Skip to main content
Log in

On the complete integrability of gradient systems on manifold of the beta family of the first kind

  • Research Paper
  • Published:
Information Geometry Aims and scope Submit manuscript

Abstract

In this article, it is shown that there exists a gradient system that is Hamiltonian and completely integrable on the beta manifold of the first kind with two parameters and whose existence depends on a potential function with duality on the manifold and which is the solution of the Legendre equation. It is shown that, by making a statistical borrowing from the gamma function, the gradient system remains Hamiltonian and completely integrable. It is shown that the gradient system constructed on the first kind of two-parameter beta manifold admits a Lax pair representation. This also makes it possible to prove its complete integrability and to determine its Hamiltonian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data will always be available if needed.

References

  1. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, California (2012)

    Google Scholar 

  2. Arnol’d, V.I., Givental, A.B., Novikov, S.P.: Symplectic geometry. Dyn. Syst. IV 191, 1–138 (2001). https://doi.org/10.1007/978-3-662-06791-8

    Article  Google Scholar 

  3. Barbaresco, F.: Koszul information geometry,liouville-mineur integrable systems and moser isospectral deformation method for hermitian positive-definite matrices. In: Zaimis, E. (ed.) Geometric Science of Information: 5th International Conference, GSI 2021, Paris, France, July 21–23, 2021, Proceedings 5, vol. 42, pp. 350–359. Springer, France (2021). https://doi.org/10.1007/978-3-030-80209-7_39

  4. Ma, W.X., Strampp, W.: An explicit symmetry constraint for the lax pairs and the adjoint lax pairs of akns systems. Phys. Lett. A 185, 277–286 (1994). https://doi.org/10.1016/0375-9601(94)90616-5

    Article  MathSciNet  Google Scholar 

  5. Ma, W.X., Wu, H., He, J.: Partial differential equations possessing frobenius integrable decompositions. Phys. Lett. A 185, 29–32 (2007). https://doi.org/10.1016/j.physleta.2006.11.048

    Article  MathSciNet  Google Scholar 

  6. Toda, M.: Studies of a non-linear lattice. Phys. Rep. 18, 1–123 (1975). https://doi.org/10.1016/0370-1573(75)90018-6

    Article  MathSciNet  Google Scholar 

  7. Moser, J.K.: Integrable Hamiltonian systems and spectral theory. Suisse Etats-Unis 16, 1–24 (1981). https://doi.org/10.1016/0370-1573(75)90018-6

    Article  Google Scholar 

  8. Lesfari, A.: Théorie spectrale et problème non-linéaires. Surv. Math. Appl. 5(5), 141–180 (2010)

    MathSciNet  Google Scholar 

  9. Lesfari, A.: Symplectic manifolds and Hamiltonian dynamical systems. arXiv preprint arXiv 5(5), 141–180 (2019)

  10. Nakamura, Y.: Completely integrable gradient systems on the manifolds of gaussian and multinomial distributions. Jpn. J. Ind. Appl. Math. 10, 179–189 (1993). https://doi.org/10.1007/BF03167571

    Article  MathSciNet  Google Scholar 

  11. Nakamura, Y.: Gradient systems associated with probability distributions. Jpn. J. Ind. Appl. Math. 11(1), 21–30 (1994)

    Article  MathSciNet  Google Scholar 

  12. Nakamura, Y., Faybusovich, L.: On explicitly solvable gradient systems of Moser–Karmarkar type. J. Math. Anal. Appl. 205(1), 88–106 (1997)

    Article  MathSciNet  Google Scholar 

  13. Nakamura, Y.: Lax pair and fixed point analysis of Karmarkar’s projective scaling trajectory for linear programming. Jpn. J. Ind. Appl. Math. 11(1), 1–9 (1994)

    Article  MathSciNet  Google Scholar 

  14. Nakamura, Y.: Neurodynamics and nonlinear integrable systems of lax type. Jpn. J. Ind. Appl. Math. 11(1), 11–20 (1994)

    Article  MathSciNet  Google Scholar 

  15. Fujiwara, A.: Dynamical systems on statistical models (state of art and perspectives of studies on nonliear integrable systems). RIMS Kkyuroku 822, 32–42 (1993). http://hdl.handle.net/2433/83219

  16. Fujiwara, A., Shuto, S.: Hereditary structure in Hamiltonians: information geometry of ising spin chains. Phys. Lett. A 374(7), 911–916 (2010)

    Article  MathSciNet  Google Scholar 

  17. Françoise, J.-P.: Information geometry and integrable Hamiltonian systems. In: Zaimis, E. (ed.) Workshop on Joint Structures and Common Foundations of Statistical Physics, Information Geometry and Inference for Learning, vol. 42, pp. 141–153. Springer, France (2020)

