Skip to main content

Advertisement

Log in

Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Sodium-ion batteries have been emerging as attractive technologies for large-scale electrical energy storage and conversion, owing to the natural abundance and low cost of sodium resources. However, the development of sodium-ion batteries faces tremendous challenges, which is mainly due to the difficulty to identify appropriate cathode materials and anode materials. In this review, the research progresses on cathode and anode materials for sodium-ion batteries are comprehensively reviewed. We focus on the structural considerations for cathode materials and sodium storage mechanisms for anode materials. With the worldwide effort, high-performance sodium-ion batteries will be fully developed for practical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Palomares, V., Casas-Cabanas, M., Castillo-Martinez, E., et al.: Update on Na-based materials: a growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)

    Article  CAS  Google Scholar 

  2. Han, M., Gonzalo, E., Singh, G., et al.: A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015)

    Article  CAS  Google Scholar 

  3. Zhu, Y., Yuan, S., Bao, D., et al.: Decorating waste cloth via industrial wastewater for tube-type flexible and wearable sodium-ion batteries. Adv. Mater. 29, 1603719 (2017)

  4. Han, M., Gonzalo, E., Sharma, N., et al.: High performance P2 phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient temperature sodium ion batteries. Chem. Mater. 28, 106–116 (2016)

    Article  CAS  Google Scholar 

  5. Fouassier, C., Matejka, G., Réau, J.M., et al.: Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1): le système cobalt-oxygène-sodium. J. Solid State Chem. 6, 532–537 (1973)

    Article  CAS  Google Scholar 

  6. Zhu, Y., Yin, Y., Yang, X., et al.: Transformation of rusty stainless-steel meshes into stable, low-cost and binder-free cathodes for high-performance potassium-ion batteries. Angew. Chem. Int. Ed. 56, 7881–7885 (2017)

    Article  CAS  Google Scholar 

  7. Billaud, J., Singh, G., Armstrong, A., et al.: Na0.67Mn1−xMg x O2 (0 ≤ x≤0.2) a high capacity cathode for sodium-ion batteries. Energy and Environ. Sci. 7, 1387–1391 (2014)

    Article  CAS  Google Scholar 

  8. Wang, H., Yuan, S., Ma, D., et al.: Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ. Sci. 8, 1660–1681 (2015)

    Article  CAS  Google Scholar 

  9. Tarascon, J.M.: Key challenges in future Li-battery research. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368, 3227–3241 (2010)

    Article  Google Scholar 

  10. Alcantara, R., Jimenez-Mateos, J.M., Lavela, P., et al.: Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3, 639–642 (2001)

    Article  CAS  Google Scholar 

  11. Alcantara, R., Lavela, P., Ortiz, G.F., et al.: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid State 8, A222–A225 (2005)

    Article  CAS  Google Scholar 

  12. Burba, C.M., Frech, R.: Vibrational spectroscopic investigation of structurally-related LiFePO4, NaFePO4, and FePO4 compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 65, 44–50 (2006)

    Article  CAS  Google Scholar 

  13. Sun, T., Li, Z., Wang, H., et al.: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries. Angew. Chem. Int. Ed. 55, 10662–10666 (2016)

    Article  CAS  Google Scholar 

  14. Yazami, R., Lebrun, N., Bonneau, M., et al.: High performance LiCoO2 positive electrode material. J. Power Sources 54, 389–392 (1995)

    Article  CAS  Google Scholar 

  15. Armand, M., Whittingham, M., Huggins, R.: The iron cyanide bronzes. Mat. Res. Bull. 7, 101–107 (1972)

    Article  CAS  Google Scholar 

  16. Braconnier, J.J., Delmas, C., Fouassier, C., et al.: Comportement electrochimique des phases Na x CoO2. Mater. Res. Bull. 15, 1797–1804 (1980)

    Article  CAS  Google Scholar 

  17. Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of The P2-Na x CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Doeff, M.M., Ma, Y., Peng, M.Y., et al.: Solid sodium solid polymer electrolyte batteries. In: Proceedings of 28th Intersociety Energy Conversion Engineering Conference (Iecec-93), vol. 1, pp. 1111–1116 (1993)

  19. Yabuuchi, N., Kajiyama, M., Iwatate, J., et al.: P2-type Na x [Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. Kim, D., Lee, E., Slater, M., et al.: Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 18, 66–69 (2012)

