American Chemical Society

Fig. 14

(modified from Ref. [351]). Copyright 2014 American Chemical Society

Fig. 15

Reprinted with permission from Ref. [361]. Copyright 2005 the American Institute of Physics

Fig. 16

(modified with permission from Ref. [366]). Copyright 2005 Science

Fig. 17

(modified with permission from Ref. [382]). Copyright 2016 American Chemical Society

Fig. 18

(modified with permission from Ref. [401]). Copyright 2013 American Chemical Society

Fig. 19
Fig. 20

Reprinted with permission from Ref. [406]. Copyright 2005 Wiley

Fig. 21

(modified with permission from [366]). Copyright 2015 Nature

Fig. 22
Fig. 23
Fig. 24

(modified with permission from [331]). Copyright 2015 Science

Fig. 25

Reprinted with permission from Ref. [428]. Copyright 2007 Science

Fig. 26

(modified with permission from Ref. [450]). Copyright 2011 The Royal Society of Chemistry

Fig. 27

(modified with permission from Ref. [229]). Copyright 2012 The American Society of Chemistry

Fig. 28

Copied with permission from Ref. [482], Copyright 2012 The American Society of Chemistry

Fig. 29

(modified with permission from Ref. [486]). Copyright 2016 The Royal Society of Chemistry

Fig. 30

(modified with permission from Ref. [224]). Copyright 2010 Nature

Fig. 31

(modified with permission from Ref. [516]). Copyright 2013 The Royal Society of Chemistry

Fig. 32

(modified with permission from Ref. [533]). Copyright 2016 Science

Fig. 33

(modified with permission from Ref. [544]). Copyright 2012 American Chemical Society

Fig. 34

(modified with permission from Ref. [208]). Copyright 2016 Elsevier

Fig. 35

(modified with permission from Ref. [91]). Copyright 2016 The American Chemical Society

Fig. 36

Reprinted with permission from Ref. [35]. Copyright 2007 Springer

Fig. 37

(modified with permission from Ref. [128]). Copyright 2012 The American Chemical Society

Fig. 38
Fig. 39

(modified with permission from Ref. [224]). Copyright 2010 Nature

Fig. 40

(modified with permission from Ref. [415]). Copyright 2001 The Royal Chemical Society

Similar content being viewed by others

References

  1. BP: Sustainability report. http://www.bp.com/content/dam/bp/pdf/sustainability/group-reports/bp-sustainability-report-2015.pdf (2015)

  2. U.S. Department of Energy: Fuel cell technologies office multi-year research, development, and demonstration plan. http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 (2018). Accessed 18 June 2018

  3. Kordesch, K.V., Simader, G.R.: Environmental impact of fuel cell technology. Chem. Rev. 95, 191–207 (1995)

    CAS  Google Scholar 

  4. Wang, H., Ma, Y., Wang, R., et al.: Liquid–liquid interface-mediated room-temperature synthesis of amorphous NiCo pompoms from ultrathin nanosheets with high catalytic activity for hydrazine oxidation. Chem. Commun. 51, 3570–3573 (2015)

    CAS  Google Scholar 

  5. Liu, Y., Jiao, Y., Yin, B., et al.: Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core–shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode matertials. J. Mater. Chem. A 3, 3676–3682 (2015)

    CAS  Google Scholar 

  6. Borup, R., Meyers, J., Pivovar, B., et al.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007)

    CAS  PubMed  Google Scholar 

  7. U.S. Department of Energy. Hydrogen & fuel cells program. https://www.hydrogen.energy.gov/program_records.html#fuel_cells (2018). Accessed 18 June 2018

  8. Saha, M.S., Neburchilov, V., Ghosh, D., et al.: Nanomaterials-supported Pt catalysts for proton exchange membrane fuel cells. Wiley Interdiscip. Rev. Energy Environ. 2, 31–51 (2013)

    CAS  Google Scholar 

  9. Gasteiger, H.A., Marković, N.M.: Just a dream—or future reality? Science 324, 48–49 (2009)

    CAS  PubMed  Google Scholar 

  10. Bing, Y., Liu, H., Zhang, L., et al.: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184–2202 (2010)

    CAS  PubMed  Google Scholar 

  11. Richards, J.: “Precious” metals: the case for treating metals as irreplaceable. J. Clean. Prod. 14, 324–333 (2006)

    Google Scholar 

  12. Mudd, G.M.: Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 46, 106–117 (2012)

    Google Scholar 

  13. LMC Automotive. http://www.lmc-auto.com/ (2018). Accessed 18 June 2018

  14. Besenbacher, F., Chorkendorff, I.I., Clausen, B.S., et al.: Design of a surface alloy catalyst for steam reforming. Science 279, 1913–1915 (1998)

    CAS  PubMed  Google Scholar 

  15. Greeley, J., Mavrikakis, M.: Alloy catalysts designed from first principles. Nat. Mater. 3, 810–815 (2004)

    CAS  PubMed  Google Scholar 

  16. Linic, S., Jankowiak, J., Barteau, M.A.: Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles. J. Catal. 224, 489–493 (2004)

    CAS  Google Scholar 

  17. Greeley, J., Jaramillo, T.F., Bonde, J., et al.: Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006)

    CAS  PubMed  Google Scholar 

  18. Wintterlin, J., Völkening, S., Janssens, T.V.W., et al.: Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278, 1931–1934 (1997)

    CAS  PubMed  Google Scholar 

  19. Tao, F.F., Crozier, P.A.: Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 3487–3539 (2016)

    CAS  PubMed  Google Scholar 

  20. Kabbabi, A., Faure, R., Durand, R., et al.: In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes. J. Electroanal. Chem. 444, 41–53 (1998)

    CAS  Google Scholar 

  21. Holstein, W.L., Rosenfeld, H.D.: In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation. J. Phys. Chem. B 109, 2176–2186 (2004)

    Google Scholar 

  22. Stamenkovic, V.R., Mun, B.S., Arenz, M., et al.: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007)

    CAS  PubMed  Google Scholar 

  23. Cho, J., Roh, W., Kim, D.K., et al.: X-Ray absorption spectroscopic and electrochemical analyses of Pt–Cu–Fe ternary alloy electrocatalysts supported on carbon. J. Chem. Soc., Faraday Trans. 94, 2835–2841 (1998)

    CAS  Google Scholar 

  24. Yim, W.L., Klüner, T.: Understanding of adsorption and catalytic properties of bimetallic Pt − Co alloy surfaces from first principles: insight from disordered alloy surfaces. J. Phys. Chem. C 114, 7141–7152 (2010)

    CAS  Google Scholar 

  25. Greco, G., Witkowska, A., Minicucci, M., et al.: Local ordering changes in Pt–Co nanocatalyst induced by fuel cell working conditions. J. Phys. Chem. C 116, 12791–12802 (2012)

    CAS  Google Scholar 

  26. Stephens, I.E.L., Bondarenko, A.S., Gronbjerg, U., et al.: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012)

    CAS  Google Scholar 

  27. Guo, S., Zhang, S., Sun, S.: Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 8526–8544 (2013)

    CAS  Google Scholar 

  28. Qiao, Y., Li, C.M.: Nanostructured catalysts in fuel cells. J. Mater. Chem. 21, 4027–4036 (2011)

    CAS  Google Scholar 

  29. Morozan, A., Jousselme, B., Palacin, S.: Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 4, 1238–1254 (2011)

    CAS  Google Scholar 

  30. Inaba, M., Daimon, H.: Development of highly active and durable platinum core–shell catalysts for polymer electrolyte fuel cells. J. Jpn. Petrol. Inst. 58, 55–63 (2015)

    CAS  Google Scholar 

  31. Liu, H.L., Nosheen, F., Wang, X.: Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem. Soc. Rev. 44, 3056–3078 (2015)

    CAS  PubMed  Google Scholar 

  32. Yang, H.: Platinum-based electrocatalysts with core–shell nanostructures. Angew. Chem. Int. Ed. 50, 2674–2676 (2011)

    CAS  Google Scholar 

  33. Oezaslan, M., Hasché, F., Strasser, P.: Pt-based core–shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 4, 3273–3291 (2013)

    CAS  Google Scholar 

  34. Liao, H., Fisher, A., Xu, Z.J.: Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11, 3221–3246 (2015)

    CAS  PubMed  Google Scholar 

  35. Adzic, R.R., Zhang, J., Sasaki, K., et al.: Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007)

    CAS  Google Scholar 

  36. Shao, M., Chang, Q., Dodelet, J.P., et al.: Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016)

    CAS  PubMed  Google Scholar 

  37. Wang, X., Vara, M., Luo, M., et al.: Pd@Pt core–shell concave decahedra: a class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 137, 15036–15042 (2015)

    CAS  PubMed  Google Scholar 

  38. Pelizzetti, E. (ed.): Fine Particles Science and Technology—From Micro to Nanoparticles. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  39. Nguyen, V.L., Ohtaki, M., Matsubara, T., et al.: New experimental evidences of Pt–Pd bimetallic nanoparticles with core–shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy. J. Phys. Chem. C 116, 12265–12274 (2012)

    CAS  Google Scholar 

  40. Li, Y., Wang, Z.W., Chiu, C.Y., et al.: Synthesis of bimetallic Pt–Pd core–shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale 4, 845–851 (2012)

    CAS  PubMed  Google Scholar 

  41. Habas, S.E., Lee, H., Radmilovic, V., et al.: Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 6, 692–697 (2007)

    CAS  PubMed  Google Scholar 

  42. Zhang, G.R., Wu, J., Xu, B.Q.: Syntheses of sub-30 nm Au@Pd concave nanocubes and Pt-on-(Au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J. Phys. Chem. C 116, 20839–20847 (2012)

    CAS  Google Scholar 

  43. Guo, S., Zhang, X., Zhu, W., et al.: Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 136, 15026–15033 (2014)

    CAS  PubMed  Google Scholar 

  44. Gu, J., Guo, Y., Jiang, Y.Y., et al.: Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J. Phys. Chem. C 119, 17697–17706 (2015)

    CAS  Google Scholar 

  45. Choi, R., Choi, S.I., Choi, C.H., et al.: Designed synthesis of well-defined Pd@Pt core–shell nanoparticles with controlled shell thickness as efficient oxygen reduction electrocatalysts. Chem. Eur. J. 19, 8190–8198 (2013)

    CAS  PubMed  Google Scholar 

  46. Lim, B., Jiang, M., Camargo, P.H., et al.: Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009)

    CAS  PubMed  Google Scholar 

  47. Li, J., Zhou, P., Li, F., et al.: Ni@Pd/PEI–rGO stack structures with controllable Pd shell thickness as advanced electrodes for efficient hydrogen evolution. J. Mater. Chem. A 3, 11261–11268 (2015)

    CAS  Google Scholar 

  48. Mazumder, V., Chi, M., More, K.L., et al.: Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew. Chem. Int. Ed. 49, 9368–9372 (2010)

    CAS  Google Scholar 

  49. Jauhar, A.M., Hassan, F.M., Cano, Z.P., et al.: Platinum–palladium core–shell nanoflower catalyst with improved activity and excellent durability for the oxygen reduction reaction. Adv. Mater. Interfaces 5, 1701508 (2018)

    Google Scholar 

  50. Bao, S., Vara, M., Yang, X., et al.: Facile synthesis of Pd@Pt3–L core–shell octahedra with a clean surface and thus enhanced activity toward oxygen reduction. ChemCatChem 9, 414–419 (2017)

    CAS  Google Scholar 

  51. Lim, B., Wang, J., Camargo, P.H., et al.: Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth. Nano Lett. 8, 2535–2540 (2008)

    CAS  PubMed  Google Scholar 

  52. Wang, Y., Toshima, N.: Preparation of Pd–Pt bimetallic colloids with controllable core/shell structures. J. Phys. Chem. B 101, 5301–5306 (1997)

    CAS  Google Scholar 

  53. Xu, S., Li, Z., Lei, F., et al.: Facile synthesis of hydrangea-like core–shell Pd@Pt/graphene composite as an efficient electrocatalyst for methanol oxidation. Appl. Surf. Sci. 426, 351–359 (2017)

    CAS  Google Scholar 

  54. Hong, J.W., Kang, S.W., Choi, B.S., et al.: Controlled synthesis of Pd–Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 6, 2410–2419 (2012)

    CAS  PubMed  Google Scholar 

  55. Peng, Z., Yang, H.: Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131, 7542–7543 (2009)

    CAS  PubMed  Google Scholar 

  56. Miyakawa, M., Hiyoshi, N., Nishioka, M., et al.: Continuous syntheses of Pd@Pt and Cu@Ag core–shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Nanoscale 6, 8720–8725 (2014)

    CAS  PubMed  Google Scholar 

  57. Yang, C.C., Chen, H.R., Lee, C.L.: Sub 10-nm Pd nanocubes and their coating with multi-armed Pt shells: facile synthesis and catalysis of alkaline oxygen reduction. J. Electrochem. Soc. 162, H512–H517 (2015)

    CAS  Google Scholar 

  58. Qi, K., Zheng, W., Cui, X.: Supersaturation-controlled surface structure evolution of Pd@Pt core–shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale. Nanoscale 8, 1698–1703 (2016)

    CAS  PubMed  Google Scholar 

  59. De Clercq, A., Margeat, O., Sitja, G., et al.: Core–shell Pd–Pt nanocubes for the CO oxidation. J. Catal. 336, 33–40 (2016)

    Google Scholar 

  60. Lee, Y.W., Lee, J.Y., Kwak, D.H., et al.: Pd@Pt core–shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction. Appl. Catal. B 179, 178–184 (2015)

    CAS  Google Scholar 

  61. Ren, F., Lu, H., Liu, H., et al.: Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. J. Mater. Chem. A 3, 23660–23663 (2015)

    CAS  Google Scholar 

  62. Xie, S., Choi, S.I., Lu, N., et al.: Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 14, 3570–3576 (2014)

    CAS  PubMed  Google Scholar 

  63. Park, J., Zhang, L., Choi, S.I., et al.: Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 9, 2635–2647 (2015)

    CAS  PubMed  Google Scholar 

  64. Wongkaew, A., Zhang, Y., Tengco, J.M.M., et al.: Characterization and evaluation of Pt–Pd electrocatalysts prepared by electroless deposition. Appl. Catal. B 188, 367–375 (2016)

    CAS  Google Scholar 

  65. Zhang, H., Yin, Y., Hu, Y., et al.: Pd@Pt core − shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J. Phys. Chem. C 114, 11861–11867 (2010)

    CAS  Google Scholar 

  66. Zhao, R., Liu, Y., Liu, C., et al.: Pd@ Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2, 20855–20860 (2014)

    CAS  Google Scholar 

  67. Kim, Y., Noh, Y., Lim, E.J., et al.: Star-shaped Pd@Pt core–shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2, 6976 (2014)

    CAS  Google Scholar 

  68. Chen, Y., Yang, J., Yang, Y., et al.: A facile strategy to synthesize three-dimensional Pd@ Pt core–shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chem. Commun. 51, 10490–10493 (2015)

    CAS  Google Scholar 

  69. Choi, S.I., Shao, M., Lu, N., et al.: Synthesis and characterization of Pd@ Pt–Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 8, 10363–10371 (2014)

    CAS  PubMed  Google Scholar 

  70. Zhao, X., Chen, S., Fang, Z., et al.: Octahedral Pd@Pt1.8Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 137, 2804–2807 (2015)

    CAS  PubMed  Google Scholar 

  71. Bai, S., Wang, C., Deng, M., et al.: Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt–Pd-graphene stack structures. Angew. Chem. Int. Ed. 53, 12120–12124 (2014)

    CAS  Google Scholar 

  72. Zhang, H., Jin, M., Wang, J., et al.: Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J. Am. Chem. Soc. 133, 10422–10425 (2011)

    CAS  PubMed  Google Scholar 

  73. Liu, L., Samjeske, G., Nagamatsu, S.I., et al.: Enhanced oxygen reduction reaction activity and characterization of Pt–Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. J. Phys. Chem. C 116, 23453–23464 (2012)

    CAS  Google Scholar 

  74. Lee, S.Y., Jung, N., Shin, D.Y., et al.: Self-healing Pd3Au@Pt/C core–shell electrocatalysts with substantially enhanced activity and durability towards oxygen reduction. Appl. Catal. B 206, 666–674 (2017)