    Google Scholar 

  18. Mama Assandje, P.R., Dongho, J., Bouetou Bouetou, T.: On the complete integrability of gradient systems on manifold of the lognormal family. Chaos Solitons Fract. 173, 113695 (2023). https://doi.org/10.1016/j.chaos.2023.113695

    Article  MathSciNet  Google Scholar 

  19. Calin, O., Udrişte, C.: Geometric Modeling in Probability and Statistics. Springer, Michigan (2014). https://doi.org/10.1007/978-3-319-07779-6

  20. Barbaresco, F.: Densité de probabilité gaussienne à maximum d’entropie pour les groupes de lie basée sur le modèle symplectique de jean-marie souriau. a a 1(2), 2 (2002)

  21. Mortici, C.: Ramanujan formula for the generalized stirling approximation. Appl. Math. Comput. 217(6), 2579–2585 (2010)

    MathSciNet  Google Scholar 

  22. Amari, S.-I.: Differential-Geometrical Methods in Statistics. Springer, Tokyo (2012)

    Google Scholar 

  23. Mama Assandje, P.R., Dongho, J.: Geometric properties of beta distributions. In: International Conference on Geometric Science of Information, pp. 207–216. Springer, France (2023). https://doi.org/10.1007/978-3-031-38271-0_21

  24. Barbaresco, F.: Jean-louis Koszul and the elementary structures of information geometry. Geometr. Struct. Inf. 1(2), 333–392 (2019)

    MathSciNet  Google Scholar 

  25. Barbaresco, F.: Koszul lecture related to geometric and analytic mechanics, Souriau’s lie group thermodynamics and information geometry. Inf. Geom. 4(1), 245–262 (2021)

    Article  MathSciNet  Google Scholar 

  26. Gaudoin, O., Beguin, M.: Principes et methodes statistiques. Ensimag-2me Annee, INP Grenoble 1(1), 1–25 (2009)

Download references

Acknowledgements

We gratefully acknowledge all the members of the group of research in Algebra and Geometry of the University of Maroua, and all the members of the Computer Engineering Department at the Higher National School of Polytechnic in Yaounde I. We also thank Aboubakar Teumsa and Djafsia for their fruitful discussions with the first author.

Funding

No financing with a third party.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosper Rosaire Mama Assandje.

Ethics declarations

Conflict of interest

This article has no conflict of interest to the journal.

Additional information

Communicated by Nihat Ay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. The coefficient of Riemannian metric

Appendix A. The coefficient of Riemannian metric

$$\begin{aligned} A_{1}(\theta )= & {} -\frac{\int _{0}^{1}\log ^{2}(x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx }{\int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx}\\ {}{} & {} + \frac{ \left( \int _{0}^{1}\log (x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}{\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}};\\ A_{2}(\theta )= & {} -\frac{\int _{0}^{1}\log (x)\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx}{ \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx}\\ {}{} & {} +\frac{\left( \int _{0}^{1}\log (x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) \left( \int _{0}^{1}\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) }{\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}};\\ A_{3}(\theta )= & {} -\frac{\int _{0}^{1}\log ^{2}(1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx }{\int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx}\\ {}{} & {} + \frac{ \left( \int _{0}^{1}\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}{\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}. \end{aligned}$$

and

$$\begin{aligned} B_{1}(\theta )= & {} -\frac{\left( \int _{0}^{1}\log ^{2}(1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) \left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) }{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}\\{} & {} \quad +\frac{\left( \int _{0}^{1}\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log \right) } dx\right) ^{2}}{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}; \end{aligned}$$
$$\begin{aligned} B_{2}(\theta )= & {} \frac{\left( \int _{0}^{1}\log (x)\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) \left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) }{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}\\{} & {} \quad -\frac{\left( \int _{0}^{1}\log (x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) \left( \int _{0}^{1}\log (1-x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) }{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}; \end{aligned}$$
$$\begin{aligned} B_{3}(\theta )= & {} -\frac{\left( \int _{0}^{1}\log ^{2}(x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) \left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) }{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}\\{} & {} \quad -\frac{\left( \int _{0}^{1}\log (x)e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}{m(\theta )\left( \int _{0}^{1}e^{\left( \theta _{1}\log x+\theta _{2}\log (1-x)\right) } dx\right) ^{2}}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mama Assandje, P.R., Dongho, J. & Bouetou Bouetou, T. On the complete integrability of gradient systems on manifold of the beta family of the first kind. Info. Geo. (2024). https://doi.org/10.1007/s41884-023-00130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41884-023-00130-z

Keywords

Navigation