    Article  CAS  Google Scholar 

  21. Komaba, S., Takei, C., Nakayama, T., et al.: Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 12, 355–358 (2010)

    Article  CAS  Google Scholar 

  22. Xia, X., Dahn, J.R.: NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State 15, A1–A4 (2012)

    Article  CAS  Google Scholar 

  23. Mendiboure, A., Delmas, C., Hagenmuller, P.: Electrochemical intercalation and deintercalation of Na x MnO2 bronzes. J. Solid State Chem. 57, 323–331 (1985)

    Article  CAS  Google Scholar 

  24. Stoyanova, R., Carlier, D., Sendova-Vassileva, M., et al.: Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J. Solid State Chem. 183, 1372–1379 (2010)

    Article  CAS  Google Scholar 

  25. Hamani, D., Ati, M., Tarascon, J.M., et al.: Na x VO2 as possible electrode for Na-ion batteries. Electrochem. Commun. 13, 938–941 (2011)

    Article  CAS  Google Scholar 

  26. Doeff, M.M., Ma, Y., Visco, S.J., et al.: Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140, L169–L170 (1993)

    Article  CAS  Google Scholar 

  27. Delmas, C., Braconnier, J.J., Fouassier, C., et al.: Electrochemical intercalation of sodium in Na x CoO2 bronzes. Solid State Ionics 34, 165–169 (1981)

    Article  Google Scholar 

  28. Smirnova, O., Avdeev, M., Nalbandyan, V., et al.: First observation of the reversible O3↔ P2 phase transition: crystal structure of the quenched high-temperature phase Na0. 74Ni0. 58Sb0. 42O2. Mater. Res. Bull. 41, 1056–1062 (2006)

    Article  CAS  Google Scholar 

  29. Shacklette, L.W., Jow, T.R., Townsend, L.: Rechargeable electrodes from sodium cobalt bronzes. J. Electrochem. Soc. 135, 2669–2674 (1988)

    Article  CAS  Google Scholar 

  30. Bhide, A., Hariharan, K.: Physicochemical properties of Na x CoO2 as a cathode for solid state sodium battery. Solid State Ionics 192, 360–363 (2011)

    Article  CAS  Google Scholar 

  31. Sathiya, M., Hemalatha, K., Ramesha, K., et al.: Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chem. Mater. 24, 1846–1853 (2012)

    Article  CAS  Google Scholar 

  32. Carlier, D., Cheng, J., Berthelot, R., et al.: The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans. 40, 9306–9312 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Lu, Z., Dahn, J.R.: In situ X-ray diffraction study of P2-Na 2/3Ni1/3Mn 2/3O2. J. Electrochem. Soc. 148, A1225–A1229 (2001)

    Article  CAS  Google Scholar 

  34. Thackeray, M.M.: Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1–71 (1997)

    Article  CAS  Google Scholar 

  35. Parant, J.P., Olazcuaga, R., Devalette, M., et al.: Sur quelques nouvelles phases de formule Na x MnO2 (x ≤ 1). J. Solid State Chem. 3, 1–11 (1971)

    Article  CAS  Google Scholar 

  36. Velikokhatnyi, O., Chang, C.C., Kumta, P.: Phase stability and electronic structure of NaMnO2. J. Electrochem. Soc. 150, A1262–A1266 (2003)

    Article  CAS  Google Scholar 

  37. Braconnier, J.J., Delmas, C., Hagenmuller, P.: Etude par desintercalation electrochimique des systemes Na x CrO2 et Na x NiO2. Mater. Res. Bull. 17, 993–1000 (1982)

    Article  CAS  Google Scholar 

  38. Lu, Z.H., Dahn, J.R.: In situ and ex situ XRD investigation of Li [Cr x Li1/3−x/3Mn2/3− 2x/3] O2 (x = 1/3) cathode material. J. Electrochem. Soc. 150, A1044–A1051 (2003)

    Article  CAS  Google Scholar 

  39. Xia, X., Dahn, J.R.: NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 15, A1–A4 (2011)

    Article  CAS  Google Scholar 

  40. Yu, C.Y., Park, J.S., Jung, H.G., et al.: NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015)

    Article  CAS  Google Scholar 

  41. Doeff, M.M., Peng, M.Y., Ma, Y., et al.: Orthorhombic Na x MnO2 as a cathode material for secondary sodium and lithium polymer batteries. J. Electrochem. Soc. 141, L145–L147 (1994)

    Article  Google Scholar 

  42. Kim, D., Kang, S.H., Slater, M., et al.: Enabling sodium batteries using lithium substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 1, 333–336 (2011)