    CAS  Google Scholar 

  75. Mazumder, V., Chi, M., More, K.L., et al.: Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 7848–7849 (2010)

    CAS  PubMed  Google Scholar 

  76. Aricò, A.S., Stassi, A., D’Urso, C., et al.: Synthesis of Pd3Co1@Pt/C core–shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells. Chem. Eur. J. 20, 10679–10684 (2014)

    PubMed  Google Scholar 

  77. Hwang, S.J., Yoo, S.J., Shin, J., et al.: Supported core@shell electrocatalysts for fuel cells: close encounter with reality. Sci. Rep. 3, 1309 (2013)

    PubMed  PubMed Central  Google Scholar 

  78. Yang, J., Yang, J., Ying, J.Y.: Morphology and lateral strain control of Pt nanoparticles via core–shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 6, 9373–9382 (2012)

    CAS  PubMed  Google Scholar 

  79. Kang, Y., Qi, L., Li, M., et al.: Highly active Pt3Pb and core–shell Pt3Pb–Pt electrocatalysts for formic acid oxidation. ACS Nano 6, 2818–2825 (2012)

    CAS  PubMed  Google Scholar 

  80. Somodi, F., Werner, S., Peng, Z., et al.: Size and composition control of Pt–In nanoparticles prepared by seed-mediated growth using bimetallic seeds. Langmuir ACS J. Surf. Colloids 28, 3345–3349 (2012)

    CAS  Google Scholar 

  81. Kim, Y., Hong, J.W., Lee, Y.W., et al.: Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angew. Chem. Int. Ed. 49, 10197–10201 (2010)

    CAS  Google Scholar 

  82. Banerjee, I., Kumaran, V., Santhanam, V.: Synthesis and characterization of Au@Pt nanoparticles with ultrathin platinum overlayers. J. Phys. Chem. C 119, 5982–5987 (2015)

    CAS  Google Scholar 

  83. Thongthai, K., Srisombat, L., Saipanya, S., et al.: Morphology and catalytic activity of gold core-platinum shell nanoparticles. Chiang Mai J. Sci. 42, 481–489 (2015)

    CAS  Google Scholar 

  84. Chen, L., Kuai, L., Geng, B.: Shell structure-enhanced electrocatalytic performance of Au–Pt core–shell catalyst. CrystEngComm 15, 2133 (2013)

    CAS  Google Scholar 

  85. Srivastava, S.K., del Río, J.S., O’Sullivan, C.K., et al.: Electro-catalytically active Au@ Pt nanoparticles for hydrogen evolution reaction: an insight into a tryptophan mediated supramolecular interface towards a universal core–shell synthesis approach. RSC Adv. 4, 48458–48464 (2014)

    CAS  Google Scholar 

  86. Zhang, Y., Li, X., Li, K., et al.: Novel Au catalysis strategy for the synthesis of Au@Pt core–shell nanoelectrocatalyst with self-controlled quasi-monolayer Pt skin. ACS Appl. Mater. Interfaces. 9, 32688–32697 (2017)

    CAS  PubMed  Google Scholar 

  87. Liu, R., Liu, J.F., Zhang, Z.M., et al.: Submonolayer-Pt-coated ultrathin Au nanowires and their self-organized nanoporous film: SERS and catalysis active substrates for operando SERS monitoring of catalytic reactions. J. Phys. Chem. Lett. 5, 969–975 (2014)

    CAS  PubMed  Google Scholar 

  88. Yuan, W., Fan, X., Cui, Z.M., et al.: Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. J. Mater. Chem. A 4, 7352–7364 (2016)

    CAS  Google Scholar 

  89. Li, Y., Ding, W., Li, M., et al.: Synthesis of core–shell Au–Pt nanodendrites with high catalytic performance via overgrowth of platinum on in situ gold nanoparticles. J. Mater. Chem. A 3, 368–376 (2015)

    CAS  Google Scholar 

  90. Sarkar, A., Kerr, J.B., Cairns, E.J.: Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles. ChemPhysChem 14, 2132–2142 (2013)

    CAS  PubMed  Google Scholar 

  91. Shen, L.L., Zhang, G.R., Miao, S., et al.: Core–shell nanostructured Au@NimPt2 electrocatalysts with enhanced activity and durability for oxygen reduction reaction. ACS Catal. 6, 1680–1690 (2016)

    CAS  Google Scholar 

  92. Chen, T.Y., Lin, T.L., Luo, T.J.M., et al.: Effects of Pt shell thicknesses on the atomic structure of Ru–Pt core–shell nanoparticles for methanol electrooxidation applications. ChemPhysChem 11, 2383–2392 (2010)

    CAS  PubMed  Google Scholar 

  93. Chen, T.Y., Chen, I.L., Liu, Y.T., et al.: Core-dependent growth of platinum shell nanocrystals and their electrochemical characteristics for fuel cells. CrystEngComm 15, 982–994 (2013)

    CAS  Google Scholar 

  94. Hsieh, Y.C., Zhang, Y., Su, D., et al.: Ordered bilayer ruthenium-platinum core–shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 4, 2466 (2013)

    PubMed  Google Scholar 

  95. Goto, S., Hosoi, S., Arai, R., et al.: Particle-size- and Ru-core-induced surface electronic states of Ru-core/Pt-shell electrocatalyst nanoparticles. J. Phys. Chem. C 118, 2634–2640 (2014)

    CAS  Google Scholar 

  96. Zhao, Z.L., Zhang, L.Y., Bao, S.J., et al.: One-pot synthesis of small and uniform Au@PtCu core–alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells. Appl. Catal. B 174–175, 361–366 (2015)

    Google Scholar 

  97. Su, S., Zhang, C., Yuwen, L., et al.: Uniform Au@Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nanoscale 8, 602–608 (2016)

    CAS  PubMed  Google Scholar 

  98. Peng, Z., Wu, J., Yang, H.: Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 22, 1098–1106 (2009)

    Google Scholar 

  99. Gowthaman, N., John, S.A.: Modification of a glassy carbon electrode with gold–platinum core–shell nanoparticles by electroless deposition and their electrocatalytic activity. RSC Adv. 5, 42369–42375 (2015)

    CAS  Google Scholar 

  100. Rashid, M., Jun, T.S., Jung, Y., et al.: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells. Sens. Actuators B Chem. 208, 7–13 (2015)

    CAS  Google Scholar 

  101. Khi, N.T., Yoon, J., Kim, H., et al.: Axially twinned nanodumbbell with a Pt bar and two Rh@Pt balls designed for high catalytic activity. Nanoscale 5, 5738–5742 (2013)

    PubMed  Google Scholar 

  102. Zhang, H., Jin, M., Liu, H., et al.: Facile synthesis of Pd–Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5, 8212–8222 (2011)

    CAS  PubMed  Google Scholar 

  103. Li, C., Yamauchi, Y.: Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells. Phys. Chem. Chem. Phys. 15, 3490–3496 (2013)

    CAS  PubMed  Google Scholar 

  104. Fu, T., Fang, J., Wang, C., et al.: Hollow porous nanoparticles with Pt skin on a Ag–Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4, 8803–8811 (2016)

    CAS  Google Scholar 

  105. Cao, J., Guo, M., Wu, J., et al.: Carbon-supported Ag@Pt core–shell nanoparticles with enhanced electrochemical activity for methanol oxidation and oxygen reduction reaction. J. Power Sources 277, 155–160 (2015)

    CAS  Google Scholar 

  106. Pech-Pech, I.E., Gervasio, D.F., Godínez-Garcia, A., et al.: Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: part 1. J. Power Sources 276, 365–373 (2015)

    CAS  Google Scholar 

  107. Wu, D., Cheng, D.: Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts. Electrochim. Acta 180, 316–322 (2015)

    CAS  Google Scholar 

  108. Xie, J., Zhang, Q., Gu, L., et al.: Ruthenium–platinum core–shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 21, 247–257 (2016)

    CAS  Google Scholar 

  109. Elbert, K., Hu, J., Ma, Z., et al.: Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 5, 6764–6772 (2015)

    CAS  Google Scholar 

  110. Zhou, S., McIlwrath, K., Jackson, G., et al.: Enhanced CO tolerance for hydrogen activation in Au–Pt dendritic heteroaggregate nanostructures. J. Am. Chem. Soc. 128, 1780–1781 (2006)

    CAS  PubMed  Google Scholar 

  111. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., et al.: Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008)

    CAS  PubMed  Google Scholar 

  112. Pupo, M.M.S., López-Suárez, F.E., Bueno-López, A., et al.: Sn@Pt and Rh@Pt core–shell nanoparticles synthesis for glycerol oxidation. J. Appl. Electrochem. 45, 139–150 (2014)

    Google Scholar 

  113. Gao, H., Liao, S., Zeng, J., et al.: Platinum decorated Ru/C: effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction. J. Power Sources 196, 54–61 (2011)

    CAS  Google Scholar 

  114. Ryu, J., Choi, J., Lim, D.H., et al.: Morphology-controlled synthesis of ternary Pt–Pd–Cu alloy nanoparticles for efficient electrocatalytic oxygen reduction reactions. Appl. Catal. B 174–175, 526–532 (2015)

    Google Scholar 

  115. Cochell, T., Li, W., Manthiram, A.: Effects of Pt coverage in Pt@PdCu5/C core–shell electrocatalysts on the oxygen reduction reaction and methanol tolerance. J. Phys. Chem. C 117, 3865–3873 (2013)

    CAS  Google Scholar 

  116. Li, H., Wu, H., Zhai, Y., et al.: Synthesis of monodisperse plasmonic Au core–Pt shell concave nanocubes with superior catalytic and electrocatalytic activity. ACS Catal. 3, 2045–2051 (2013)

    CAS  Google Scholar 

  117. Dai, Y., Chen, S.: Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition. ACS Appl. Mater. Interfaces. 7, 823–829 (2015)

    CAS  PubMed  Google Scholar 

  118. Kuai, L., Geng, B., Wang, S., et al.: A general and high-yield galvanic displacement approach to Au–M (M = Au, Pd, and Pt) core–shell nanostructures with porous shells and enhanced electrocatalytic performances. Chem. Eur. J. 18, 9423–9429 (2012)

    CAS  PubMed  Google Scholar 

  119. Liu, X., Xu, G., Chen, Y., et al.: A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci. Rep. 5, 7619 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ye, F., Liu, H., Hu, W., et al.: Heterogeneous Au–Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Dalton Trans. 41, 2898–2903 (2012)

    CAS  PubMed  Google Scholar 

  121. Wang, G., Huang, B., Xiao, L., et al.: Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643–9649 (2014)

    CAS  PubMed  Google Scholar 

  122. Liu, J., Zhang, M., Liu, J., et al.: Synthesis of Ag@ Pt core–shell nanoparticles loaded onto reduced graphene oxide and investigation of its electrosensing properties. Anal. Methods 8, 1084–1090 (2016)

    CAS  Google Scholar 

  123. Li, H.H., Cui, C.H., Zhao, S., et al.: Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2, 1182–1187 (2012)

    CAS  Google Scholar 

  124. Sarkar, A., Manthiram, A.: Synthesis of Pt@Cu core − shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J. Phys. Chem. C 114, 4725–4732 (2010)

    CAS  Google Scholar 

  125. Sun, Z., Masa, J., Xia, W., et al.: Rapid and surfactant-free synthesis of bimetallic Pt–Cu nanoparticles simply via ultrasound-assisted redox replacement. ACS Catal. 2, 1647–1653 (2012)

    CAS  Google Scholar 

  126. Jeon, T.Y., Pinna, N., Yoo, S.J., et al.: Selective deposition of Pt onto supported metal clusters for fuel cell electrocatalysts. Nanoscale 4, 6461–6469 (2012)

    CAS  PubMed  Google Scholar 

  127. Yang, J., Zhou, W., Cheng, C.H., et al.: Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces. 2, 119–126 (2010)

    CAS  PubMed  Google Scholar 

  128. Cochell, T., Manthiram, A.: Pt@PdxCuy/C core–shell electrocatalysts for oxygen reduction reaction in fuel cells. Langmuir ACS J. Surf. Colloids 28, 1579–1587 (2012)

    CAS  Google Scholar 

  129. Yang, J., Lee, J.Y., Chen, L., et al.: A phase-transfer identification of core–shell structures in Ag–Pt nanoparticles. J. Phys. Chem. B 109, 5468–5472 (2005)

    CAS  PubMed  Google Scholar 

  130. Zhang, W., Yang, J., Lu, X.: Tailoring galvanic replacement reaction for the preparation of Pt/Ag bimetallic hollow nanostructures with controlled number of voids. ACS Nano 6, 7397–7405 (2012)

    CAS  PubMed  Google Scholar 

  131. Zeng, J., Yang, J., Lee, J.Y., et al.: Preparation of carbon-supported core–shell Au–Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J. Phys. Chem. B 110, 24606–24611 (2006)

    CAS  PubMed  Google Scholar 

  132. Brankovic, S.R., Wang, J.X., Adžić, R.R.: Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem. Solid-State Lett. 4, A217 (2001)

    CAS  Google Scholar 

  133. Jeena, S.E., Selvaraju, T.: Facile growth of Ag@Pt bimetallic nanorods on electrochemically reduced graphene oxide for an enhanced electrooxidation of hydrazine. J. Chem. Sci. 128, 357–363 (2016)

    CAS  Google Scholar 

  134. Lim, T., Kim, O.H., Sung, Y.E., et al.: Preparation of onion-like Pt-terminated Pt–Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells. J. Power Sources 316, 124–131 (2016)

    CAS  Google Scholar 

  135. Wang, W., Wang, R., Ji, S., et al.: Pt overgrowth on carbon supported PdFe seeds in the preparation of core–shell electrocatalysts for the oxygen reduction reaction. J. Power Sources 195, 3498–3503 (2010)

    CAS  Google Scholar 

  136. Petrii, O.A.: Electrosynthesis of nanostructures and nanomaterials. Russ. Chem. Rev. 84, 159 (2015)

    CAS  Google Scholar 

  137. Zhang, W., Wang, R., Wang, H., et al.: High performance carbon-supported core@Shell PdSn@Pt electrocatalysts for oxygen reduction reaction. Fuel Cells 10, 734–739 (2010)

    CAS  Google Scholar 

  138. Ataee-Esfahani, H., Wang, L., Nemoto, Y., et al.: Synthesis of bimetallic Au@ Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 22, 6310–6318 (2010)

    CAS  Google Scholar 

  139. Chen, L.X., Liu, L., Feng, J.J., et al.: Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum–gold core–shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources 302, 140–145 (2016)

    CAS  Google Scholar 

  140. Kim, Y., Lee, Y.W., Kim, M., et al.: One-pot synthesis and electrocatalytic properties of Pd@Pt core–shell nanocrystals with tailored morphologies. Chemistry 20, 7901–7905 (2014)

    CAS  PubMed  Google Scholar 

  141. Jiang, B., Li, C., Henzie, J., et al.: Morphosynthesis of nanoporous pseudo Pd@Pt bimetallic particles with controlled electrocatalytic activity. J. Mater. Chem. A 4, 6465–6471 (2016)

    CAS  Google Scholar 

  142. Wang, Q., Li, Y., Liu, B., et al.: A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites. J. Power Sources 297, 59–67 (2015)

    CAS  Google Scholar 

  143. Wang, L., Nemoto, Y., Yamauchi, Y.: Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 133, 9674–9677 (2011)

    CAS  PubMed  Google Scholar 

  144. Ataee-Esfahani, H., Imura, M., Yamauchi, Y.: All-metal mesoporous nanocolloids: solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem. Int. Ed. 52, 13611–13615 (2013)

    CAS  Google Scholar 

  145. Zhang, Y., Bu, L., Jiang, K., et al.: Concave PdPt core–shell nanocrystals with ultrathin Pt shell feature and enhanced catalytic performance. Small 12, 706–712 (2016)

    CAS  PubMed  Google Scholar 

  146. Liu, Q., Xu, Y.R., Wang, A.J., et al.: A single-step route for large-scale synthesis of core–shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties. J. Power Sources 302, 394–401 (2016)

    CAS  Google Scholar 

  147. Lim, Y., Kim, S.K., Lee, S.C., et al.: One-step synthesis of carbon-supported Pd@Pt/C core–shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability. Nanoscale 6, 4038–4042 (2014)

