Skip to main content

FeWO4: An Anode Material for Sodium-Ion Batteries

  • Conference paper
TMS 2014: 143rd Annual Meeting & Exhibition
  • 3157 Accesses

Abstract

Recently, the eco-friendly sodium-ion batteries with low price show huge potential for electrical energy storage. A facile strategy to synthesize FeWO has been carried out through a solid state method. The as-prepared powders are characterized by the X-ray diffraction and scanning electron microscopy. The electrochemical properties of this material as an anode electrode for sodium-ion batteries have been characterized by galvanostatic charge-discharge measurements. The galvanostatic charge-discharge measurements, using the as-prepared FeWO4 as a working electrode with a voltage range of 0.01-2.5 V vs. Na+/Na has disclosed an excellent electrochemical performance. Even under a high current density, the discharge capacity can still maintain at a relatively high level. All results indicate that this material is a good candidate for an anode material of sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Zhou et al., “Evaluation of global onshore wind energy potential and generation costs,” Environ. Sci. Technol., 46 (2012), 7857–7864.

    Article  Google Scholar 

  2. M. Kaltenbrunner et al., “Ultrathin and light weight organic solar cells with high flexibility,” Nat. Commun., 3 (2012), 770.

    Article  Google Scholar 

  3. S. Linic, P. Christopher, and D.B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater., 10 (2011), 911–921.

    Article  Google Scholar 

  4. H.D. Abruna, Y. Kiya, and J.C. Henderson, “Batteries and electrochemical capacitors,” Physics Today, (2008), 43–47.

    Google Scholar 

  5. M.S. Whittingham, “Materials challenges facing electrical energy storage,” MRS Bulletin, 33 (2008), 411–419.

    Article  Google Scholar 

  6. T. Ackermann, and L. Soder, “An overview of wind-energy status 2002,” Renew. Sust. Energ. Rev., 6 (2002), 67–128.

    Article  Google Scholar 

  7. G. Dennler, M.C. Scharber, and C.J. Brabec, “Polymer-fullerene bulkheterojunction solar cells,” Adv. Mater., 21 (2009), 1323–1338.

    Article  Google Scholar 

  8. J.M. Tarascon, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 414 (2001), 359–367.

    Article  Google Scholar 

  9. RG. Bruce, B. Scrosati, and J.M. Tarascon, “Nanomaterials for rechargeable lithium batteries,” Angew. Chem. Int. Ed., 47 (2008), 2930–2946.

    Article  Google Scholar 

  10. K. Takei et al., “Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems,” J. Power Sources, 119–121 (2003), 887–892.

    Google Scholar 

  11. K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,” Chem. Rev., 104 (2004), 4303–4417.

    Article  Google Scholar 

  12. D.D. MacNeil, and J.R. Dahn, “The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures,” J. Electrochem. Soc, 149 (2002), A912-A919.

    Article  Google Scholar 

  13. M. Winter et al., “Insertion electrode materials for rechargeable lithium batteries,” Adv. Mater., 10 (1998), 725–763.

    Article  Google Scholar 

  14. D. Hamani et al., “NaxVO2 as possible electrode for Na-ion batteries,” Electrochem. Commun., 13 (2011), 938–941.

    Article  Google Scholar 

  15. R. Berthelot, D. Carlier, and C. Delmas, “Electrochemical investigation of the P2-NaxCoO2 phase diagram,” Nat. Mater., 10 (2011), 74–80.

    Article  Google Scholar 

  16. M. Sathiya, “Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2,” Chem. Mater., 24 (2012) 1846–1853.

    Article  Google Scholar 

  17. W. Wang et al., “Microsphere Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates,” Nanoscale, 5 (2013), 594–599.

    Article  Google Scholar 

  18. W. Wang et al., “Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries,” RSC Adv., 3 (2013), 1041–1044.

    Article  Google Scholar 

  19. K. Trad et al., “NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries,” Chem. Mater., 22 (2010), 5554–5562.

    Article  Google Scholar 

  20. Z. Chen et al., “High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites,” ACS nano, 5 (2012), 4319–4327.

    Article  Google Scholar 

  21. Z.L. Jian et al., “Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries,” Electrochem. Commun., 14 (2012), 86–89.

    Article  Google Scholar 

  22. H.Y. Wang et al., “A new cathode material Na2V6O16·xH2O nanowire for lithium ion battery,” J. Power Sources, 199 (2012), 263–269.

    Article  Google Scholar 

  23. Y. Yamada et al., “Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries,” J. Power Sources, 196 (2011), 4837–4841.

    Article  Google Scholar 

  24. R. Alcántara et al., “MCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries,” Chem. Mater., 14 (2002), 2847–2848.

    Article  Google Scholar 

  25. Y.X. Zhou et al., “Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties,” Inorg. Chem., 48 (2009), 1082–1090.

    Article  Google Scholar 

  26. S. Rajagopal et al., “Electronic structure of FeWO4 and CoWO4 tungstates: first-principles FPLAPW calculations and X-ray spectroscopy studies,” J. Alloy. Compd., 496 (2010), 61–68.

    Article  Google Scholar 

  27. H. Grassmann, H.G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin., 33 (1985), 109–113.

    Article  Google Scholar 

  28. P. Parhi, T.N. Karthik, and V. Manivannan, “Synthesis and characterization of metal tungstates by novel solid-state metathetic approach,” J. Alloy. Compd., 465 (2008), 380–386.

    Article  Google Scholar 

  29. Q. Zhang et al., “Nearly monodisperse tungstate MWO4 microspheres (M=Pb, Ca):surfactant-assisted solution synthesis and optical properties,” Cryst. Growth Des., 7 (2007), 1423–1431.

    Article  Google Scholar 

  30. F.D. Hong et al., “The line shape and zero-phonon line of the luminescence spectrum from zinc tungstate single crystals,” J. Phys.: Condens. Mat., 6 (1994), 5373–5386.

    Google Scholar 

  31. R. Chen et al., “Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets,” Inorg. Chem., 48 (2009), 9072–9076.

    Article  Google Scholar 

  32. H.W. Shim et al., “Li electroactivity of iron (II) tungstate nanorods,” Nanotechnology, 21 (2010), 465602–465607.

    Article  Google Scholar 

  33. C. Gong et al., “Enhanced electrochemical performance of FeWO4 by coating nitrogen-doped carbon,” ACS Appl. Mater. Interfaces, 5 (2013), 4209–4215.

    Google Scholar 

  34. R. Bharati, R.A. Singh, and B.M. Wanklyn, “On electrical transport in CoWO4 single crystals,” J. Mater. Sci., 16 (1981), 775–779.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Wang, W., Xiong, W., Sun, H., Jiao, S. (2014). FeWO4: An Anode Material for Sodium-Ion Batteries . In: TMS 2014: 143rd Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48237-8_106

Download citation

Publish with us

Policies and ethics