    Article  CAS  Google Scholar 

  43. Xia, X., Dahn, J.R.: NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid State Lett. 15, A1–A4 (2012)

    Article  CAS  Google Scholar 

  44. Doeff, M.M., Richardson, T.J., Kepley, L.: Lithium insertion processes of orthorhombic Na x MnO2-based electrode materials. J. Electrochem. Soc. 143, 2507–2516 (1996)

    Article  CAS  Google Scholar 

  45. Sauvage, F., Laffont, L., Tarascon, J.M., et al.: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289–3294 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Tevar, A.D., Whitacre, J.F.: Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na4Mn9O18 in aqueous electrolyte. J. Electrochem. Soc. 157, A870–A875 (2010)

    Article  CAS  Google Scholar 

  47. Whitacre, J.F., Tevar, A., Sharma, S.: Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem. Commun. 12, 463–466 (2010)

    Article  CAS  Google Scholar 

  48. Su, D., Wang, C., Ahn, H.J., et al.: Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem. Eur. J. 19, 10884–10889 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Su, D., Ahn, H.J., Wang, G.: Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J. Mater. Chem. A 1, 4845–4850 (2013)

    Article  CAS  Google Scholar 

  50. Su, D., Ahn, H.J., Wang, G.: β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 5, e70 (2013)

    Article  CAS  Google Scholar 

  51. Yamada, A., Chung, S.C., Hinokuma, K.: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001)

    Article  CAS  Google Scholar 

  52. Galceran, M., Roddatis, V., Zúñiga, F., et al.: Na–vacancy and charge ordering in Na ≈ 2/3FePO4. Chem. Mater. 26, 3289–3294 (2014)

    Article  CAS  Google Scholar 

  53. Moreau, P., Guyomard, D., Gaubicher, J., et al.: Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 22(14), 4126–4128 (2010)

    Article  CAS  Google Scholar 

  54. Wizansky, A.R., Rauch, P.E., Disalvo, F.J.: Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides. J. Solid State Chem. 81, 203–207 (1989)

    Article  CAS  Google Scholar 

  55. Zaghib, K., Trottier, J., Hovington, P., et al.: Characterization of Na-based phosphate as electrode materials for electrochemical cells. J. Power Sources 196, 9612–9617 (2011)

    Article  CAS  Google Scholar 

  56. Lee, K.T., Ramesh, T., Nan, F., et al.: Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem. Mater. 23, 3593–3600 (2011)

    Article  CAS  Google Scholar 

  57. Huang, W., Zhou, J., Li, B., et al.: A new route toward improved sodium ion batteries: a multifunctional fluffy Na0. 67FePO4/CNT nanocactus. Small 11, 2170–2176 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. Trad, K., Carlier, D., Croguennec, L., et al.: NaMnFe2 (PO4) 3 alluaudite phase: synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem. Mater. 22, 5554–5562 (2010)

    Article  CAS  Google Scholar 

  59. Nishimura, S.I., Nakamura, M., Natsui, R., et al.: New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. J. Am. Chem. Soc. 132, 13596–13597 (2010)

    Article  CAS  PubMed  Google Scholar 

  60. Clark, J.M., Nishimura, S.I., Yamada, A., et al.: High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew. Chem. Int. Ed. 51, 13149–13153 (2012)

    Google Scholar 

  61. Kim, H., Shakoor, R., Park, C., et al.: Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv. Func. Mater. 23, 1147–1155 (2013)

    Article  CAS  Google Scholar 

  62. Ha, K.H., Woo, S.H., Mok, D., et al.: Na4-αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5MN0.5, Mn): a promising sodium ion cathode for Na-ion batteries. Adv. Energy Mater. 3, 770–776 (2013)

    Article  CAS  Google Scholar 

  63. Barpanda, P., Lu, J., Ye, T., et al.: A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Adv. 3, 3857–3860 (2013)

    Article  CAS  Google Scholar 

  64. Barpanda, P., Avdeev, M., Ling, C.D., et al.: Magnetic structure and properties of the Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries: a supersuperexchange-driven non-collinear antiferromagnet. Inorg. Chem. 52, 395–401 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. Barker, J., Saidi, M., Swoyer, J.: A sodium-ion cell based on the fluorophosphate compound NaVPO4 F. Electrochem. Solid-State Lett. 6, A1–A4 (2003)

    Article  CAS  Google Scholar 

  66. Zhao, J., He, J., Ding, X., et al.: A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 195, 6854–6859 (2010)

    Article  CAS  Google Scholar 

  67. Zhuo, H., Wang, X., Tang, A., et al.: The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 160, 698–703 (2006)

    Article  CAS  Google Scholar 

  68. Liu, Z.M., Wang, X.Y., Wang, Y., et al.: Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery. Trans. Nonferr. Metals Soc. China 18, 346–350 (2008)