    CAS  PubMed  Google Scholar 

  148. Yoon, J., Kang, S., Baik, H., et al.: One-pot synthesis of a highly active, non-spherical PdPt@Pt core–shell nanospike electrocatalyst exhibiting a thin Pt shell with multiple grain boundaries. RSC Adv. 4, 46521–46526 (2014)

    CAS  Google Scholar 

  149. Zhang, N., Guo, S., Zhu, X., et al.: Hierarchical Pt/PtxPb core/shell nanowires as efficient catalysts for electrooxidation of liquid fuels. Chem. Mater. 28, 4447–4452 (2016)

    CAS  Google Scholar 

  150. Li, S.S., Lv, J.J., Teng, L.N., et al.: Facile synthesis of PdPt@Pt nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces. 6, 10549–10555 (2014)

    CAS  PubMed  Google Scholar 

  151. Liu, L., Lin, X.X., Zou, S.Y., et al.: One-pot wet-chemical synthesis of PtPd@Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation. Electrochim. Acta 187, 576–583 (2016)

    CAS  Google Scholar 

  152. Zhu, J., Xiao, M., Li, K., et al.: Superior electrocatalytic activity from nanodendritic structure consisting of a PtFe bimetallic core and Pt shell. Chem. Commun. 51, 3215–3218 (2015)

    CAS  Google Scholar 

  153. Matin, M.A., Lee, E., Kim, H., et al.: Rational syntheses of core–shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 3, 17154–17164 (2015)

    CAS  Google Scholar 

  154. Hwang, E.T., Lee, Y.W., Park, H.C., et al.: Synthesis of Pt-Rich@ Pt–Ni alloy core–shell nanoparticles using halides. RSC Adv. 5, 8301–8306 (2015)

    CAS  Google Scholar 

  155. Wu, M.L., Chen, D.H., Huang, T.C.: Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions. Chem. Mater. 13, 599–606 (2001)

    CAS  Google Scholar 

  156. Garcia-Gutierrez, D.I., Gutierrez-Wing, C.E., Giovanetti, L., et al.: Temperature effect on the synthesis of Au–Pt bimetallic nanoparticles. J. Phys. Chem. B 109, 3813–3821 (2005)

    CAS  PubMed  Google Scholar 

  157. Bian, T., Zhang, H., Jiang, Y., et al.: Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815 (2015)

    CAS  PubMed  Google Scholar 

  158. Xu, Z., Carlton, C.E., Allard, L.F., et al.: Direct colloidal route for Pt-covered AuPt bimetallic nanoparticles. J. Phys. Chem. Lett. 1, 2514–2518 (2010)

    CAS  Google Scholar 

  159. Shi, Q., Zhu, C., Fu, S., et al.: One-pot fabrication of mesoporous core–shell Au@PtNi ternary metallic nanoparticles and their enhanced efficiency for oxygen reduction reaction. ACS Appl. Mater. Interfaces. 8, 4739–4744 (2016)

    CAS  PubMed  Google Scholar 

  160. Xia, T., Liu, J., Wang, S., et al.: Enhanced catalytic activities of NiPt truncated octahedral nanoparticles toward ethylene glycol oxidation and oxygen reduction in alkaline electrolyte. ACS Appl. Mater. Interfaces. 8, 10841–10849 (2016)

    CAS  PubMed  Google Scholar 

  161. Zhang, Y., Han, T., Fang, J., et al.: Integrated Pt2Ni alloy@Pt core–shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. J. Mater. Chem. A 2, 11400–11407 (2014)

    CAS  Google Scholar 

  162. Jang, J.H., Kim, J., Lee, Y.H., et al.: One-pot synthesis of core–shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells. Energy Environ. Sci. 4, 4947–4953 (2011)

    CAS  Google Scholar 

  163. Wang, L., Yamauchi, Y.: Autoprogrammed synthesis of triple-layered Au@Pd@Pt core − shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell. J. Am. Chem. Soc. 132, 13636–13638 (2010)

    CAS  PubMed  Google Scholar 

  164. Wang, L., Yamauchi, Y.: Strategic synthesis of trimetallic Au@Pd@Pt core − shell nanoparticles from poly (vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem. Mater. 23, 2457–2465 (2011)

    CAS  Google Scholar 

  165. Yuan, Q., Huang, D.B., Wang, H.H., et al.: One-pot synthesis of Pd–Pt@Pd core–shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation. CrystEngComm 16, 2560 (2014)

    CAS  Google Scholar 

  166. Zhang, G., Liu, Z., Xiao, Z., et al.: Ni2P-graphite nanoplatelets supported Au–Pd core–shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 119, 10469–10477 (2015)

    CAS  Google Scholar 

  167. Datta, K.J., Datta, K.K.R., Gawande, M.B., et al.: Pd@Pt core–shell nanoparticles with branched dandelion-like morphology as highly efficient catalysts for olefin reduction. Chem. Eur. J. 22, 1577–1581 (2016)

    CAS  PubMed  Google Scholar 

  168. Tojo, C., Buceta, D., López-Quintela, M.A.: Understanding the metal distribution in core–shell nanoparticles prepared in micellar media. Nanoscale Res. Lett. 10, 339 (2015)

    PubMed Central  Google Scholar 

  169. Yuan, Q., Zhou, Z., Zhuang, J., et al.: Pd–Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem. Commun. 46, 1491–1493 (2010)

    CAS  Google Scholar 

  170. Xu, D., Liu, Z., Yang, H., et al.: Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum–copper nanocubes. Angew. Chem. Int. Ed. 48, 4217–4221 (2009)

    CAS  Google Scholar 

  171. Huang, X., Zhang, H., Guo, C., et al.: Simplifying the creation of hollow metallic nanostructures: one-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem. Int. Ed. 121, 4902–4906 (2009)

    Google Scholar 

  172. Tojo, C., de Dios, M., Buceta, D., et al.: Cage-like effect in Au–Pt nanoparticle synthesis in microemulsions: a simulation study. Phys. Chem. Chem. Phys. 16, 19720–19731 (2014)

    CAS  PubMed  Google Scholar 

  173. Lai, S., Fu, C., Chen, Y., et al.: Pt-content-controlled synthesis of Pd nanohollows/Pt nanorods core/shell composites with enhanced electrocatalytic activities for the methanol oxidation reaction. J. Power Sources 274, 604–610 (2015)

    CAS  Google Scholar 

  174. Li, H.H., Ma, S.Y., Fu, Q.Q., et al.: Scalable bromide-triggered synthesis of Pd@Pt core–shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 137, 7862–7868 (2015)

    CAS  PubMed  Google Scholar 

  175. Hong, W., Wang, J., Wang, E.: Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 10, 3262–3265 (2014)

    CAS  PubMed  Google Scholar 

  176. Hu, Y., Zhu, A., Zhang, Q., et al.: Fabrication of hollow platinum–ruthenium core–shell catalysts with nanochannels and enhanced performance for methanol oxidation. J. Power Sources 299, 443–450 (2015)

    CAS  Google Scholar 

  177. Crabb, E., Ravikumar, M., Thompsett, D., et al.: Effect of Ru surface composition on the CO tolerance of Ru modified carbon supported Pt catalysts. Phys. Chem. Chem. Phys. 6, 1792–1798 (2004)

    CAS  Google Scholar 

  178. Wells, P.P., Crabb, E.M., King, C.R., et al.: Preparation, structure, and stability of Pt and Pd monolayer modified Pd and Pt electrocatalysts. Phys. Chem. Chem. Phys. 11, 5773–5781 (2009)

    CAS  PubMed  Google Scholar 

  179. Deogratias, N., Ji, M., Zhang, Y., et al.: Core@shell sub-ten-nanometer noble metal nanoparticles with a controllable thin Pt shell and their catalytic activity towards oxygen reduction. Nano Res. 8, 271–280 (2014)

    Google Scholar 

  180. Xu, C., Liu, Y., Wang, J., et al.: Fabrication of nanoporous Cu–Pt (Pd) core/shell structure by galvanic replacement and its application in electrocatalysis. ACS Appl. Mater. Interfaces. 3, 4626–4632 (2011)

    CAS  PubMed  Google Scholar 

  181. Xie, W., Herrmann, C., Kömpe, K., et al.: Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 133, 19302–19305 (2011)

    CAS  PubMed  Google Scholar 

  182. Cui, C., Gan, L., Li, H.H., et al.: Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012)

    CAS  PubMed  Google Scholar 

  183. Zhu, H., Zhang, S., Su, D., et al.: Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small 11, 3545–3549 (2015)

    CAS  PubMed  Google Scholar 

  184. Wang, R., Ma, Y., Wang, H., et al.: Gas-liquid interface-mediated room-temperature synthesis of “clean” PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chem. Commun. 50, 12877–12879 (2014)

    CAS  Google Scholar 

  185. Ma, Y., Wang, R., Wang, H., et al.: Room-temperature synthesis with inert bubble templates to produce “clean” PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation. RSC Adv. 5, 9837–9842 (2015)

    CAS  Google Scholar 

  186. Chen, X., Wu, G., Chen, J., et al.: Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 133, 3693–3695 (2011)

    CAS  PubMed  Google Scholar 

  187. Wanjala, B.N., Fang, B., Shan, S., et al.: Design of ternary nanoalloy catalysts: effect of nanoscale alloying and structural perfection on electrocatalytic enhancement. Chem. Mater. 24, 4283–4293 (2012)

    CAS  Google Scholar 

  188. Choi, S.I., Xie, S., Shao, M., et al.: Synthesis and characterization of 9 nm Pt–Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013)

    CAS  PubMed  Google Scholar 

  189. Zhang, X.T., Wang, H., Key, J.L., et al.: Strain effect of core–shell Co@Pt/C nanoparticle catalyst with enhanced electrocatalytic activity for methanol oxidation. J. Electrochem. Soc. 159, B270–B276 (2012)

    CAS  Google Scholar 

  190. Lee, E., Jang, J.H., Matin, M.A., et al.: One-step sonochemical syntheses of Ni@Pt core–shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst. Ultrason. Sonochem. 21, 317–323 (2014)

    CAS  PubMed  Google Scholar 

  191. Li, C., Imura, M., Yamauchi, Y.: Displacement plating of a mesoporous Pt skin onto Co nanochains in a low-concentration surfactant solution. Chem. Eur. J. 20, 3277–3282 (2014)

    CAS  PubMed  Google Scholar 

  192. Zhang, S., Hao, Y., Su, D., et al.: Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction. J. Am. Chem. Soc. 136, 15921–15924 (2014)

    CAS  PubMed  Google Scholar 

  193. Jang, J.H., Lee, E., Park, J., et al.: Rational syntheses of core–shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction. Sci. Rep. 3, 2872 (2013)

    PubMed  PubMed Central  Google Scholar 

  194. Chen, Y., Liang, Z., Yang, F., et al.: Ni–Pt core–shell nanoparticles as oxygen reduction electrocatalysts: effect of Pt shell coverage. J. Phys. Chem. C 115, 24073–24079 (2011)

    CAS  Google Scholar 

  195. Zhang, X.B., Yan, J.M., Han, S., et al.: Magnetically recyclable Fe@ Pt core − shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J. Am. Chem. Soc. 131, 2778–2779 (2009)

    CAS  PubMed  Google Scholar 

  196. Mani, P., Srivastava, R., Strasser, P.: Dealloyed Pt–Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008)

    CAS  Google Scholar 

  197. He, D.S., He, D., Wang, J., et al.: Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138, 1494–1497 (2016)

    CAS  PubMed  Google Scholar 

  198. Sohn, Y., Park, J.H., Kim, P., et al.: Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction. Curr. Appl. Phys. 15, 993–999 (2015)

    Google Scholar 

  199. Qiu, H.J., Shen, X., Wang, J.Q., et al.: Aligned nanoporous Pt–Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 5, 3779–3785 (2015)

    CAS  Google Scholar 

  200. Qiu, H.J., Xu, H., Li, X., et al.: Core–shell-structured nanoporous PtCu with high Cu content and enhanced catalytic performance. J. Mater. Chem. A 3, 7939–7944 (2015)

    CAS  Google Scholar 

  201. Fu, S., Zhu, C., Shi, Q., et al.: Enhanced electrocatalytic activities of three dimensional PtCu@Pt bimetallic alloy nanofoams for oxygen reduction reaction. Catal. Sci. Technol. 6, 5052–5059 (2016)

    CAS  Google Scholar 

  202. Zhang, K., Yue, Q., Chen, G., et al.: Effects of acid treatment of Pt − Ni alloy nanoparticles@ graphene on the kinetics of the oxygen reduction reaction in acidic and alkaline solutions. J. Phys. Chem. C 115, 379–389 (2010)

    Google Scholar 

  203. Jia, Q., Li, J., Caldwell, K., et al.: Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis. ACS Catal. 6, 928–938 (2016)

    CAS  Google Scholar 

  204. Gan, L., Heggen, M., O’Malley, R., et al.: Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13, 1131–1138 (2013)

    CAS  PubMed  Google Scholar 

  205. Durst, J., Lopez-Haro, M., Dubau, L., et al.: Reversibility of Pt-skin and Pt-skeleton nanostructures in acidic media. J. Phys. Chem. Lett. 5, 434–439 (2014)

    CAS  PubMed  Google Scholar 

  206. Pryadchenko, V.V., Srabionyan, V.V., Mikheykina, E.B., et al.: Atomic structure of bimetallic nanoparticles in PtAg/C catalysts: determination of components distribution in the range from disordered alloys to “core–shell” structures. J. Phys. Chem. C 119, 3217–3227 (2015)

    CAS  Google Scholar 

  207. Cheng, Y., Shen, P.K., Jiang, S.P.: Enhanced activity and stability of core–shell structured PtRuNix electrocatalysts for direct methanol fuel cells. Int. J. Hydrog. Energy 41, 1935–1943 (2016)

    CAS  Google Scholar 

  208. Huang, M., Wu, C., Guan, L.: Chemical corrosion of PtRuCu6/C for highly efficient methanol oxidation. J. Power Sources 306, 489–494 (2016)

    CAS  Google Scholar 

  209. Erlebacher, J., Aziz, M.J., Karma, A., et al.: Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001)

    CAS  PubMed  Google Scholar 

  210. Jiang, G., Zhu, H., Zhang, X., et al.: Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction. ACS Nano 9, 11014–11022 (2015)

    CAS  PubMed  Google Scholar 

  211. Li, D., Meng, F., Wang, H., et al.: Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation. Electrochim. Acta 190, 852–861 (2016)

    CAS  Google Scholar 

  212. Zhang, Z., Wang, Y., Wang, X.: Nanoporous bimetallic Pt–Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 3, 1663–1674 (2011)

    CAS  PubMed  Google Scholar 

  213. Raney, M.: Method of preparing catalytic material. US Patent 1,628,190, 10 May 1927

  214. Forty, A.J.: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597–598 (1979)

    CAS  Google Scholar 

  215. Mukerjee, S., Srinivasan, S.: O2 reduction and structure-related parameters for supported catalysts. In: Vielstich, W., Gasteiger, H.A., Lamm, A. (eds.) Handbook of Fuel Cells: Fundamentals, Technology and Applications. Wiley, New York (2003)

    Google Scholar 

  216. Wang, D., Yu, Y., Xin, H.L., et al.: Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012)

    CAS  PubMed  Google Scholar 

  217. Stamenkovic, V.R., Mun, B.S., Mayrhofer, K.J., et al.: Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006)

    CAS  PubMed  Google Scholar 

  218. Rudi, S., Gan, L., Cui, C., et al.: Electrochemical dealloying of bimetallic ORR nanoparticle catalysts at constant electrode potentials. J. Electrochem. Soc. 162, F403–F409 (2015)

    CAS  Google Scholar 

  219. Yu, C., Koh, S., Leisch, J.E., et al.: Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss. 140, 283–296 (2009)

    Google Scholar 

  220. Ge, X., Chen, L., Kang, J., et al.: A core–shell nanoporous Pt–Cu catalyst with tunable composition and high catalytic activity. Adv. Funct. Mater. 23, 4156–4162 (2013)

    CAS  Google Scholar 

  221. Paffett, M.T., Beery, J.G., Gottesfeld, S.: Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platinum. J. Electrochem. Soc. 135, 1431–1436 (1988)

