Skip to main content
Log in

Diffusion hypercontractivity via generalized density manifold

  • Research Paper
  • Published:
Information Geometry Aims and scope Submit manuscript

Abstract

We prove a one-parameter family of diffusion hypercontractivity from a class of drift-diffusion processes. We next derive the related log–Sobolev, Poincare, and Talagrand inequalities. The derivation is based on the calculation of Hessian operators along generalized gradient flows in Dolbeault–Nazaret–Savare metric spaces (Dolbeault et al., Calc Var Partial Differ 2:193–231, 2010). In this direction, a mean-field type Bakry–Emery iterative calculus is presented. In particular, an inequality among Pearson divergence (P), negative Sobolev metric (\(H^{-1}\)), and generalized Fisher information functional (I), named \(PH^{-1}I\) inequality, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not Applicable.

Notes

  1. It is often named \(\alpha \)-divergence with \(\gamma =\frac{3-\alpha }{2}\). We use notation \(\gamma \) for the simplicity of presentation.

  2. When \(\gamma =1\), we remark that the notation of \({\mathcal {W}}_{1}\) represents the classical \(L^2\)-Wasserstein distance, not the \(L^1\)-Wasserstein distance.

Abbreviations

M :

Base manifold

g, \((\cdot ,\cdot )\) :

Metric

\(\Vert \cdot \Vert \) :

Norm

\(\nabla \cdot \) :

Divergence operator

\(\nabla \) :

Gradient operator

\(\text {Hess}\) :

Hessian operator

\({\mathcal {P}}\) :

Density manifold

\(\rho \) :

Probability density

\(\mu \) :

Reference density

\(T_\rho {\mathcal {P}}\) :

Tangent space

\(T_\rho ^*{\mathcal {P}}\) :

Cotangent space

\(g_\rho \) :

Density manifold metric tensor

\(\Delta _h=\nabla \cdot (h\nabla )\) :

Weighted Laplacian operator

\(\delta \) :

First \(L^2\) variation

\(\delta ^2\) :

Second \(L^2\) variation

\(\text {grad}_g\) :

Gradient operator

\({\text {Hess}}_g\) :

Hessian operator

\(\Gamma _\rho (\cdot , \cdot )\) :

Christoffel symbol

\((\rho , \sigma )\in T{\mathcal {P}}\) :

Tangent bundle

\((\rho , \Phi )\in T^*{\mathcal {P}}\) :

Cotangent bundle

\({\mathcal {D}}_\gamma \) :

\(\gamma \)-divergence

\({\mathcal {I}}_\gamma \) :

\(\gamma \)-Fisher information

\({\mathcal {W}}_\gamma \) :

\(\gamma \)-Wasserstein distance

\(L_\gamma \), \(L_\gamma ^*\) :

\(\gamma \)-Diffusion process generator

\(\Gamma _{\gamma , 1}\) :

\(\gamma \)-Gamma one operator

\(\Gamma _{\gamma , 2}\) :

\(\gamma \)-Gamma two operator

\(\kappa \) :

Log Sobolev constant

\(\lambda \) :

Poincare constant

References

  1. Amari, S.: Information Geometry and Its Applications, 1st edn. Springer Publishing Company, Incorporated (2016)

    Book  MATH  Google Scholar 

  2. Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Polish Acad. Sci. Tech. Sci. 58(1), 183–195 (2010)

    Google Scholar 

  3. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry, vol. 64. Springer, Cham (2017)

    MATH  Google Scholar 

  4. Bakry, D., Emery, M.: Diffusions hypercontractives. Seminaire de probabilites de Strasbourg 19, 177–206 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Bakry, D., Gentil, I., Ledoux, M.: Logarithmic Sobolev Inequalities. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  6. Bolley, F., Gentil, I.: Phi-entropy inequalities for diffusion semigroups. Journal de Mathematiques Pures et Appliquees 93(5), 449–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.A., Lisini, S., Savare, G., Slepcev, D.: Nonlinear mobility continuity equations and generalized displacement convexity. J. Funct. Anal. 258(4), 1273–1309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cardaliaguet, P., Carlier, G., Nazaret, B.: Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial. Differ. Equ. 48, 395–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chow, S.N., Li, W., Zhou, H.: Entropy dissipation of Fokker-Planck equations on graphs. Discret. Contin. Dyn. Syst. Ser. A 38(10), 4929–4950 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. Wiley, New York (1991)

    Google Scholar 

  11. Csiszar, I., Shields, P.C.: Information theory and statistics: a tutorial. Foundations and Trends™ in Communications and Information Theory 1(4), 417–528 (2004)

  12. Dolbeault, J., Nazaret, B., Savare, G.: A new class of transport distances. Calc. Var. Partial. Differ. Equ. 2, 193–231 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Dolbeault, J., Nazaret, B., Savare, G.: From Poincare to logarithmic Sobolev inequalities: a gradient flow approach. SIAM J. Math. Anal. (2012)

  14. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Juengel, A.: Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in Mathematics. Springer, New York (2016)

    Book  Google Scholar 

  17. Lafferty, J.D.: The density manifold and configuration space quantization. Trans. Am. Math. Soc. 305(2), 699–741 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, W.: A Study on Stochastic Differential Equations and Fokker-Planck Equations with Applications. phd thesis, (2016)

  19. Li, W.: Transport information geometry: Riemannian calculus on probability simplex. Inf. Geometry 5, 161–207 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, W., Montufar, G.: Ricci curvature for parametric statistics via optimal transport. Inf. Geometry 3, 89–117 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, W., Ying, L.: Hessian transport gradient flows. Res. Math. Sci. 6, 34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Monsaingeon, L., Tamanini, L., Vorotnikov, D.: The Dynamical Schrodinger Problem in Abstract Metric Spaces. arXiv:2012.12005, (2020)

  24. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sturm, K.T.: On the geometry of metric measure spaces. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Villani, C.: Optimal Transport: Old and New. Number 338 in Grundlehren Der Mathematischen Wissenschaften. Springer, Berlin (2009)

    Book  Google Scholar 

  28. Yano, K.: Some remarks on tensor fields and curvature. Ann. Math. 328–347 (1952)

  29. Zamponi, N.: Entropy Methods for Diffusive PDEs. Lecture notes. (2017)

  30. Zozor, S., Brossier, J.M.: deBruijn identities: From Shannon, Kullback-Leibler and Fisher to generalized \(\phi \)-entropies, \(\phi \)-divergences and \(\phi \)-Fisher informations. AIP Conf. Proc. 1641(1), 522–529 (2015)

    Article  MATH  Google Scholar 

Download references

Funding

W. Li thanks the support of AFOSR MURI FA9550-18-1-0502, AFOSR YIP award No. FA9550-23-1-0087, NSF FRG grant: DMS-2245097, and NSF RTG grant: 2038080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuchen Li.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Jun Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W. Diffusion hypercontractivity via generalized density manifold. Info. Geo. (2023). https://doi.org/10.1007/s41884-023-00124-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41884-023-00124-x

Keywords

Navigation