    Article  Google Scholar 

  69. Ellis, B., Makahnouk, W., Makimura, Y., et al.: A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6, 749–753 (2007)

    Article  CAS  PubMed  Google Scholar 

  70. Swafford, S.H., Holt, E.M.: New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg (PO4) F and Sr5 (PO4)3F. Solid State Sci. 4, 807–812 (2002)

    Article  CAS  Google Scholar 

  71. Ong, S.P., Chevrier, V.L., Hautier, G., et al.: Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011)

    Article  CAS  Google Scholar 

  72. Recham, N., Chotard, J.N., Dupont, L., et al.: Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 156, A993–A999 (2009)

    Article  CAS  Google Scholar 

  73. Ellis, B.L., Makahnouk, W.M., Rowan-Weetaluktuk, W.N., et al.: Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn Co, Ni). Chem. Mater. 22, 1059–1070 (2010)

    Article  CAS  Google Scholar 

  74. Wolfenstine, J., Allen, J.: Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142, 389–390 (2005)

    Article  CAS  Google Scholar 

  75. Okada, S., Ueno, M., Uebou, Y., et al.: Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J. Power Sources 146, 565–569 (2005)

    Article  CAS  Google Scholar 

  76. Wadia, C., Albertus, P., Srinivasan, V.: Resource constraints on the battery energy storage potential for grid and transportation applications. J. Power Sources 196, 1593–1598 (2011)

    Article  CAS  Google Scholar 

  77. Ellis, B.L., Ramesh, T.N., Rowan-Weetaluktuk, W.N., et al.: Solvothermal synthesis of electroactive lithium iron tavorites and structure of Li2FePO4F. J. Mater. Chem. 22, 4759–4766 (2012)

    Article  CAS  Google Scholar 

  78. Hasegawa, Y., Imanaka, N.: Effect of the lattice volume on the Al3+ ion conduction in NASICON type solid electrolyte. Solid State Ionics 176, 2499–2503 (2005)

    Article  CAS  Google Scholar 

  79. Hoshina, K., Dokko, K., Kanamura, K.: Investigation on electrochemical interface between Li4Ti5O12 and Li1+x Al x Ti2−x(PO4)3 NASICON-type solid electrolyte. J. Electrochem. Soc. 152, A2138–A2142 (2005)

    Article  Google Scholar 

  80. Kobayashi, E., Plashnitsa, L.S., Doi, T., et al.: Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes. Electrochem. Commun. 12, 894–896 (2010)

    Article  CAS  Google Scholar 

  81. Delmas, C., Nadiri, A., Soubeyroux, J.: The nasicon-type titanium phosphates ATi2 (PO4)3 (A=Li, Na) as electrode materials. Solid State Ionics 2830, 419–423 (1988)

    Article  Google Scholar 

  82. Delmas, C., Cherkaoui, F., Nadiri, A., et al.: A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater. Res. Bull. 22, 631–639 (1987)

    Article  CAS  Google Scholar 

  83. Uebou, Y., Kiyabu, T., Okada, S., et al.: Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3 (M=Fe, V). Rep. Inst. Adv. Mater. Study Kyushu Univ. 16, 1–5 (2002)

    CAS  Google Scholar 

  84. Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., et al.: Performance of NASICON symmetric cell with ionic liquid electrolyte. J. Electrochem. Soc. 157, A536–A543 (2010)

    Article  CAS  Google Scholar 

  85. Barker, J., Gover, R., Burns, P., et al.: A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F. Electrochem. Solid-State Lett. 8, A285–A287 (2005)

    Article  CAS  Google Scholar 

  86. Lu, Y., Wang, L., Cheng, J., et al.: Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48, 6544–6546 (2012)

    Article  CAS  Google Scholar 

  87. Wessells, C.D., Peddada, S.V., McDowell, M.T., et al.: The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 159, A98–A103 (2012)

    Article  CAS  Google Scholar 

  88. Kareis, C.M., Lapidus, S.H., Her, J.H., et al.: Non-Prussian blue structures and magnetic ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6]·2H2O. J. Am. Chem. Soc. 134, 2246–2254 (2012)

    Article  CAS  PubMed  Google Scholar 

  89. Matsuda, T., Takachi, M., Moritomo, Y.: A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 49, 2750–2752 (2013)

    Article  CAS  Google Scholar 

  90. Kong, B., Tang, J., Wu, Z., et al.: Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes. Angew. Chem. Int. Ed. 53, 2888–2892 (2014)