    CAS  Google Scholar 

  222. Snyder, J., Asanithi, P., Dalton, A.B., et al.: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883–4886 (2008)

    CAS  Google Scholar 

  223. Koh, S., Strasser, P.: Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007)

    CAS  PubMed  Google Scholar 

  224. Strasser, P., Koh, S., Anniyev, T., et al.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010)

    CAS  PubMed  Google Scholar 

  225. Poochai, C., Veerasai, W., Somsook, E., et al.: The influence of copper in dealloyed binary platinum–copper electrocatalysts on methanol electroxidation catalytic activities. Mater. Chem. Phys. 163, 317–330 (2015)

    CAS  Google Scholar 

  226. El-Deeb, H., Bron, M.: Electrochemical dealloying of PtCu/CNT electrocatalysts synthesized by NaBH4-assisted polyol-reduction: influence of preparation parameters on oxygen reduction activity. Electrochim. Acta 164, 315–322 (2015)

    CAS  Google Scholar 

  227. Heggen, M., Oezaslan, M., Houben, L., et al.: Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J. Phys. Chem. C 116, 19073–19083 (2012)

    CAS  Google Scholar 

  228. Oezaslan, M., Heggen, M., Strasser, P.: Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524 (2012)

    CAS  PubMed  Google Scholar 

  229. Gan, L., Heggen, M., Rudi, S., et al.: Core–shell compositional fine structures of dealloyed PtxNi1−x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12, 5423–5430 (2012)

    CAS  PubMed  Google Scholar 

  230. Baldizzone, C., Gan, L., Hodnik, N., et al.: Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal. 5, 5000–5007 (2015)

    CAS  Google Scholar 

  231. Snyder, J., McCue, I., Livi, K., et al.: Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 134, 8633–8645 (2012)

    CAS  PubMed  Google Scholar 

  232. Carpenter, M.K., Moylan, T.E., Kukreja, R.S., et al.: Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 134, 8535–8542 (2012)

    CAS  PubMed  Google Scholar 

  233. Wang, C., Chi, M., Wang, G., et al.: Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1−x Nanoparticles. Adv. Funct. Mater. 21, 147–152 (2011)

    Google Scholar 

  234. Rudi, S., Tuaev, X., Strasser, P.: Electrocatalytic oxygen reduction on dealloyed Pt1−xNix alloy nanoparticle electrocatalysts. Electrocatalysis 3, 265–273 (2012)

    CAS  Google Scholar 

  235. Tuaev, X., Rudi, S., Petkov, V., et al.: In situ study of atomic structure transformations of Pt–Ni nanoparticle catalysts during electrochemical potential cycling. ACS Nano 7, 5666–5674 (2013)

    CAS  PubMed  Google Scholar 

  236. Cui, C., Gan, L., Heggen, M., et al.: Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013)

    CAS  PubMed  Google Scholar 

  237. Srivastava, R., Mani, P., Hahn, N., et al.: Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007)

    Google Scholar 

  238. Wang, M., He, Y., Li, R., et al.: Electrochemical activated PtAuCu alloy nanoparticle catalysts for formic acid, methanol and ethanol electro-oxidation. Electrochim. Acta 178, 259–269 (2015)

    CAS  Google Scholar 

  239. Williams, D., Newman, R., Song, Q., et al.: Passivity breakdown and pitting corrosion of binary alloys. Nature 350, 216–219 (1991)

    CAS  Google Scholar 

  240. Erlebacher, J., Sieradzki, K.: Pattern formation during dealloying. Scr. Mater. 49, 991–996 (2003)

    CAS  Google Scholar 

  241. Hayes, J.R., Hodge, A.M., Biener, J., et al.: Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 21, 2611–2616 (2011)

    Google Scholar 

  242. Keir, D., Pryor, M.: The dealloying of copper–manganese alloys. J. Electrochem. Soc. 127, 2138–2144 (1980)

    CAS  Google Scholar 

  243. Strasser, P.: Dealloyed Pt bimetallic electrocatalysts for oxygen reduction. In: Vielstich, W., Lamm, A., Gasteiger, H.A., et al. (eds.) Handbook of Fuel Cells. Wiley, Hoboken (2010)

    Google Scholar 

  244. Strasser, P.: Dealloyed core–shell fuel cell electrocatalysts. Rev. Chem. Eng. 25, 255–295 (2009)

    CAS  Google Scholar 

  245. Hasché, F., Oezaslan, M., Strasser, P.: Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. ChemCatChem 3, 1805–1813 (2011)

    Google Scholar 

  246. Podlovchenko, B.I., Maksimov, Y.M., Utkin, A.G.: Formation of the core–shell structure in the Pd–Ag system by electroleaching of the alloy. Electrocatalytic properties. Russ. J. Electrochem. 51, 891–898 (2015)

    CAS  Google Scholar 

  247. Kim, J., Lee, Y., Sun, S.: Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010)

    CAS  PubMed  Google Scholar 

  248. Koh, S., Yu, C., Mani, P., et al.: Activity of ordered and disordered Pt–Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases. J. Power Sources 172, 50–56 (2007)

    CAS  Google Scholar 

  249. Liu, Y., Lowe, M.A., DiSalvo, F.J., et al.: Kinetic stabilization of ordered intermetallic phases as fuel cell anode materials. J. Phys. Chem. C 114, 14929–14938 (2010)

    CAS  Google Scholar 

  250. Mukerjee, S., Srinivasan, S., Soriaga, M.P., et al.: Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction An in situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995)

    CAS  Google Scholar 

  251. Gan, L., Rudi, S., Cui, C., et al.: Size-controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 12, 3189–3196 (2016)

    CAS  PubMed  Google Scholar 

  252. Rebak, R., Crook, P.: Improved pitting and crevice corrosion resistance of nickel and cobalt based alloys. Proc. Electrochem. Soc. 98–17, 289–302 (1999)

    Google Scholar 

  253. Davis, J.R.: Corrosion: Understanding the Basics. ASM International, Geauga County (2000)

    Google Scholar 

  254. Pickering, H.W.: Characteristic features of alloy polarization curves. Corros. Sci. 23, 1107–1120 (1983)

    CAS  Google Scholar 

  255. Liu, A., Geng, H., Xu, C., et al.: A three-dimensional hierarchical nanoporous PdCu alloy for enhanced electrocatalysis and biosensing. Anal. Chim. Acta 703, 172–178 (2011)

    CAS  PubMed  Google Scholar 

  256. Xu, C., Su, J., Xu, X., et al.: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42–43 (2007)

    CAS  PubMed  Google Scholar 

  257. Kim, K.T., Kim, Y.G., Chung, J.S.: Effect of surface roughening on the catalytic activity of PtCr electrocatalysts for the oxygen reduction in phosphoric acid fuel cell. J. Electrochem. Soc. 142, 1531–1538 (1995)

    CAS  Google Scholar 

  258. Wang, W., Ji, S., Wang, H., et al.: Nanoporous PdNi/C electrocatalyst prepared by dealloying high-Ni-content PdNi alloy for formic acid oxidation. Fuel Cells 12, 1129–1133 (2012)

    Google Scholar 

  259. Xu, C., Wang, L., Wang, R., et al.: Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater. 21, 2165–2169 (2009)

    CAS  Google Scholar 

  260. Chen, X., Si, C., Gao, Y., et al.: Multi-component nanoporous platinum–ruthenium–copper–osmium–iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J. Power Sources 273, 324–332 (2015)

    CAS  Google Scholar 

  261. Carmo, M., Sekol, R.C., Ding, S., et al.: Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 5, 2979–2983 (2011)

    CAS  PubMed  Google Scholar 

  262. Baumgärtner, M., Raub, J.: The electrodeposition of platinum and platinum alloys. Platin. Met. Rev. 32, 188–197 (1988)

    Google Scholar 

  263. Sardar, R., Funston, A.M., Mulvaney, P., et al.: Gold nanoparticles: past, present, and future. Langmuir ACS J. Surf. Colloids 25, 13840–13851 (2009)

    CAS  Google Scholar 

  264. Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)

    CAS  PubMed  Google Scholar 

  265. Bönnemann, H., Richards, R.M.: Nanoscopic metal particles − synthetic methods and potential applications. Eur. J. Inorg. Chem. 2001, 2455–2480 (2001)

    Google Scholar 

  266. Bliznakov, S., Vukmirovic, M., Adzic, R.: Electrochemical atomic-level controlled syntheses of electrocatalysts for the oxygen reduction reaction. In: Hermans, S., de Bocarme, T.V. (eds.) Atomically-Precise Methods for Synthesis of Solid Catalysts, pp. 144–166. Royal Society of Chemistry, London (2014)

    Google Scholar 

  267. Li, G.R., Xu, H., Lu, X.F., et al.: Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5, 4056–4069 (2013)

    CAS  PubMed  Google Scholar 

  268. Bard, A.J., Faulkner, L.R., Leddy, J., et al.: Electrochemical Methods: Fundamentals and Applications, vol. 2. Wiley, New York (1980)

    Google Scholar 

  269. Zhang, H., Jin, M., Xia, Y.: Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035–8049 (2012)

    CAS  PubMed  Google Scholar 

  270. Sasaki, K., Naohara, H., Cai, Y., et al.: Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49, 8602–8607 (2010)

    CAS  Google Scholar 

  271. Bewick, A., Thomas, B.: Optical and electrochemical studies of the underpotential deposition of metals part I. Thallium deposition on single crystal silver electrodes. J. Electroanal. Chem. Interfacial Electrochem. 65, 911–931 (1975)

    CAS  Google Scholar 

  272. Bewick, A., Thomas, B.: Optical and electrochemical studies of the under-potential deposition of metals: part III. Lead deposition on silver single crystals. J. Electroanal. Chem. Interfacial Electrochem. 84, 127–140 (1977)

    CAS  Google Scholar 

  273. Adzic, R., Yeager, E., Cahan, B.: Optical and electrochemical studies of underpotential deposition of lead on gold evaporated and single-crystal electrodes. J. Electrochem. Soc. 121, 474–484 (1974)

    CAS  Google Scholar 

  274. Herrero, E., Buller, L.J., Abruña, H.D.: Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001)

    CAS  PubMed  Google Scholar 

  275. Brankovic, S., Wang, J., Adzic, R.: New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level. J. Serb. Chem. Soc. 66, 887–898 (2001)

    CAS  Google Scholar 

  276. Brankovic, S., Wang, J., Adžić, R.: Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 474, L173–L179 (2001)

    CAS  Google Scholar 

  277. Mrozek, M.F., Xie, Y., Weaver, M.J.: Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. Anal. Chem. 73, 5953–5960 (2001)

    CAS  PubMed  Google Scholar 

  278. Park, S., Yang, P., Corredor, P., et al.: Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. J. Am. Chem. Soc. 124, 2428–2429 (2002)

    CAS  PubMed  Google Scholar 

  279. Zhang, J., Lima, F., Shao, M., et al.: Platinum monolayer on nonnoble metal-noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701–22704 (2005)

    CAS  PubMed  Google Scholar 

  280. Van Brussel, M., Kokkinidis, G., Vandendael, I., et al.: High performance gold-supported platinum electrocatalyst for oxygen reduction. Electrochem. Commun. 4, 808–813 (2002)

    Google Scholar 

  281. Van Brussel, M., Kokkinidis, G., Hubin, A., et al.: Oxygen reduction at platinum modified gold electrodes. Electrochim. Acta 48, 3909–3919 (2003)

    Google Scholar 

  282. Koenigsmann, C., Santulli, A.C., Gong, K., et al.: Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 133, 9783–9795 (2011)

    CAS  PubMed  Google Scholar 

  283. Park, Y.K., Yoo, S.H., Park, S.: Three-dimensional Pt-coated Au nanoparticle arrays: applications for electrocatalysis and surface-enhanced Raman scattering. Langmuir ACS J. Surf. Colloids 24, 4370–4375 (2008)

    CAS  Google Scholar 

  284. Zhai, J., Huang, M., Dong, S.: Electrochemical designing of Au/Pt core shell nanoparticles as nanostructured catalyst with tunable activity for oxygen reduction. Electroanalysis 19, 506–509 (2007)

    CAS  Google Scholar 

  285. Cheng, S., Rettew, R.E., Sauerbrey, M., et al.: Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au. ACS Appl. Mater. Interfaces. 3, 3948–3956 (2011)

    CAS  PubMed  Google Scholar 

  286. Iyyamperumal, R., Zhang, L., Henkelman, G., et al.: Efficient electrocatalytic oxidation of formic acid using Au@ Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc. 135, 5521–5524 (2013)

    CAS  PubMed  Google Scholar 

  287. Fayette, M., Liu, Y., Bertrand, D., et al.: From Au to Pt via surface limited redox replacement of Pb UPD in one-cell configuration. Langmuir ACS J. Surf. Colloids 27, 5650–5658 (2011)

    CAS  Google Scholar 

  288. Sasaki, K., Naohara, H., Choi, Y., et al.: Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 3, 1115 (2012)

    PubMed  Google Scholar 

  289. Xing, Y., Cai, Y., Vukmirovic, M.B., et al.: Enhancing oxygen reduction reaction activity via Pd − Au alloy sublayer mediation of Pt monolayer electrocatalysts. J. Phys. Chem. Lett. 1, 3238–3242 (2010)

    CAS  Google Scholar 

  290. Sun, Y., Hsieh, Y.C., Chang, L.C., et al.: Enhancing oxygen reduction reaction for oxygen reduction reaction in acidic electrolytes. J. Power Sources 277, 116–123 (2015)

    CAS  Google Scholar 

  291. Ghosh, T., Vukmirovic, M.B., DiSalvo, F.J., et al.: Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2009)

    Google Scholar 

  292. Yang, L., Vukmirovic, M.B., Su, D., et al.: Tuning the catalytic activity of Ru@ Pt core–shell nanoparticles for the oxygen reduction reaction by varying the shell thickness. J. Phys. Chem. C 117, 1748–1753 (2013)

    CAS  Google Scholar 

  293. Gnanaprakasam, P., Jeena, S., Selvaraju, T.: Hierarchical electroless Pt deposition at Au decorated reduced graphene oxide via a galvanic exchanged process: an electrocatalytic nanocomposite with enhanced mass activity for methanol and ethanol oxidation. J. Mater. Chem. A 3, 18010–18018 (2015)

    CAS  Google Scholar 

  294. Nan, H., Tian, X., Luo, J., et al.: A core–shell Pd1Ru1Ni2@Pt/C catalyst with a ternary alloy core and Pt monolayer: enhanced activity and stability towards the oxygen reduction reaction by the addition of Ni. J. Mater. Chem. A 4, 847–855 (2016)

    CAS  Google Scholar 

  295. Tsai, H.C., Hsieh, Y.C., Yu, T.H., et al.: DFT study of oxygen reduction reaction on Os/Pt core–shell catalysts validated by electrochemical experiment. ACS Catal. 5, 1568–1580 (2015)

    CAS  Google Scholar 

  296. Brimaud, S., Behm, R.J.: Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135, 11716–11719 (2013)

    CAS  PubMed  Google Scholar 

  297. Wang, J.X., Inada, H., Wu, L., et al.: Oxygen reduction on well-defined core − shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009)

    CAS  PubMed  Google Scholar 

  298. Zhou, W.P., Sasaki, K., Su, D., et al.: Gram-scale-synthesized Pd2Co-supported Pt monolayer electrocatalysts for oxygen reduction reaction. J. Phys. Chem. C 114, 8950–8957 (2010)

    CAS  Google Scholar 

  299. Sasaki, K., Wang, J.X., Naohara, H., et al.: Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 55, 2645–2652 (2010)

    CAS  Google Scholar 

  300. Jin, Y., Shen, Y., Dong, S.: Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B 108, 8142–8147 (2004)

    CAS  Google Scholar 

  301. Zhang, J., Mo, Y., Vukmirovic, M., et al.: Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 108, 10955–10964 (2004)

    CAS  Google Scholar 

  302. Yu, Y., Lim, K.H., Wang, J.Y., et al.: CO adsorption behavior on decorated Pt@Au nanoelectrocatalysts: a combined experimental and DFT theoretical calculation study. J. Phys. Chem. C 116, 3851–3856 (2012)

    CAS  Google Scholar 

  303. Yu, Y., Hu, Y., Liu, X., et al.: The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement. Electrochim. Acta 54, 3092–3097 (2009)

    CAS  Google Scholar 

  304. Wang, W., Zhao, Y., Ding, Y.: 2D ultrathin core − shell Pd@Pt(monolayer) nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance. Nanoscale 7, 11934–11939 (2015)