    Article  CAS  Google Scholar 

  91. Wang, L., Song, J., Qiao, R., et al.: Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137, 2548–2554 (2015)

    Article  CAS  PubMed  Google Scholar 

  92. Lee, H., Kim, Y.I., Park, J.K., et al.: Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 48, 8416–8418 (2012)

    Article  CAS  Google Scholar 

  93. Zhou, M., Qian, J., Ai, X., et al.: Redox-active Fe(CN) 4−6 -doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater. 23, 4913–4917 (2011)

    Article  CAS  PubMed  Google Scholar 

  94. Yue, Y., Binder, A.J., Guo, B., et al.: Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 53, 3134–3137 (2014)

    Article  CAS  Google Scholar 

  95. Asakura, D., Li, C.H., Mizuno, Y., et al.: Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 135, 2793–2799 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. Wessells, C.D., Huggins, R.A., Cui, Y.: Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Comun. 2, 550 (2011)

    Article  CAS  Google Scholar 

  97. Wessells, C.D., McDowell, M.T., Peddada, S.V., et al.: Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 6, 1688–1694 (2012)

    Article  CAS  PubMed  Google Scholar 

  98. Pasta, M., Wessells, C.D., Huggins, R.A., et al.: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 3, 1149 (2012)

    Article  CAS  PubMed  Google Scholar 

  99. Wu, X.Y., Sun, M.Y., Shen, Y.F., et al.: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7, 407–411 (2014)

    Article  CAS  PubMed  Google Scholar 

  100. Wu, X., Cao, Y., Ai, X., et al.: A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013)

    Article  CAS  Google Scholar 

  101. Wessells, C.D., Peddada, S.V., Huggins, R.A., et al.: Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425 (2011)

    Article  CAS  PubMed  Google Scholar 

  102. Yu, S.H., Shokouhimehr, M., Hyeon, T., et al.: Iron hexacyanoferrate nanoparticles as cathode materials for lithium and sodium rechargeable batteries. ECS Electrochem. Lett. 2, A39–A41 (2013)

    Article  CAS  Google Scholar 

  103. Takachi, M., Matsuda, T., Moritomo, Y.: Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 6, 025802 (2013)

    Article  CAS  Google Scholar 

  104. Lee, H.W., Wang, R.Y., Pasta, M., et al.: Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014)

    Article  CAS  PubMed  Google Scholar 

  105. Song, J., Wang, L., Lu, Y., et al.: Removal of Interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137, 2658–2664 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998)

    Article  CAS  Google Scholar 

  107. You, Y., Yu, X., Yin, Y., et al.: Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 8, 117–128 (2015)

    Article  CAS  Google Scholar 

  108. You, Y., Wu, X.L., Yin, Y.X., et al.: High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014)

    Article  CAS  Google Scholar 

  109. Wang, H., Li, W., Liu, D., et al.: Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv. Mater. 29, 1703012 (2017)

  110. Yuan, S., Zhu, Y., Li, W., et al.: Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv. Mater. 29, 1602469 (2017)

    Google Scholar 

  111. Wang, S., Sun, T., Yuan, S., et al.: P3-type K0.33Co0.53Mn0.47O2·0.39H2O: a novel bifunctional electrode for Na-ion batteries. Mater. Horiz. 4, 1122–1127 (2017)

    Article  CAS  Google Scholar 

  112. Dahbi, M., Nakano, T., Yabuuchi, N., et al.: Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and surface layer of hard carbon for sodium-ion batteries. ChemElectroChem 3, 1856–1867 (2016)

    Article  CAS  Google Scholar 

  113. Wu, L., Buchholz, D., Vaalma, C., et al.: Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem 3, 292–298 (2016)

    Article  CAS  Google Scholar 

  114. Ponrouch, A., Palacin, M.R.: On the high and low temperature performances of Na-ion battery materials: hard carbon as a case study. Electrochem. Commun. 54, 51–54 (2015)

    Article  CAS  Google Scholar 

  115. Ding, C., Nohira, T., Hagiwara, R., et al.: Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range. Electrochim. Acta 176, 344–349 (2015)

    Article  CAS  Google Scholar 

  116. Prabakar, S.J.R., Jeong, J., Pyo, M.: Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta 161, 23–31 (2015)

    Article  CAS  Google Scholar 

  117. Zhu, Y.E., Yang, L., Zhou, X., et al.: Boosting the rate capability of hard carbon with an ether-based electrolyte for sodium ion batteries. J. Mater. Chem. A 5, 9528–9532 (2017)