    CAS  PubMed  Google Scholar 

  305. Takimoto, D., Ohnishi, T., Nutariya, J., et al.: Ru-core@Pt-shell nanosheet for fuel cell electrocatalysts with high activity and durability. J. Catal. 345, 207–215 (2017)

    CAS  Google Scholar 

  306. Carino, E.V., Crooks, R.M.: Characterization of Pt@ Cu core@ shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir ACS J. Surf. Colloids 27, 4227–4235 (2011)

    CAS  Google Scholar 

  307. Mahesh, I., Sarkar, A.: Electrochemical study of oxygen reduction on carbon supported core − shell platinum − gold electrocatalyst with tuneable surface composition of gold. ChemElectroChem 3, 836–845 (2016)

    CAS  Google Scholar 

  308. Carino, E.V., Kim, H.Y., Henkelman, G., et al.: Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: correlation of theory and experiment. J. Am. Chem. Soc. 134, 4153–4162 (2012)

    CAS  PubMed  Google Scholar 

  309. Kim, Y.G., Kim, J.Y., Vairavapandian, D., et al.: Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in situ scanning tunneling microscopy. J. Phys. Chem. B 110, 17998–18006 (2006)

    CAS  PubMed  Google Scholar 

  310. Sieradzki, K., Dimitrov, N.: Electrochemical defect-mediated thin-film growth. Science 284, 138–141 (1999)

    CAS  PubMed  Google Scholar 

  311. Wang, J., Ocko, B., Adzic, R.: Overpotential deposition of Ag monolayer and bilayer on Au (111) mediated by Pb adlayer underpotential deposition/stripping cycles. Surf. Sci. 540, 230–236 (2003)

    CAS  Google Scholar 

  312. Yang, T., Cao, G., Huang, Q., et al.: Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction. ACS Appl. Mater. Interfaces. 7, 17162–17170 (2015)

    CAS  PubMed  Google Scholar 

  313. Choi, K.H., Kim, H.S., Lee, T.H.: Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition. J. Power Sources 75, 230–235 (1998)

    CAS  Google Scholar 

  314. Cheh, H.: The limiting rate of deposition by P-R plating. J. Electrochem. Soc. 118, 1132–1134 (1971)

    CAS  Google Scholar 

  315. Lu, X., Luo, F., Song, H., et al.: Pulse electrodeposition to prepare core–shell structured AuPt@Pd/C catalyst for formic acid fuel cell application. J. Power Sources 246, 659–666 (2014)

    CAS  Google Scholar 

  316. Ibl, N.: Some theoretical aspects of pulse electrolysis. Surf. Technol. 10, 81–104 (1980)

    CAS  Google Scholar 

  317. Reddy, V.N.R.K., Anderson, E.B., Taylor, E.J.: High utilization supported catalytic metal-containing gas-diffusion electrode, process for making it, and cells utilizing it. US Patent 5,084,144, 28 Jan 1992

  318. Verbrugge, M.W.: Selective electrodeposition of catalyst within membrane-electrode structures. J. Electrochem. Soc. 141, 46–53 (1994)

    CAS  Google Scholar 

  319. Dhar, H.P.: On solid polymer fuel cells. J. Electroanal. Chem. 357, 237–250 (1993)

    CAS  Google Scholar 

  320. Liu, J., Wang, X., Lin, Z., et al.: Shape-controllable pulse electrodeposition of ultrafine platinum nanodendrites for methanol catalytic combustion and the investigation of their local electric field intensification by electrostatic force microscope and finite element method. Electrochim. Acta 136, 66–74 (2014)

    CAS  Google Scholar 

  321. Wei, Z.D., Chan, S.H.: Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J. Electroanal. Chem. 569, 23–33 (2004)

    CAS  Google Scholar 

  322. Bo, Z., Hu, D., Kong, J., et al.: Performance of vertically oriented graphene supported platinum–ruthenium bimetallic catalyst for methanol oxidation. J. Power Sources 273, 530–537 (2015)

    CAS  Google Scholar 

  323. Tsai, M.C., Yeh, T.K., Tsai, C.H.: Methanol oxidation efficiencies on carbon-nanotube-supported platinum and platinum–ruthenium nanoparticles prepared by pulsed electrodeposition. Int. J. Hydrog. Energy 36, 8261–8266 (2011)

    CAS  Google Scholar 

  324. Coutanceau, C., Rakotondrainibe, A., Lima, A., et al.: Preparation of Pt–Ru bimetallic anodes by galvanostatic pulse electrodeposition: characterization and application to the direct methanol fuel cell. J. Appl. Electrochem. 34, 61–66 (2004)

    CAS  Google Scholar 

  325. Chou, H.Y., Hsieh, C.K., Tsai, M.C., et al.: Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions. Thin Solid Films 584, 98–102 (2015)

    CAS  Google Scholar 

  326. Nagaiah, T.C., Maljusch, A., Chen, X., et al.: Visualization of the local catalytic activity of electrodeposited Pt–Ag catalysts for oxygen reduction by means of SECM. ChemPhysChem 10, 2711–2718 (2009)

    CAS  PubMed  Google Scholar 

  327. Schwamborn, S., Stoica, L., Schuhmann, W.: Activation/inhibition effects during the coelectrodeposition of PtAg nanoparticles: application for ORR in alkaline media. ChemPhysChem 12, 1741–1746 (2011)

    CAS  PubMed  Google Scholar 

  328. Kulp, C., Chen, X., Puschhof, A., et al.: Electrochemical synthesis of core–shell catalysts for electrocatalytic applications. ChemPhysChem 11, 2854–2861 (2010)

    CAS  PubMed  Google Scholar 

  329. Tian, X., Luo, J., Nan, H., et al.: Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 138, 1575–1583 (2016)

    CAS  PubMed  Google Scholar 

  330. Deng, Y.J., Tripkovic, V., Rossmeisl, J., et al.: Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal. 6, 671–676 (2016)

    CAS  Google Scholar 

  331. Chen, D., Li, Y., Liao, S., et al.: Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method. Sci. Rep. 5, 11604 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Dang, D., Liao, S., Luo, F., et al.: A pulse electrochemical deposition method to prepare membrane electrode assemblies with ultra-low anode Pt loadings through in situ construction of active core–shell nanoparticles on an electrode. J. Power Sources 260, 27–33 (2014)

    CAS  Google Scholar 

  333. Kulp, C., Gillmeister, K., Widdra, W., et al.: Synthesis of CucorePtshell nanoparticles as model structures for core–shell electrocatalysts by direct platinum electrodeposition on copper. ChemPhysChem 14, 1205–1210 (2013)

    CAS  PubMed  Google Scholar 

  334. Dang, D., Zou, H., Xiong, Z., et al.: High-performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach. ACS Catal. 5, 4318–4324 (2015)

    CAS  Google Scholar 

  335. Huang, C., Bunmi Odetola, C., Rodgers, M.: Nanoparticle seeded pulse electrodeposition for preparing high performance Pt/C electrocatalysts. Appl. Catal. A 499, 55–65 (2015)

    CAS  Google Scholar 

  336. Ding, L.X., Li, G.R., Wang, Z.L., et al.: Porous Ni@ Pt core–shell nanotube array electrocatalyst with high activity and stability for methanol oxidation. Chem. Eur. J. 18, 8386–8391 (2012)

    CAS  PubMed  Google Scholar 

  337. Ye, S.H., Feng, J.X., Wang, A.L., et al.: Multi-layered Pt/Ni nanotube arrays with enhanced catalytic performance for methanol electrooxidation. J. Mater. Chem. A 3, 23201–23206 (2015)

    CAS  Google Scholar 

  338. Wang, Z., Xie, W., Zhang, F., et al.: Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution. Electrochim. Acta 192, 400–406 (2016)

    CAS  Google Scholar 

  339. Gupta, R., Guin, S.K., Aggarwal, S.K.: Electrocrystallization of palladium (Pd) nanoparticles on platinum (Pt) electrode and its application for electro-oxidation of formic acid and methanol. Electrochim. Acta 116, 314–320 (2014)

    CAS  Google Scholar 

  340. Suntivich, J., Xu, Z., Carlton, C.E., et al.: Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 135, 7985–7991 (2013)

    CAS  PubMed  Google Scholar 

  341. Campbell, C.T.: Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990)

    CAS  Google Scholar 

  342. Brongersma, H., Sparnaay, M., Buck, T.: Surface segregation in Cu–Ni and Cu–Pt alloys; a comparison of low-energy ion-scattering results with theory. Surf. Sci. 71, 657–678 (1978)

    CAS  Google Scholar 

  343. Chelikowsky, J.R.: Predictions for surface segregation in intermetallic alloys. Surf. Sci. 139, L197–L203 (1984)

    CAS  Google Scholar 

  344. Christensen, A., Stoltze, P., Norskov, J.: Size dependence of phase separation in small bimetallic clusters. J. Phys.: Condens. Matter 7, 1047 (1995)

    CAS  Google Scholar 

  345. Hansen, P.L., Molenbroek, A.M., Ruban, A.V.: Alloy formation and surface segregation in zeolite-supported Pt–Pd bimetallic catalysts. J. Phys. Chem. B 101, 1861–1868 (1997)

    CAS  Google Scholar 

  346. Van den Oetelaar, L., Nooij, O., Oerlemans, S., et al.: Surface segregation in supported Pd–Pt nanoclusters and alloys. J. Phys. Chem. B 102, 3445–3455 (1998)

    Google Scholar 

  347. Tao, F., Grass, M.E., Zhang, Y., et al.: Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008)

    CAS  PubMed  Google Scholar 

  348. Brodsky, C.N., Young, A.P., Ng, K.C., et al.: Electrochemically induced surface metal migration in well-defined core–shell nanoparticles and its general influence on electrocatalytic reactions. ACS Nano 8, 9368–9378 (2014)

    CAS  PubMed  Google Scholar 

  349. Hwang, B.J., Sarma, L.S., Chen, J.M., et al.: Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J. Am. Chem. Soc. 127, 11140–11145 (2005)

    CAS  PubMed  Google Scholar 

  350. Liu, C.W., Chen, H.S., Lai, C.M., et al.: Promotion of oxygen reduction reaction durability of carbon-supported PtAu catalysts by surface segregation and TiO2 addition. ACS Appl. Mater. Interfaces. 6, 1589–1594 (2014)

    CAS  PubMed  Google Scholar 

  351. Chung, Y.H., Chung, D.Y., Jung, N., et al.: Origin of the enhanced electrocatalysis for thermally controlled nanostructure of bimetallic nanoparticles. J. Phys. Chem. C 118, 9939–9945 (2014)

    CAS  Google Scholar 

  352. Ahmadi, M., Behafarid, F., Cui, C., et al.: Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7, 9195–9204 (2013)

    CAS  PubMed  Google Scholar 

  353. Liu, H., Dou, M., Wang, F., et al.: Ordered intermetallic PtFe@ Pt core–shell nanoparticles supported on carbon nanotubes with superior activity and durability as oxygen reduction reaction electrocatalysts. RSC Adv. 5, 66471–66475 (2015)

    CAS  Google Scholar 

  354. Guo, H., Liu, X., Bai, C., et al.: Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction. Chemsuschem 8, 486–494 (2015)

    CAS  PubMed  Google Scholar 

  355. Liu, Z., Jackson, G.S., Eichhorn, B.W.: Tuning the CO-tolerance of Pt–Fe bimetallic nanoparticle electrocatalysts through architectural control. Energy Environ. Sci. 4, 1900–1903 (2011)

    CAS  Google Scholar 

  356. Budiman, A.H., Purwanto, W.W., Dewi, E.L., et al.: Understanding adsorbate-induced surface segregation in PtCo/C electrocatalyst. Asia-Pac. J. Chem. Eng. 7, 604–612 (2012)

    CAS  Google Scholar 

  357. Lee, K.S., Park, H.Y., Ham, H.C., et al.: Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction. J. Phys. Chem. C 117, 9164–9170 (2013)

    CAS  Google Scholar 

  358. Wei, Y.C., Liu, C.W., Chang, W.J., et al.: Promotion of Pt–Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction. J. Alloys Compd. 509, 535–541 (2011)

    CAS  Google Scholar 

  359. Xiong, Y., Xiao, L., Yang, Y., et al.: High-loading intermetallic Pt3Co/C core–shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR). Chem. Mater. 30, 1532–1539 (2018)

    CAS  Google Scholar 

  360. Cui, C.H., Li, H.H., Liu, X.J., et al.: Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal. 2, 916–924 (2012)

    CAS  Google Scholar 

  361. Puurunen, R.L.: Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005)

    Google Scholar 

  362. Ritala, M., Leskelä, M.: Atomic layer epitaxy: a valuable tool for nanotechnology? Nanotechnology 10, 19 (1999)

    CAS  Google Scholar 

  363. Leskela, M., Ritala, M.: Atomic layer deposition chemistry: recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548–5554 (2003)

    CAS  Google Scholar 

  364. Kim, H., Maeng, W.J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563–2580 (2009)

    CAS  Google Scholar 

  365. Comstock, D.J., Christensen, S.T., Elam, J.W., et al.: Tuning the composition and nanostructure of Pt/Ir films via anodized aluminum oxide templated atomic layer deposition. Adv. Funct. Mater. 20, 3099–3105 (2010)

    CAS  Google Scholar 

  366. Cao, K., Zhu, Q., Shan, B., et al.: Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci. Rep. 5, 8470 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  367. Cao, K., Liu, X., Zhu, Q., et al.: Atomically controllable Pd@Pt core–shell nanoparticles towards preferential oxidation of CO in hydrogen reactions modulated by platinum shell thickness. ChemCatChem 8, 326–330 (2016)

    CAS  Google Scholar 

  368. Weber, M., Verheijen, M., Bol, A., et al.: Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Nanotechnology 26, 094002 (2015)

    CAS  PubMed  Google Scholar 

  369. Jiang, X., Gür, T.M., Prinz, F.B., et al.: Atomic layer deposition (ALD) co-deposited Pt–Ru binary and pt skin catalysts for concentrated methanol oxidation. Chem. Mater. 22, 3024–3032 (2010)

    CAS  Google Scholar 

  370. Santasalo-Aarnio, A., Sairanen, E., Arán-Ais, R.M., et al.: The activity of ALD-prepared PtCo catalysts for ethanol oxidation in alkaline media. J. Catal. 309, 38–48 (2014)

    CAS  Google Scholar 

  371. Sairanen, E., Figueiredo, M.C., Karinen, R., et al.: Atomic layer deposition in the preparation of Bi-metallic, platinum-based catalysts for fuel cell applications. Appl. Catal. B 148–149, 11–21 (2014)

    Google Scholar 

  372. Johansson, A.C., Larsen, J.V., Verheijen, M.A., et al.: Electrocatalytic activity of atomic layer deposited Pt–Ru catalysts onto N-doped carbon nanotubes. J. Catal. 311, 481–486 (2014)

    CAS  Google Scholar 

  373. Johansson, A.C., Yang, R.B., Haugshøj, K.B., et al.: Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells. Int. J. Hydrog. Energy 38, 11406–11414 (2013)

    CAS  Google Scholar 

  374. Gould, T.D., Montemore, M.M., Lubers, A.M., et al.: Enhanced dry reforming of methane on Ni and Ni–Pt catalysts synthesized by atomic layer deposition. Appl. Catal. A 492, 107–116 (2015)

    CAS  Google Scholar 

  375. Kawasaki, M., Hsiao, C.N., Yang, J.R., et al.: Structural investigation of Ru/Pt nanocomposite films prepared by plasma-enhanced atomic layer depositions. Micron 74, 8–14 (2015)

    CAS  PubMed  Google Scholar 

  376. Hsu, I.J., Chen, J.G., Jiang, X., et al.: Atomic layer deposition synthesis and evaluation of core–shell Pt–WC electrocatalysts. J. Vac. Sci. Technol. A Vac. Surf. Films 33, 01A129 (2015)

    Google Scholar 

  377. Jeong, H.J., Kim, J.W., Bae, K., et al.: Platinum–ruthenium heterogeneous catalytic anodes prepared by atomic layer deposition for use in direct methanol solid oxide fuel cells. ACS Catal. 5, 1914–1921 (2015)

    CAS  Google Scholar 

  378. Jeong, H.J., Kim, J.W., Jang, D.Y., et al.: Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells. J. Power Sources 291, 239–245 (2015)