    Article  CAS  Google Scholar 

  118. Zheng, P., Liu, T., Yuan, X., et al.: Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium-ion battery anode. Sci. Rep. 6, 26246 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji, L.W., Gu, M., Shao, Y.Y., et al.: Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 26, 2901–2908 (2014)

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, H., Ming, H., Zhang, W., et al.: Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl. Mater. Interfaces. 9, 23766–23774 (2017)

    Article  CAS  PubMed  Google Scholar 

  121. Yuan, Z., Si, L., Zhu, X.: Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life. J. Mater. Chem. A 3, 23403–23411 (2015)

    Article  CAS  Google Scholar 

  122. Yin, L., Wang, Y., Han, C., et al.: Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. J. Power Sources 305, 156–160 (2016)

    Article  CAS  Google Scholar 

  123. Zhang, J., Wang, D., Lv, W., et al.: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370–376 (2017)

    Article  CAS  Google Scholar 

  124. Zhang, S., Lv, W., Luo, C., et al.: Commercial carbon molecular sieves as a high performance anode for sodium ion batteries. Energy Storage Mater. 3, 18–23 (2016)

    Article  Google Scholar 

  125. Luo, W., Bommier, C., Jian, Z., et al.: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces. 7, 2626–2631 (2015)

    Article  CAS  PubMed  Google Scholar 

  126. Kaspar, J., Storch, M., Schitco, C., et al.: SiOC(N)/hard carbon composite anodes for Na-ion batteries: influence of morphology on the electrochemical properties. J. Electrochem. Soc. 163, A156–A162 (2016)

    Article  CAS  Google Scholar 

  127. Qiu, S., Xiao, L., Sushko, M.L., et al.: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7, 1700403 (2017)

    Article  CAS  Google Scholar 

  128. Li, Y., Hu, Y.S., Titirici, M.M., et al.: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6, 1600659 (2016)

    Article  CAS  Google Scholar 

  129. Wenzel, S., Hara, T., Janek, J., et al.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342–3345 (2011)

    Article  CAS  Google Scholar 

  130. Li, Y., Hu, Y.S., Li, H., et al.: A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4, 96–104 (2016)

    Article  CAS  Google Scholar 

  131. Xiao, L., Cao, Y., Henderson, W.A., et al.: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19, 279–288 (2016)

    Article  CAS  Google Scholar 

  132. Vali, R., Janes, A., Thomberg, T., et al.: D-glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J. Electrochem. Soc. 163, A1619–A1626 (2016)

    Article  CAS  Google Scholar 

  133. Zheng, Y., Wang, Y., Lu, Y., et al.: A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39, 489–498 (2017)

    Article  CAS  Google Scholar 

  134. Peters, J., Buchholz, D., Passerini, S., et al.: Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 9, 1744–1751 (2016)

    Article  CAS  Google Scholar 

  135. Zhang, F., Yao, Y., Wan, J., et al.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces. 9, 391–397 (2017)

    Article  CAS  PubMed  Google Scholar 

  136. Shen, F., Zhu, H., Luo, W., et al.: Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 7, 23291–23296 (2015)

    Article  CAS  PubMed  Google Scholar 

  137. Kim, K., Lim, D.G., Han, C.W., et al.: Tailored carbon anodes derived from biomass for sodium-ion storage. ACS Sustain. Chem. Eng. 5, 8720–8728 (2017)

    Article  CAS  Google Scholar 

  138. Guan, Z., Liu, H., Xu, B., et al.: Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. J. Mater. Chem. A 3, 7849–7854 (2015)

    Article  CAS  Google Scholar 

  139. Zhu, Y., Wen, Y., Fan, X., et al.: Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9, 3254–3264 (2015)

    Article  CAS  PubMed  Google Scholar 

  140. Li, W., Yang, Z., Li, M., et al.: Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 16, 1546–1553 (2016)

    Article  CAS  PubMed  Google Scholar 

  141. Song, J., Yu, Z., Gordin, M.L., et al.: Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 9, 11933–11941 (2015)

    Article  CAS  PubMed  Google Scholar 

  142. Li, W.J., Chou, S.L., Wang, J.Z., et al.: Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13, 5480–5484 (2013)

    Article  CAS  PubMed  Google Scholar 

  143. Li, M., Carter, R., Oakes, L., et al.: Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. J. Mater. Chem. A 5, 5266–5272 (2017)

    Article  CAS  Google Scholar 

  144. Lan, D., Wang, W., Li, Q.: Cu4SnP10 as a promising anode material for sodium ion batteries. Nano Energy 39, 506–512 (2017)