    CAS  Google Scholar 

  379. Shim, J.H., Jiang, X., Bent, S., et al.: Metal alloy catalysts with Pt surface coating by atomic layer deposition for intermediate temperature ceramic fuel cells. In: DeGendt, S., Delabie, A., Kang, S.B., et al. (eds.) ECS Transactions, vol. 25, pp. 323–332. Electrochemical Society Inc., Pennington (2009)

    Google Scholar 

  380. Hoover, R.R., Tolmachev, Y.V.: Electrochemical properties of Pt coatings on Ni prepared by atomic layer deposition. J. Electrochem. Soc. 156, A37–A43 (2009)

    CAS  Google Scholar 

  381. Clancey, J.W., Cavanagh, A.S., Kukreja, R.S., et al.: Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: application to high surface area substrates. J. Vac. Sci. Technol. A Vac. Surf. Films 33, 01A130 (2015)

    Google Scholar 

  382. Sugioka, D., Kameyama, T., Kuwabata, S., et al.: Formation of a Pt-decorated Au nanoparticle monolayer floating on an ionic liquid by the ionic liquid/metal sputtering method and tunable electrocatalytic activities of the resulting monolayer. ACS Appl. Mater. Interfaces. 8, 10874–10883 (2016)

    CAS  PubMed  Google Scholar 

  383. Grigoriev, S.A., Fedotov, A.A., Murzin, V.Y., et al.: Study of nanostructured electrocatalysts synthesized by the platinum magnetron–ion-beam sputtering onto metallized nanostructured carbonaceous support. Russ. J. Electrochem. 51, 807–819 (2015)

    CAS  Google Scholar 

  384. Fedotov, A.A., Grigoriev, S.A., Millet, P., et al.: Plasma-assisted Pt and Pt–Pd nano-particles deposition on carbon carriers for application in PEM electrochemical cells. Int. J. Hydrog. Energy 38, 8568–8574 (2013)

    CAS  Google Scholar 

  385. Grigoriev, S., Fedotov, A., Martemianov, S., et al.: Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals. Russ. J. Electrochem. 50, 638–646 (2014)

    CAS  Google Scholar 

  386. Galhenage, R.P., Xie, K., Diao, W., et al.: Platinum–ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods. Phys. Chem. Chem. Phys. 17, 28354–28363 (2015)

    CAS  PubMed  Google Scholar 

  387. Gasda, M.D., Eisman, G.A., Gall, D.: Sputter-deposited Pt/CrN nanoparticle PEM fuel cell cathodes: limited proton conductivity through electrode dewetting. J. Electrochem. Soc. 157, B71 (2010)

    CAS  Google Scholar 

  388. Kariuki, N.N., Cansizoglu, M.F., Begum, M., et al.: SAD–GLAD Pt–Ni@Ni nanorods as highly active oxygen reduction reaction electrocatalysts. ACS Catal. 6, 3478–3485 (2016)

    CAS  Google Scholar 

  389. Cha, I.Y., Ahn, M., Yoo, S.J., et al.: Facile synthesis of carbon supported metal nanoparticles via sputtering onto a liquid substrate and their electrochemical application. RSC Adv. 4, 38575–38580 (2014)

    CAS  Google Scholar 

  390. Thomas, F.S., Masel, R.I.: Formic acid decomposition on palladium-coated Pt (110). Surf. Sci. 573, 169–175 (2004)

    CAS  Google Scholar 

  391. Kelly, P., Arnell, R.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)

    CAS  Google Scholar 

  392. Lee, C.H., Chen, Y.S., Liu, L.J., et al.: The structural transition from epitaxial Fe/Pt multilayers to an ordered FePt film using low energy ion beam sputtering deposition with no buffer layer. Thin Solid Films 570, 288–292 (2014)

    CAS  Google Scholar 

  393. Wu, J., Pan, Y., Chen, L., et al.: Microstructure transformation and interface structure of Co/Pt nano-multilayers prepared by ion beam sputtering deposition (IBSD). Surf. Coat. Technol. 176, 357–364 (2004)

    CAS  Google Scholar 

  394. Weng, K.W., Han, S., Chen, Y.L., et al.: Characteristics of DMFC electrodes improve by the MPII Pt–Ru catalysts. Surf. Coat. Technol. 201, 6557–6560 (2007)

    CAS  Google Scholar 

  395. Fateev, V., Alekseeva, O., Lutikova, E., et al.: New physical technologies for catalyst synthesis and anticorrosion protection. Int. J. Hydrog. Energy 41, 10515–10521 (2016)

    CAS  Google Scholar 

  396. Toda, T., Igarashi, H., Uchida, H., et al.: Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 146, 3750–3756 (1999)

    CAS  Google Scholar 

  397. Sokhoreva, V.V., Golovkov, V.M.: Formation of a fuel-cell catalyst layer with a low platinum content. Pet. Chem. 55, 315–317 (2015)

    CAS  Google Scholar 

  398. Wender, H., de Oliveira, L.F., Migowski, P., et al.: Ionic liquid surface composition controls the size of gold nanoparticles prepared by sputtering deposition. J. Phys. Chem. C 114, 11764–11768 (2010)

    CAS  Google Scholar 

  399. Yoshida, H., Kawamoto, K., Kubo, H., et al.: Nanoparticle-dispersed liquid crystals fabricated by sputter doping. Adv. Mater. 22, 622–626 (2010)

    CAS  PubMed  Google Scholar 

  400. Hirano, M., Enokida, K., Okazaki, K., et al.: Composition-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid. Phys. Chem. Chem. Phys. 15, 7286–7294 (2013)

    CAS  PubMed  Google Scholar 

  401. Wang, L., Yamauchi, Y.: Metallic nanocages: synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 135, 16762–16765 (2013)

    CAS  PubMed  Google Scholar 

  402. Shao, M., Shoemaker, K., Peles, A., et al.: Pt monolayer on porous Pd − Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 132, 9253–9255 (2010)

    CAS  PubMed  Google Scholar 

  403. Jennings, P.C., Aleksandrov, H.A., Neyman, K.M., et al.: O2 dissociation on M@ Pt core–shell particles for 3d, 4d, and 5d Transition Metals. J. Phys. Chem. C 119, 11031–11041 (2015)

    CAS  Google Scholar 

  404. Senkov, O., Miracle, D.: Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183–2198 (2001)

    CAS  Google Scholar 

  405. Li, H., Liao, S., You, C., et al.: Synthesis of three-dimensional Pd nanospheres decorated with a Pt monolayer for the oxygen reduction reaction. Int. J. Hydrog. Energy 39, 14018–14026 (2014)

    CAS  Google Scholar 

  406. Zhang, J., Vukmirovic, M.B., Xu, Y., et al.: Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005)

    CAS  Google Scholar 

  407. Khateeb, S., Guerreo, S., Su, D., et al.: Fuel cell performance of palladium − platinum core − shell electrocatalysts synthesized in gram-scale batches. J. Electrochem. Soc. 163, F708–F713 (2016)

    CAS  Google Scholar 

  408. Zhang, L., Zhu, S., Chang, Q., et al.: Palladium–platinum core–shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid. ACS Catal. 6, 3428–3432 (2016)

    CAS  Google Scholar 

  409. Zhang, Y., Hsieh, Y.C., Volkov, V., et al.: High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol. ACS Catal. 4, 738–742 (2014)

    CAS  Google Scholar 

  410. Zhu, S., Yue, J., Qin, X., et al.: The role of citric acid in perfecting platinum monolayer on palladium nanoparticles during the surface limited redox replacement reaction. J. Electrochem. Soc. 163, D3040–D3046 (2016)

    CAS  Google Scholar 

  411. Wang, X., Choi, S.I., Roling, L.T., et al.: Palladium − platinum core − shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015)

    PubMed  PubMed Central  Google Scholar 

  412. Humbert, M.P., Smith, B.H., Wang, Q., et al.: Synthesis and characterization of palladium–platinum core–shell electrocatalysts for oxygen reduction. Electrocatalysis 3, 298–303 (2012)

    CAS  Google Scholar 

  413. Taufany, F., Pan, C.J., Lai, F.J., et al.: Relating the composition of PtxRu100−x/C nanoparticles to their structural aspects and electrocatalytic activities in the methanol oxidation reaction. Chem. Eur. J. 19, 905–915 (2013)

    CAS  PubMed  Google Scholar 

  414. Kakati, N., Maiti, J., Lee, S.H., et al.: Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt − Ru? Chem. Rev. 114, 12397–12429 (2014)

    CAS  PubMed  Google Scholar 

  415. Liu, P., Nørskov, J.K.: Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 3, 3814–3818 (2001)

    CAS  Google Scholar 

  416. Zhang, L., Kim, J., Zhang, J., et al.: Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Appl. Energy 103, 507–513 (2013)

    CAS  Google Scholar 

  417. Sasaki, K., Wang, J.X., Balasubramanian, M., et al.: Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim. Acta 49, 3873–3877 (2004)

    CAS  Google Scholar 

  418. Li, Y., Zheng, L., Liao, S., et al.: PtRu/C catalysts synthesized by a two-stage polyol reduction process for methanol oxidation reaction. J. Power Sources 196, 10570–10575 (2011)

    CAS  Google Scholar 

  419. Muthuswamy, N., de la Fuente, J.L.G., Tran, D.T., et al.: Ru@Pt core–shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int. J. Hydrog. Energy 38, 16631–16641 (2013)

    CAS  Google Scholar 

  420. Wang, J.J., Liu, Y.T., Chen, I.L., et al.: Near-monolayer platinum shell on core–shell nanocatalysts for high-performance direct methanol fuel cell. J. Phys. Chem. C 118, 2253–2262 (2014)

    CAS  Google Scholar 

  421. Alayoglu, S., Zavalij, P., Eichhorn, B., et al.: Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt − Ru core − shell and alloy nanoparticles. ACS Nano 3, 3127–3137 (2009)

    CAS  PubMed  Google Scholar 

  422. Hsieh, Y.C., Chang, L.C., Wu, P.W., et al.: Displacement reaction of Pt on carbon-supported Ru nanoparticles in hexachloroplatinic acids. Appl. Catal. B 103, 116–127 (2011)

    CAS  Google Scholar 

  423. Chen, C.H., Sarma, L.S., Wang, D.Y., et al.: Platinum-decorated ruthenium nanoparticles for enhanced methanol electrooxidation. ChemCatChem 2, 159–166 (2010)

    CAS  Google Scholar 

  424. Bokach, D., de la Fuente, J.L.G., Tsypkin, M., et al.: High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst. Fuel Cells 11, 735–744 (2011)

    CAS  Google Scholar 

  425. Aiyer, H.N., Vijayakrishnan, V., Subbanna, G., et al.: Investigations of Pd clusters by the combined use of HREM, STM, high-energy spectroscopies and tunneling conductance measurements. Surf. Sci. 313, 392–398 (1994)

    CAS  Google Scholar 

  426. Eberhardt, W., Fayet, P., Cox, D., et al.: Photoemission from mass-selected monodispersed Pt clusters. Phys. Rev. Lett. 64, 780 (1990)

    CAS  PubMed  Google Scholar 

  427. Toyoda, E., Jinnouchi, R., Hatanaka, T., et al.: The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction. J. Phys. Chem. C 115, 21236–21240 (2011)

    CAS  Google Scholar 

  428. Zhang, J., Sasaki, K., Sutter, E., et al.: Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220–222 (2007)

    CAS  PubMed  Google Scholar 

  429. Hartl, K., Mayrhofer, K.J.J., Lopez, M., et al.: AuPt core–shell nanocatalysts with bulk Pt activity. Electrochem. Commun. 12, 1487–1489 (2010)

    CAS  Google Scholar 

  430. Dorjgotov, A., Jeon, Y., Hwang, J., et al.: Synthesis of durable small-sized bilayer Au@Pt nanoparticles for high performance PEMFC catalysts. Electrochim. Acta 228, 389–397 (2017)

    CAS  Google Scholar 

  431. Zhang, Y., Huang, Q., Zou, Z., et al.: Enhanced durability of Au cluster decorated Pt nanoparticles for the oxygen reduction reaction. J. Phys. Chem. C 114, 6860–6868 (2010)

    CAS  Google Scholar 

  432. Lang, H., Maldonado, S., Stevenson, K.J., et al.: Synthesis and characterization of dendrimer templated supported bimetallic Pt–Au nanoparticles. J. Am. Chem. Soc. 126, 12949–12956 (2004)

    CAS  PubMed  Google Scholar 

  433. Rajasekharan, T., Seshubai, V.: Charge transfer on the metallic atom-pair bond, and the crystal structures adopted by intermetallic compounds. Acta Crystallogr. A 68, 156–165 (2012)

    CAS  PubMed  Google Scholar 

  434. Weightman, P., Cole, R., Brooks, N., et al.: A new approach to the determination of charge transfer in metal alloys. Nucl. Instrum. Methods Phys. Res., Sect. B 97, 472–478 (1995)

    CAS  Google Scholar 

  435. Petkov, V., Wanjala, B.N., Loukrakpam, R., et al.: Pt–Au alloying at the nanoscale. Nano Lett. 12, 4289–4299 (2012)

    CAS  PubMed  Google Scholar 

  436. Glatzel, P., Singh, J., Kvashnina, K.O., et al.: In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO. J. Am. Chem. Soc. 132, 2555–2557 (2010)

    CAS  PubMed  Google Scholar 

  437. Guo, S., Fang, Y., Dong, S., et al.: High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C 111, 17104–17109 (2007)

    CAS  Google Scholar 

  438. Yamauchi, Y., Tonegawa, A., Komatsu, M., et al.: Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100–5109 (2012)

    CAS  PubMed  Google Scholar 

  439. Zhao, D., Xu, B.Q.: Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew. Chem. Int. Ed. 45, 4955–4959 (2006)

    CAS  Google Scholar 

  440. Tang, H., Chen, J.H., Wang, M.Y., et al.: Controlled synthesis of platinum catalysts on Au nanoparticles and their electrocatalytic property for methanol oxidation. Appl. Catal. A 275, 43–48 (2004)

    CAS  Google Scholar 

  441. Zhang, S., Shao, Y., Yin, G., et al.: Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem. Int. Ed. 49, 2211–2214 (2010)

    CAS  Google Scholar 

  442. Kristian, N., Yan, Y., Wang, X.: Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 3, 353–355 (2008)

    Google Scholar 

  443. Zhang, L., Iyyamperumal, R., Yancey, D.F., et al.: Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction. ACS Nano 7, 9168–9172 (2013)

    CAS  PubMed  Google Scholar 

  444. Wang, T., Yang, R., Ouyang, S., et al.: Light-induced synthesis of clean-surface PdPt@ Pt core–shell nanoparticles with excellent electrocatalytic activity. RSC Adv. 5, 48992–48996 (2015)

    CAS  Google Scholar 

  445. Hirunsit, P., Balbuena, P.B.: Stability of Pt monolayers on Ir − Co cores with and without a Pd interlayer. J. Phys. Chem. C 114, 13055–13060 (2010)

    CAS  Google Scholar 

  446. Alayoglu, S., Eichhorn, B.: Rh − Pt bimetallic catalysts: synthesis, characterization, and catalysis of core − shell, alloy, and monometallic nanoparticles. J. Am. Chem. Soc. 130, 17479–17486 (2008)

    CAS  PubMed  Google Scholar 

  447. Beyhan, S., Léger, J.M., Kadırgan, F.: Understanding the influence of Ni Co, Rh and Pd addition to PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy. Appl. Catal. B 144, 66–74 (2014)

    CAS  Google Scholar 

  448. Xu, Z.F., Wang, Y.: Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: adsorption and dehydrogenation on Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd). J. Phys. Chem. C 115, 20565–20571 (2011)

    CAS  Google Scholar 

  449. Zhang, Y., Janyasupab, M., Liu, C.W., et al.: Three dimensional PtRh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells. Adv. Funct. Mater. 22, 2570–2575 (2012)

    Google Scholar 

  450. Dhavale, V.M., Unni, S.M., Kagalwala, H.N., et al.: Ex-situ dispersion of core–shell nanoparticles of Cu–Pt on an in situ modified carbon surface and their enhanced electrocatalytic activities. Chem. Commun. 47, 3951–3953 (2011)

    CAS  Google Scholar 

  451. Froemming, N.S., Henkelman, G.: Optimizing core–shell genetic algorithm. J. Chem. Phys. 131, 234103 (2009)

    PubMed  Google Scholar 

  452. Yang, Z., Zhang, Y., Wang, J., et al.: First-principles study on the Ni@Pt12 Ih core–shell nanoparticles: a good catalyst for oxygen reduction reaction. Phys. Lett. A 375, 3142–3148 (2011)