    Article  CAS  Google Scholar 

  145. Liu, Z., Yu, X.Y., Lou, X.W., et al.: Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 9, 2314–2318 (2016)

    Article  CAS  Google Scholar 

  146. Qian, J., Chen, Y., Wu, L., et al.: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 48, 7070–7072 (2012)

    Article  CAS  Google Scholar 

  147. Ko, Y.N., Kang, Y.C.: Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 50, 12322–12324 (2014)

    Article  CAS  Google Scholar 

  148. Zhang, B., Rousse, G., Foix, D., et al.: Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 28, 9824–9830 (2016)

    Article  CAS  PubMed  Google Scholar 

  149. Liu, J., Wen, Y., van Aken, P.A., et al.: Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium Storage. Nano Lett. 14, 6387–6392 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. Ying, H., Zhang, S., Meng, Z., et al.: Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5, 8334–8342 (2017)

    Article  CAS  Google Scholar 

  151. He, M., Walter, M., Kravchyk, K.V., et al.: Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. Nanoscale 7, 455–459 (2015)

    Article  CAS  PubMed  Google Scholar 

  152. Wang, J., Luo, C., Gao, T., et al.: An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11, 473–481 (2015)

    Article  CAS  PubMed  Google Scholar 

  153. Ren, W., Zhou, W., Zhang, H., et al.: ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl. Mater. Interfaces. 9, 487–495 (2017)

    Article  CAS  PubMed  Google Scholar 

  154. Zhang, S., Yu, X., Yu, H., et al.: Growth of ultrathin MoS2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces. 6, 21880–21885 (2014)

    Article  CAS  PubMed  Google Scholar 

  155. Su, D., Dou, S., Wang, G.: Ultrathin MoS2 nanosheets as anode materials for sodium-ion batteries with superior performance. Adv. Energy Mater. 5, 1401205 (2015)

    Article  CAS  Google Scholar 

  156. Su, D., Ahn, H.J., Wang, G.: SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 49, 3131–3133 (2013)

    Article  CAS  Google Scholar 

  157. Su, D., Kretschmer, K., Wang, G.: Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv. Energy Mater. 6, 1501785 (2016)

    Article  CAS  Google Scholar 

  158. Xiang, J., Song, T.: One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun. 53, 10820–10823 (2017)

    Article  CAS  Google Scholar 

  159. Chao, D., Zhu, C., Yang, P., et al.: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Qian, J.F., Gao, X.P., Yang, H.X.: Electrochemical Na-storage materials and their applications for Na-ion batteries. J. Electrochem. 19, 523–529 (2013)

    CAS  Google Scholar 

  161. Putungan, D.B., Lin, S.H., Kuo, J.L.: Metallic VS2 monolayer polytypes as potential sodium-ion battery anode via ab initio random structure searching. ACS Appl. Mater. Interfaces. 8, 18754–18762 (2016)

    Article  CAS  PubMed  Google Scholar 

  162. Senguttuvan, P., Rousse, G., Seznec, V., et al.: Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 23, 4109–4111 (2011)

    Article  CAS  Google Scholar 

  163. Xiong, H., Slater, M.D., Balasubramanian, M., et al.: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2, 2560–2565 (2011)

    Article  CAS  Google Scholar 

  164. Lee, J., Chen, Y.-M., Zhu, Y., et al.: Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl. Mater. Interfaces. 6, 21011–21018 (2014)

    Article  CAS  PubMed  Google Scholar 

  165. Wang, N., Bai, Z., Qian, Y., et al.: Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 28, 4126–4133 (2016)

    Article  CAS  PubMed  Google Scholar 

  166. He, H., Sun, D., Zhang, Q., et al.: Iron-doped cauliflower-like rutile TiO2 with superior sodium storage properties. ACS Appl. Mater. Interfaces. 9, 6093–6103 (2017)

    Article  CAS  PubMed  Google Scholar 

  167. Wang, B., Zhao, F., Du, G., et al.: Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces. 8, 16009–16015 (2016)

    Article  CAS  PubMed  Google Scholar 

  168. Qin, G., Zhang, X., Wang, C.: Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance. J. Mater. Chem. A 2, 12449–12458 (2014)

    Article  Google Scholar 

  169. Zhou, C., Fan, S., Hu, M., et al.: High areal specific capacity of Ni3V2O8/carbon cloth hierarchical structures as flexible anodes for sodium-ion batteries. J. Mater. Chem. A 5, 15517–15524 (2017)

    Article  Google Scholar 

  170. Xu, X., Niu, C., Duan, M., et al.: Alkaline earth metal vanadates as sodium-ion battery anodes. Nat. Commun. 8, 460 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yabuuchi, N., Kubota, K., Dahbi, M., et al.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  PubMed  Google Scholar 