    CAS  Google Scholar 

  453. Godínez-Salomón, F., Hallen-López, M., Solorza-Feria, O.: Enhanced electroactivity for the oxygen reduction on Ni@Pt core–shell nanocatalysts. Int. J. Hydrog. Energy 37, 14902–14910 (2012)

    Google Scholar 

  454. Wang, G., Wu, H., Wexler, D., et al.: Ni@Pt core–shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction. J. Alloys Compd. 503, L1–L4 (2010)

    CAS  Google Scholar 

  455. Cantane, D.A., Oliveira, F.E.R., Santos, S.F., et al.: Synthesis of Pt-based hollow nanoparticles using carbon-supported Co@Pt and Ni@Pt core–shell structures as templates: electrocatalytic activity for the oxygen reduction reaction. Appl. Catal. B 136–137, 351–360 (2013)

    Google Scholar 

  456. Bhlapibul, S., Pruksathorn, K., Piumsomboon, P.: The effect of the stabilizer on the properties of a synthetic Ni core–Pt shell catalyst for PEM fuel cells. Renew. Energy 41, 262–266 (2012)

    CAS  Google Scholar 

  457. Fu, X.Z., Liang, Y., Chen, S.P., et al.: Pt-rich shell coated Ni nanoparticles as catalysts for methanol electro-oxidation in alkaline media. Catal. Commun. 10, 1893–1897 (2009)

    CAS  Google Scholar 

  458. Chen, Y., Yang, F., Dai, Y., et al.: Ni@ Pt core–shell nanoparticles: synthesis, structural and electrochemical properties. J. Phys. Chem. C 112, 1645–1649 (2008)

    CAS  Google Scholar 

  459. Ding, J., Ji, S., Wang, H., et al.: Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity. J. Power Sources 374, 48–54 (2018)

    CAS  Google Scholar 

  460. Ramos-Sanchez, G., Praserthdam, S., Godinez-Salomon, F., et al.: Challenges of modelling real nanoparticles: Ni@Pt electrocatalysts for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 17, 28286–28297 (2015)

    CAS  PubMed  Google Scholar 

  461. Papadimitriou, S., Armyanov, S., Valova, E., et al.: Methanol oxidation at Pt − Cu, Pt − Ni, and Pt − Co electrode coatings prepared by a galvanic replacement process. J. Phys. Chem. C 114, 5217–5223 (2010)

    CAS  Google Scholar 

  462. Chen, Y., Shi, J., Chen, S.: Small-molecule (CO, H2) electro-oxidation as an electrochemical tool for characterization of Ni@ Pt/C with different Pt coverages. J. Phys. Chem. C 119, 7138–7145 (2015)

    CAS  Google Scholar 

  463. Duan, D., Liu, S., Yang, C., et al.: Electrocatalytic performance of Ni core@Pt shell/C core–shell nanoparticle with the Pt in nanoshell. Int. J. Hydrog. Energy 38, 14261–14268 (2013)

    CAS  Google Scholar 

  464. Yuan, Q., Duan, D., Ma, Y., et al.: Performance of nano-nickel core wrapped with Pt crystalline thin film for methanol electro-oxidation. J. Power Sources 245, 886–891 (2014)

    CAS  Google Scholar 

  465. Wang, X.L., Wang, H., Lei, Z.Q., et al.: The performance of carbon-supported platinum-decorated nickel electrocatalyst for ethanol oxidation. Chin. J. Catal. 32, 1519–1524 (2011)

    CAS  Google Scholar 

  466. Wang, X.L., Wang, H., Wang, R.F., et al.: Carbon-supported platinum-decorated nickel nanoparticles for enhanced methanol oxidation in acid media. J. Solid State Electrochem. 16, 1049–1054 (2012)

    CAS  Google Scholar 

  467. Kang, J., Wang, R., Wang, H., et al.: Effect of Ni core structure on the electrocatalytic activity of Pt–Ni/C in methanol oxidation. Materials 6, 2689–2700 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  468. Ali, S., Khan, I., Khan, S.A., et al.: Electrocatalytic performance of Ni@Pt core–shell nanoparticles supported on carbon nanotubes for methanol oxidation reaction. J. Electroanal. Chem. 795, 17–25 (2017)

    CAS  Google Scholar 

  469. Lin, R., Cao, C., Zhao, T., et al.: Synthesis and application of core–shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells. J. Power Sources 223, 190–198 (2013)

    CAS  Google Scholar 

  470. Wu, H., Wexler, D., Wang, G., et al.: Co core–Pt shell nanoparticles as cathode catalyst for PEM fuel cells. J. Solid State Electrochem. 16, 1105–1110 (2011)

    Google Scholar 

  471. Kettner, M., Schneider, W., Auer, A.: Computational study of Pt/Co core–shell nanoparticles: segregation, adsorbates and catalyst activity. J. Phys. Chem. C 116, 15432–15438 (2012)

    CAS  Google Scholar 

  472. Beard, K., Borrelli, D., Cramer, A.M., et al.: Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 3, 2841–2853 (2009)

    CAS  PubMed  Google Scholar 

  473. Ali, S., Ahmed, R., Sohail, M., et al.: Co@Pt core–shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation. J. Ind. Eng. Chem. 28, 344–350 (2015)

    CAS  Google Scholar 

  474. Ding, J., Ji, S., Wang, H., et al.: Tailoring nanopores within nanoparticles of PtCo networks as catalysts for methanol oxidation reaction. Electrochim. Acta 255, 55–62 (2017)

    CAS  Google Scholar 

  475. Habibi, B., Ghaderi, S.: Synthesis, characterization and electrocatalytic activity of Co@Pt nanoparticles supported on carbon-ceramic substrate for fuel cell applications. Int. J. Hydrog. Energy 40, 5115–5125 (2015)

    CAS  Google Scholar 

  476. Yang, Z., Zhang, Y., Wu, R.: High stability and reactivity of Pt-based core–shell nanoparticles for oxygen reduction reaction. J. Phys. Chem. C 116, 13774–13780 (2012)

    CAS  Google Scholar 

  477. Öberg, H., Anniyev, T., Vojvodic, A., et al.: Stability of Pt-modified Cu (111) in the presence of oxygen and its implication on the overall electronic structure. J. Phys. Chem. C 117, 16371–16380 (2013)

    Google Scholar 

  478. di Paola, C., Baletto, F.: Oxygen adsorption on small PtNi nanoalloys. Phys. Chem. Chem. Phys. 13, 7701–7707 (2011)

    PubMed  Google Scholar 

  479. Stamenkovic, V., Mun, B.S., Mayrhofer, K.J., et al.: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. 118, 2963–2967 (2006)

    Google Scholar 

  480. Bae, S.J., Yoo, S.J., Lim, Y., et al.: Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance. J. Mater. Chem. 22, 8820–8825 (2012)

    CAS  Google Scholar 

  481. Liu, Y., Hangarter, C.M., Bertocci, U., et al.: Oxygen reduction reaction on electrodeposited Pt100−xNix: influence of alloy composition and dealloying. J. Phys. Chem. C 116, 7848–7862 (2012)

    CAS  Google Scholar 

  482. Wang, C., Chi, M., Li, D., et al.: Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011)

    CAS  PubMed  Google Scholar 

  483. Stamenkovic, V.R., Fowler, B., Mun, B.S., et al.: Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315, 493–497 (2007)

    CAS  PubMed  Google Scholar 

  484. Wang, L.L., Zhang, D.F., Guo, L.: Phase-segregated Pt–Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale 6, 4635 (2014)

    CAS  PubMed  Google Scholar 

  485. Mintsouli, I., Georgieva, J., Valova, E., et al.: Pt–Ni carbon-supported catalysts for methanol oxidation prepared by Ni electroless deposition and its galvanic replacement by Pt. J. Solid State Electrochem. 17, 435–443 (2013)

    CAS  Google Scholar 

  486. Hu, G., Gracia-Espino, E., Sandström, R., et al.: Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles. Catal. Sci. Technol. 6, 1393–1401 (2016)

    CAS  Google Scholar 

  487. Duan, G.W., Zhang, J., Xu, Y.M., et al.: Synthesis and characterization of Pt3Co@Pt nanocomposites using banana peel extract as novel surfactants. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 203–209 (2015)

    CAS  Google Scholar 

  488. Liu, Z., Yu, C., Rusakova, I.A., et al.: Synthesis of Pt3Co alloy nanocatalyst via reverse micelle for oxygen reduction reaction in PEMFCs. Top. Catal. 49, 241–250 (2008)

    CAS  Google Scholar 

  489. Wang, D., Xin, H.L., Hovden, R., et al.: Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013)

    CAS  PubMed  Google Scholar 

  490. Jiang, R., Rong, C., Chu, D.: Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction. Electrochim. Acta 56, 2532–2540 (2011)

    CAS  Google Scholar 

  491. Oezaslan, M., Strasser, P.: Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J. Power Sources 196, 5240–5249 (2011)

    CAS  Google Scholar 

  492. Moseley, P., Curtin, W.: Computational design of strain in core–shell nanoparticles for optimizing catalytic activity. Nano Lett. 15, 4089–4095 (2015)

    CAS  PubMed  Google Scholar 

  493. Wang, H., Ji, S., Wang, W., et al.: Amorphous Pt@PdCu/CNT catalyst for methanol electrooxidation. S. Afr. J. Chem. 66, 17–20 (2013)

    CAS  Google Scholar 

  494. Wang, R., Li, H., Feng, H., et al.: Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation. J. Power Sources 195, 1099–1102 (2010)

    CAS  Google Scholar 

  495. Wang, R., Wang, H., Wei, B., et al.: Carbon supported Pt-shell modified PdCo-core with electrocatalyst for methanol oxidation. Int. J. Hydrog. Energy 35, 10081–10086 (2010)

    CAS  Google Scholar 

  496. Wang, H., Wang, R., Li, H., et al.: Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells. Int. J. Hydrog. Energy 36, 839–848 (2011)

    CAS  Google Scholar 

  497. Wang, H., Ji, S., Wang, W., et al.: Pt decorated PdFe/C: extremely high electrocatalytic activity for methanol oxidation. Int. J. Electrochem. Sci. 7, 3390–3398 (2012)

    CAS  Google Scholar 

  498. Wang, R., Zhang, Z., Wang, H., et al.: Pt decorating PdCu/C as highly effective electrocatalysts for methanol oxidation. Electrochem. Commun. 11, 1089–1091 (2009)

    CAS  Google Scholar 

  499. Sarkar, A., Murugan, A.V., Manthiram, A.: Pt-encapsulated Pd − Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Langmuir ACS J. Surf. Colloids 26, 2894–2903 (2009)

    Google Scholar 

  500. Sasaki, K., Kuttiyiel, K.A., Su, D., et al.: Platinum monolayer on IrFe core–shell nanoparticle electrocatalysts for the oxygen reduction reaction. Electrocatalysis 2, 134–140 (2011)

    CAS  Google Scholar 

  501. Kuttiyiel, K.A., Sasaki, K., Choi, Y., et al.: Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 5, 5297–5304 (2012)

    CAS  Google Scholar 

  502. Yang, J., Chen, X., Yang, X., et al.: Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy Environ. Sci. 5, 8976–8981 (2012)

    CAS  Google Scholar 

  503. Sasaki, K., Kuttiyiel, K.A., Barrio, L., et al.: Carbon-supported IrNi core–shell nanoparticles: synthesis, characterization, and catalytic activity. J. Phys. Chem. C 115, 9894–9902 (2011)

    CAS  Google Scholar 

  504. Gong, K., Su, D., Adzic, R.R.: Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010)

    CAS  PubMed  Google Scholar 

  505. Levy, R., Boudart, M.: Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973)

    CAS  PubMed  Google Scholar 

  506. Antolini, E., Gonzalez, E.R.: Tungsten-based materials for fuel cell applications. Appl. Catal. B 96, 245–266 (2010)

    CAS  Google Scholar 

  507. Serov, A., Kwak, C.: Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl. Catal. B 90, 313–320 (2009)

    CAS  Google Scholar 

  508. Esposito, D.V., Chen, J.G.: Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ. Sci. 4, 3900–3912 (2011)

    CAS  Google Scholar 

  509. Liu, N.: Potential application of tungsten carbides as electrocatalysts III. Reactions of methanol, water, and hydrogen on Pt-modified C/W (111) surfaces. J. Catal. 215, 254–263 (2003)

    CAS  Google Scholar 

  510. Weigert, E.C., Stottlemyer, A.L., Zellner, M.B., et al.: Tungsten monocarbide as potential replacement of platinum for methanol electrooxidation. J. Phys. Chem. C 111, 14617–14620 (2007)

    CAS  Google Scholar 

  511. Hunt, S.T., Nimmanwudipong, T., Román-Leshkov, Y.: Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angew. Chem. Int. Ed. 53, 5131–5136 (2014)

    CAS  Google Scholar 

  512. Ono, S., Kikegawa, T., Ohishi, Y.: A high-pressure and high-temperature synthesis of platinum carbide. Solid State Commun. 133, 55–59 (2005)

    CAS  Google Scholar 

  513. Yates, J., Spikes, G., Jones, G.: Platinum–carbide interactions: core–shells for catalytic use. Phys. Chem. Chem. Phys. 17, 4250–4258 (2015)

    CAS  PubMed  Google Scholar 

  514. Liu, Y., Kelly, T.G., Chen, J.G., et al.: Metal carbides as alternative electrocatalyst supports. ACS Catal. 3, 1184–1194 (2013)

    CAS  Google Scholar 

  515. Esposito, D.V., Hunt, S.T., Kimmel, Y.C., et al.: A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 134, 3025–3033 (2012)

    CAS  PubMed  Google Scholar 

  516. Chen, Z.Y., Ma, C.A., Chu, Y.Q., et al.: WC@ meso-Pt core–shell nanostructures for fuel cells. Chem. Commun. 49, 11677–11679 (2013)

    CAS  Google Scholar 

  517. Liu, Y., Mustain, W.E.: Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction. ACS Catal. 1, 212–220 (2011)

    CAS  Google Scholar 

  518. Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)

    Google Scholar 

  519. Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., et al.: Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chem. Int. Ed. 49, 9859–9862 (2010)

    CAS  Google Scholar 

  520. Mellinger, Z.J., Weigert, E.C., Stottlemyer, A.L., et al.: Enhancing CO tolerance of electrocatalysts: electro-oxidation of CO on WC and Pt-modified WC. Electrochem. Solid-State Lett. 11, B63–B67 (2008)

    CAS  Google Scholar 

  521. Ma, C.A., Liu, T., Chen, L.: A computational study of H2 dissociation and CO adsorption on the PtML/WC (0001) surface. Appl. Surf. Sci. 256, 7400–7405 (2010)

    CAS  Google Scholar 

  522. Stottlemyer, A.L., Weigert, E.C., Chen, J.G.: Tungsten carbides as alternative electrocatalysts: from surface science studies to fuel cell evaluation. Ind. Eng. Chem. Res. 50, 16–22 (2010)

    Google Scholar 

  523. Zellner, M.B., Chen, J.G.: Potential application of tungsten carbides as electrocatalysts: synergistic effect by supporting Pt on C/W (110) for the reactions of methanol, water, and CO. J. Electrochem. Soc. 152, A1483–A1494 (2005)

    CAS  Google Scholar 

  524. Jeon, M.K., Lee, K.R., Lee, W.S., et al.: Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction. J. Power Sources 185, 927–931 (2008)

    CAS  Google Scholar 

  525. Kimmel, Y.C., Xu, X., Yu, W., et al.: Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 4, 1558–1562 (2014)

    CAS  Google Scholar 

  526. Qiu, Z., Huang, H., Du, J., et al.: Biotemplated synthesis of bark-structured TiC nanowires as Pt catalyst supports with enhanced electrocatalytic activity and durability for methanol oxidation. J. Mater. Chem. A 2, 8003–8008 (2014)

    CAS  Google Scholar 

  527. Roca-Ayats, M., García, G., Galante, J., et al.: TiC, TiCN, and TiN supported Pt electrocatalysts for CO and methanol oxidation in acidic and alkaline media. J. Phys. Chem. C 117, 20769–20777 (2013)

    CAS  Google Scholar 

  528. Sui, S., Ma, L., Zhai, Y.: TiC supported Pt–Ir electrocatalyst prepared by a plasma process for the oxygen electrode in unitized regenerative fuel cells. J. Power Sources 196, 5416–5422 (2011)

    CAS  Google Scholar 

  529. Ou, Y., Cui, X., Zhang, X., et al.: Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media. J. Power Sources 195, 1365–1369 (2010)

    CAS  Google Scholar 

  530. Gomez, T., Florez, E., Rodriguez, J.A., et al.: Reactivity of transition metals (Pd, Pt, Cu, Ag, Au) toward molecular hydrogen dissociation: extended surfaces versus particles supported on TiC (001) or small is not always better and large is not always bad. J. Phys. Chem. C 115, 11666–11672 (2011)

    CAS  Google Scholar 

  531. Xia, X., Jones, G., Sarwar, M., et al.: A DFT study of Pt layer deposition on catalyst supports of titanium oxide, nitride and carbide. J. Mater. Chem. A 3, 24504–24511 (2015)

    CAS  Google Scholar 

  532. Kimmel, Y.C., Yang, L., Kelly, T.G., et al.: Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts. J. Catal. 312, 216–220 (2014)

    CAS  Google Scholar 

  533. Hunt, S.T., Milina, M., Alba-Rubio, A.C., et al.: Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352, 974–978 (2016)

    CAS  PubMed  Google Scholar 

  534. Zellner, M.B., Chen, J.G.: Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catal. Today 99, 299–307 (2005)

    CAS  Google Scholar 

  535. Ganesan, R., Ham, D.J., Lee, J.S.: Platinized mesoporous tungsten carbide for electrochemical methanol oxidation. Electrochem. Commun. 9, 2576–2579 (2007)

    CAS  Google Scholar 

  536. Wang, Y., Song, S., Shen, P.K., et al.: Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis. J. Mater. Chem. 19, 6149–6153 (2009)

    CAS  Google Scholar 

  537. Bozzini, B., Pietro De Gaudenzi, G., Fanigliulo, A., et al.: Electrochemical oxidation of WC in acidic sulphate solution. Corros. Sci. 46, 453–469 (2004)

    CAS  Google Scholar 

  538. Zellner, M.B., Chen, J.G.: Synthesis, characterization and surface reactivity of tungsten carbide (WC) PVD films. Surf. Sci. 569, 89–98 (2004)

    CAS  Google Scholar 

  539. Weigert, E.C., Esposito, D.V., Chen, J.G.: Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J. Power Sources 193, 501–506 (2009)

    CAS  Google Scholar 

  540. Mazza, F., Trassatti, S.: Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes in redox systems. J. Electrochem. Soc. 110, 847–849 (1963)

    CAS  Google Scholar 

  541. Xia, D., Liu, S., Wang, Z., et al.: Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J. Power Sources 177, 296–302 (2008)

    CAS  Google Scholar 

  542. Zhong, H., Zhang, H., Liu, G., et al.: A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride. Electrochem. Commun. 8, 707–712 (2006)

    CAS  Google Scholar 

  543. Miura, A., Tague, M.E., Gregoire, J.M., et al.: Synthesis of Pt − Mo − N thin film and catalytic activity for fuel cells. Chem. Mater. 22, 3451–3456 (2010)

    CAS  Google Scholar 

  544. Kuttiyiel, K.A., Sasaki, K., Choi, Y., et al.: Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett. 12, 6266–6271 (2012)

    CAS  PubMed  Google Scholar 

  545. Kuttiyiel, K.A., Choi, Y., Hwang, S.M., et al.: Enhancement of the oxygen reduction on nitride stabilized Pt–M (M = Fe Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy 13, 442–449 (2015)

    CAS  Google Scholar 

  546. Ding, X., Yin, S., An, K., et al.: FeN stabilized FeN@ Pt core–shell nanostructures for oxygen reduction reaction. J. Mater. Chem. A 3, 4462–4469 (2015)

    CAS  Google Scholar 

  547. Hu, J., Kuttiyiel, K.A., Sasaki, K., et al.: Pt monolayer shell on nitrided alloy core: a path to highly stable oxygen reduction catalyst. Catalysts 5, 1321–1332 (2015)

    CAS  Google Scholar 

  548. Tian, X., Tang, H., Luo, J., et al.: High-performance core–shell catalyst with nitride nanoparticles as a core: well-defined titanium copper nitride coated with an atomic Pt layer for the oxygen reduction reaction. ACS Catal. 7, 3810–3817 (2017)

    CAS  Google Scholar 

  549. Garg, A., Milina, M., Ball, M., et al.: Transition-metal nitride core@noble-metal shell nanoparticles as highly CO tolerant catalysts. Angew. Chem. Int. Ed. Engl. 56, 8828–8833 (2017)

    CAS  PubMed  Google Scholar 

  550. Gasteiger, H.A., Markovic, N., Ross, P.N., et al.: Methanol electrooxidation on well-characterized platinum–ruthenium bulk alloys. J. Phys. Chem. 97, 12020–12029 (1993)

    CAS  Google Scholar 

  551. Zhao, H., Li, L., Yang, J., et al.: Co@Pt–Ru core–shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation. Electrochem. Commun. 10, 1527–1529 (2008)

    CAS  Google Scholar 

  552. Wang, W., Wang, R., Wang, H., et al.: An advantageous method for methanol oxidation: design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst. J. Power Sources 196, 9346–9351 (2011)

    CAS  Google Scholar 

  553. Wu, Y.N., Liao, S.J., Guo, H.F., et al.: High-performance Pd@PtRu/C catalyst for the anodic oxidation of methanol prepared by decorating Pd/C with a PtRu shell. J. Power Sources 224, 66–71 (2013)

    CAS  Google Scholar 

  554. Mao, X., Yang, L., Yang, J., et al.: A volcano curve: optimizing activity of shell–core PtxRuy@PdCu/C catalysts for methanol oxidation by tuning Pt/Ru ratio. J. Electrochem. Soc. 160, H219–H223 (2013)

    CAS  Google Scholar 

  555. Yang, J., Cheng, C.H., Zhou, W., et al.: Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction. Fuel Cells 10, 907–913 (2010)

    CAS  Google Scholar 

  556. Gao, H., Liao, S., Liang, Z., et al.: Anodic oxidation of ethanol on core–shell structured Ru@PtPd/C catalyst in alkaline media. J. Power Sources 196, 6138–6143 (2011)

    CAS  Google Scholar 

  557. Gao, H., Liao, S., Zeng, J., et al.: Preparation and characterization of core–shell structured catalysts using PtxPdy as active shell and nano-sized Ru as core for potential direct formic acid fuel cell application. Electrochim. Acta 56, 2024–2030 (2011)

    CAS  Google Scholar 

  558. Gatalo, M., Jovanovič, P., Polymeros, G., et al.: Positive effect of surface doping with Au on the stability of Pt-based electrocatalysts. ACS Catal. 6, 1630–1634 (2016)

    CAS  Google Scholar 

  559. Liu, S., Wang, Y., Liu, L., et al.: One-pot synthesis of Pd@PtNi core–shell nanoflowers supported on the multi-walled carbon nanotubes with boosting activity toward oxygen reduction in alkaline electrolyte. J. Power Sources 365, 26–33 (2017)

    CAS  Google Scholar 

  560. Bu, L., Shao, Q., Bin, E., et al.: PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 139, 9576–9582 (2017)

    CAS  PubMed  Google Scholar 

  561. Zhang, N., Feng, Y., Zhu, X., et al.: Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core–shell nanowires. Adv. Mater. 29, 1603774 (2017)

    Google Scholar 

  562. Wang, K.C., Huang, H.C., Wang, C.H.: Synthesis of Pd@Pt3Co/C core–shell structure as catalyst for oxygen reduction reaction in proton exchange membrane fuel cell. Int. J. Hydrog. Energy 42, 11771–11778 (2017)

    CAS  Google Scholar 

  563. Sun, X., Li, D., Guo, S., et al.: Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale 8, 2626–2631 (2016)

    CAS  PubMed  Google Scholar 

  564. Jing, S., Guo, X., Tan, Y.: Branched Pd and Pd-based trimetallic nanocrystals with highly open structures for methanol electrooxidation. J. Mater. Chem. A 4, 7950–7961 (2016)

    CAS  Google Scholar 

  565. Li, Y., Chen, L., Chen, K., et al.: Monodisperse PdCu@PtCu core@shell nanocrystal and their high activity and durability for oxygen reduction reaction. Electrochim. Acta 192, 227–233 (2016)

    CAS  Google Scholar 

  566. Wang, Q., Zhao, Z., Jia, Y., et al.: Unique Cu@CuPt core–shell concave octahedron with enhanced methanol oxidation activity. ACS Appl. Mater. Interfaces. 9, 36817–36827 (2017)

    CAS  PubMed  Google Scholar 

  567. Greeley, J., Nørskov, J.K., Mavrikakis, M.: Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002)

    CAS  PubMed  Google Scholar 

  568. Hammer, B., Norskov, J.: Advances in Catalysis, vol. 45, pp. 71–129. Academic Press Inc., San Diego (2000)

    Google Scholar 

  569. Greeley, J., Stephens, I., Bondarenko, A., et al.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009)

    CAS  PubMed  Google Scholar 

  570. Wu, J., Li, P., Pan, Y.T.F., et al.: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066–8074 (2012)

    CAS  PubMed  Google Scholar 

  571. Nørskov, J.K., Bligaard, T., Rossmeisl, J., et al.: Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009)

    PubMed  Google Scholar 

  572. Hammer, B., Nørskov, J.K.: Theoretical surface science and catalysis: calculations and concepts. Adv. Catal. 45, 71–129 (2000)

    CAS  Google Scholar 

  573. Hammer, B., Hansen, L.B., Nørskov, J.K.: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999)

    Google Scholar 

  574. Mavrikakis, M., Hammer, B., Nørskov, J.K.: Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819 (1998)

    Google Scholar 

  575. Karlberg, G.: Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 74, 153414 (2006)

    Google Scholar 

  576. Mukerjee, S., Srinivasan, S., Soriaga, M.P., et al.: Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J. Phys. Chem. 99, 4577–4589 (1995)

    CAS  Google Scholar 

  577. Kitchin, J.R., Nørskov, J.K., Barteau, M.A., et al.: Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004)

    CAS  PubMed  Google Scholar 

  578. Gawande, M.B.: Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590 (2015)

    CAS  PubMed  Google Scholar 

  579. Kitchin, J., Nørskov, J.K., Barteau, M., et al.: Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004)

    CAS  PubMed  Google Scholar 

  580. Wang, X., Orikasa, Y., Takesue, Y., et al.: Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction. J. Am. Chem. Soc. 135, 5938–5941 (2013)

    CAS  PubMed  Google Scholar 

  581. Xiong, Y., Shan, H., Zhou, Z., et al.: Tuning surface structure and strain in Pd–Pt core–shell nanocrystals for enhanced electrocatalytic oxygen reduction. Small 13, 1603423 (2017)

    Google Scholar 

  582. Gan, L., Yu, R., Luo, J., et al.: Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 3, 934–938 (2012)

    CAS  PubMed  Google Scholar 

  583. Rodriguez, J., Goodman, D.W.: The nature of the metal-metal bond in bimetallic surfaces. Science 257, 897–903 (1992)

    CAS  PubMed  Google Scholar 

  584. Schlapka, A., Lischka, M., Gross, A., et al.: Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001). Phys. Rev. Lett. 91, 016101 (2003)

    CAS  PubMed  Google Scholar 

  585. Yang, J., Zhou, W., Cheng, C.H., et al.: Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. ACS Appl. Mater. Interfaces. 2, 119–126 (2009)

    Google Scholar 

  586. Stephens, I.E., Bondarenko, A.S., Perez-Alonso, F.J., et al.: Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011)

    CAS  PubMed  Google Scholar 

  587. Gauthier, Y., Schmid, M., Padovani, S., et al.: Adsorption sites and ligand effect for CO on an alloy surface: a direct view. Phys. Rev. Lett. 87, 036103 (2001)

    CAS  PubMed  Google Scholar 

  588. Jennings, P.C., Pollet, B.G., Johnston, R.L.: Electronic properties of Pt–Ti nanoalloys and the effect on reactivity for use in PEMFCs. J. Phys. Chem. C 116, 15241–15250 (2012)

    CAS  Google Scholar 

  589. Chang, S.H., Su, W.N., Yeh, M.H., et al.: Structural and electronic effects of carbon-supported PtxPd1−x nanoparticles on the electrocatalytic activity of the oxygen-reduction reaction and on methanol tolerance. Chem. Eur. J. 16, 11064–11071 (2010)

    CAS  PubMed  Google Scholar 

  590. Ma, Y., Balbuena, P.B.: Surface adsorption and stabilization effect of iridium in Pt-based alloy catalysts for PEM fuel cell cathodes. ECS Trans. 25, 1037–1044 (2009)

    CAS  Google Scholar 

  591. Koper, M.T., Shubina, T.E., van Santen, R.A.: Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 106, 686–692 (2002)

    CAS  Google Scholar 

  592. de Mongeot, F.B., Scherer, M., Gleich, B., et al.: CO adsorption and oxidation on bimetallic Pt/Ru (0001) surfaces: a combined STM and TPD/TPR study. Surf. Sci. 411, 249–262 (1998)

    Google Scholar 

  593. Brankovic, S., Marinkovic, N., Wang, J., et al.: Carbon monoxide oxidation on bare and Pt-modified Ru (1010) and Ru (0001) single crystal electrodes. J. Electroanal. Chem. 532, 57–66 (2002)

    CAS  Google Scholar 

  594. Del Popolo, M., Leiva, E., Mariscal, M., et al.: On the generation of metal clusters with the electrochemical scanning tunneling microscope. Surf. Sci. 597, 133–155 (2005)

    Google Scholar 

  595. Gorzkowski, M.T., Lewera, A.: Probing the limits of d-band center theory: electronic and electrocatalytic properties of Pd-shell–Pt-core nanoparticles. J. Phys. Chem. C 119, 18389–18395 (2015)

    CAS  Google Scholar 

  596. Wang, X., Orikasa, Y., Uchimoto, Y.: Platinum-based electrocatalysts for the oxygen-reduction reaction: determining the role of pure electronic charge transfer in electrocatalysis. ACS Catal. 6, 4195–4198 (2016)

    CAS  Google Scholar 

  597. Kaito, T., Mitsumoto, H., Sugawara, S., et al.: K-edge X-ray absorption fine structure analysis of Pt/Au core–shell electrocatalyst: evidence for short Pt–Pt distance. J. Phys. Chem. C 118, 8481–8490 (2014)

    CAS  Google Scholar 

  598. Lai, F.J., Su, W.N., Sarma, L.S., et al.: Chemical dealloying mechanism of bimetallic Pt–Co nanoparticles and enhancement of catalytic activity toward oxygen reduction. Chem. Eur. J. 16, 4602–4611 (2010)

    CAS  PubMed  Google Scholar 

  599. Sachtler, J., Somorjai, G.: Influence of ensemble size on CO chemisorption and catalytic n-hexane conversion by Au–Pt (111) bimetallic single-crystal surfaces. J. Catal. 81, 77–94 (1983)

    CAS  Google Scholar 

  600. Lin, S.P., Wang, K.W., Liu, C.W., et al.: Trends of oxygen reduction reaction on platinum alloys: a computational and experimental study. J. Phys. Chem. C 119, 15224–15231 (2015)

    CAS  Google Scholar 

  601. Zhong, W., Qi, Y., Deng, M.: The ensemble effect of formic acid oxidation on platinum–gold electrode studied by first-principles calculations. J. Power Sources 278, 203–212 (2015)

    CAS  Google Scholar 

  602. Han, Y., Ouyang, Y., Xie, Z., et al.: Controlled growth of Pt–Au alloy nanowires and their performance for formic acid electrooxidation. J. Mater. Sci. Technol. 32, 639–645 (2016)

    Google Scholar 

  603. Duan, T., Zhang, R., Ling, L., et al.: Insights into the effect of Pt atomic ensemble on HCOOH oxidation over Pt-decorated Au bimetallic catalyst to maximize Pt utilization. J. Phys. Chem. C 120, 2234–2246 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijun Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, H., Luo, F. et al. Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochem. Energ. Rev. 1, 324–387 (2018). https://doi.org/10.1007/s41918-018-0013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0013-0

Keywords

PACS

Navigation