  172. Ma, X., Chen, H., Ceder, G.: Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 158, A1307–A1312 (2011)

    Article  CAS  Google Scholar 

  173. Guo, S., Yu, H., Jian, Z., et al.: A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries. ChemSusChem 7, 2115–2119 (2014)

    Article  CAS  PubMed  Google Scholar 

  174. Wu, D., Li, X., Xu, B., et al.: NaTiO2: a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195–202 (2015)

    Article  CAS  Google Scholar 

  175. Vassilaras, P., Ma, X., Li, X., et al.: Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 160, A207–A211 (2013)

    Article  CAS  Google Scholar 

  176. Didier, C., Guignard, M., Denage, C., et al.: Electrochemical Na-deintercalation from NaVO2. Electrochem. Solid-State Lett. 14, A75–A78 (2011)

    Article  CAS  Google Scholar 

  177. Wang, Y., Yu, X., Xu, S., et al.: A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013)

    Article  PubMed  Google Scholar 

  178. Yuan, D., He, W., Pei, F., et al.: Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J. Mater. Chem. A 1, 3895–3899 (2013)

    Article  CAS  Google Scholar 

  179. Yuan, D., Hu, X., Qian, J., et al.: P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 cathode material with high-capacity for sodium-ion battery. Electrochem. Acta 116, 300–305 (2014)

    Article  CAS  Google Scholar 

  180. Zhao, S., Wang, Y., Dong, J., et al.: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016)

    Article  CAS  Google Scholar 

  181. Guo, S., Liu, P., Yu, H., et al.: A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew. Chem. Int. Ed. 54, 5894–5899 (2015)

    Article  CAS  Google Scholar 

  182. Casas-Cabanas, M., Roddatis, V.V., Saurel, D., et al.: Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. J. Mater. Chem. 22, 17421–17423 (2012)

    Article  CAS  Google Scholar 

  183. Boyadzhieva, T., Koleva, V., Zhecheva, E., et al.: Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv. 5, 87694–87705 (2015)

    Article  CAS  Google Scholar 

  184. Jian, Z., Han, W., Lu, X., et al.: Superior electrochemical performance and storage mechanism of Na3V2 (PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013)

    Article  CAS  Google Scholar 

  185. Li, G., Yang, Z., Jiang, Y., et al.: Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016)

    Article  CAS  Google Scholar 

  186. Saravanan, K., Mason, C.W., Rudola, A., et al.: The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3, 444–450 (2013)

    Article  CAS  Google Scholar 

  187. Xie, X.Q., Kretschmer, K., Zhang, J.Q., et al.: Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy 13, 208–217 (2015)

    Article  CAS  Google Scholar 

  188. Darwiche, A., Marino, C., Sougrati, M.T., et al.: Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805–20811 (2012)

    Article  CAS  PubMed  Google Scholar 

  189. Darwiche, A., Toiron, M., Sougrati, M.T., et al.: Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries. J. Power Sources 280, 588–592 (2015)

    Article  CAS  Google Scholar 

  190. Ding, Y.L., Wu, C., Kopold, P., et al.: Graphene-protected 3D Sb-based anodes fabricated via electrostatic assembly and confinement replacement for enhanced lithium and sodium storage. Small 11, 6026–6035 (2015)

    Article  CAS  PubMed  Google Scholar 

  191. Wang, X.Y., Fan, L., Gong, D.C., et al.: Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Func. Mater. 26, 1104–1111 (2016)

    Article  CAS  Google Scholar 

  192. Liu, Y., Kang, H., Jiao, L., et al.: Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale 7, 1325–1332 (2015)

    Article  CAS  PubMed  Google Scholar 

  193. Wu, X., Ma, J., Ma, Q., et al.: A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. J. Mater. Chem. A 3, 13193–13197 (2015)

    Article  CAS  Google Scholar 

  194. Xu, Y., Zhou, M., Wen, L., et al.: Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 27, 4274–4280 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This original research was supported by the Australia Research Council and University of Technology Sydney (UTS), through the Discovery Early Career Researcher Award (DECRA DE170101009), ARC Discovery Project (DP170100436) and Australian Renewable Energy Agency (ARENA) 2014/RND106.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michel Armand or Guoxiu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Su, D., Shanmukaraj, D. et al. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochem. Energ. Rev. 1, 200–237 (2018). https://doi.org/10.1007/s41918-018-0009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-018-0009-9

Keywords

PACS

Navigation