Skip to main content
Log in

Investigation of dielectric properties of a Li4Ti5O12 ceramic matrix for microwave temperature sensing applications

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this article, the dielectric properties of a Li4Ti5O12 (LTO) ceramic at the radio frequency (RF) and microwave (MW) regions were evaluated. X-ray diffraction showed that LTO was obtained without the presence of spurious and/or secondary phases. Complex impedance spectroscopy (CIS) analysis was conducted, whereas an activation energy (Ea) of 0.88 eV was observed. The temperature capacitance coefficient (TCC) was also calculated and demonstrated that LTO could be employed as a Class 1 ceramic capacitor. In the MW region, LTO presented ε’r = 25.4, tan δ = 5.7 × 10–4, and τf = -14.5 ppmºC−1, values that are interesting for devices that operate in the MW region. Numerical simulation demonstrated values of a realized gain of 4.78 dBi, a bandwidth of 227 MHz, and a radiation efficiency of 98%. Moreover, LTO was evaluated as a temperature sensor operating in the MW region and demonstrated a sensitivity of -0.06 MHz ºC−1. The values presented demonstrate that LTO could be employed in devices that operate in RF and MW regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. He, X., Cao, W.: Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals. Opt. Mater. Express 13, 413 (2023). https://doi.org/10.1364/OME.478596

    Article  CAS  Google Scholar 

  2. Wang, G., Cao, W., He, X.: 3D Dirac semimetal elliptical fiber supported THz tunable hybrid plasmonic waveguides. IEEE J. Sel. Top. Quantum Electron. 29, 1–7 (2023). https://doi.org/10.1109/JSTQE.2023.3284231

    Article  CAS  Google Scholar 

  3. He, X., Lin, F., Liu, F., Shi, W.: 3D Dirac semimetals supported tunable terahertz BIC metamaterials. Nanophotonics. 11, 4705–4714 (2022). https://doi.org/10.1515/nanoph-2022-0285

    Article  CAS  Google Scholar 

  4. Cheng, Y., Cao, W., Wang, G., He, X., Lin, F., Liu, F.: 3D Dirac semimetal supported thermal tunable terahertz hybrid plasmonic waveguides. Opt. Express 31, 17201 (2023). https://doi.org/10.1364/OE.487256

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, Y., Shen, Y., Yang, J., Fang, Z., Zhang, X., Zhao, P., Tang, B.: A novel ultra-low loss ceramic Li5ZnSnNbO8 with a rock salt structure. Mater. Chem. Phys. 277, 125457 (2022). https://doi.org/10.1016/j.matchemphys.2021.125457

    Article  CAS  Google Scholar 

  6. Sebastian, M.T.: Dielectric materials for wireless communication, Elsevier Science, United Kingdom (2008)

  7. Chen, Y.-B., Fan, Y.: Microstructure, crystallization, microwave properties of (Mg0.95Co0.05)2(Ti1−xSnx)O4 spinel-type solid solution for microwave applications, J. Aust. Ceram. Soc. (2023). https://doi.org/10.1007/s41779-023-00879-7

  8. Li, C.-H., Chen, Y.-C., You, Y.-C., Kuo, C.-C.: Dielectric characteristics of complex perovskite ceramic at microwave frequencies for application in dielectric resonator antenna temperature sensor network. J. Aust. Ceram. Soc. 57, 983–992 (2021). https://doi.org/10.1007/s41779-021-00598-x

    Article  CAS  Google Scholar 

  9. Zhang, J., Zuo, R., Wang, Y., Qi, S.: Phase evolution and microwave dielectric properties of Li 4 Ti 5(1+x) O 12 ceramics. Mater. Lett. 164, 353–355 (2016). https://doi.org/10.1016/j.matlet.2015.10.160

    Article  CAS  Google Scholar 

  10. VikramBabu, B., VijayaBabu, K., TewodrosAregai, G., Seeta Devi, L., MadhaviLatha, B., SushmaReddi, M., Samatha, K., Veeraiah, V.: Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries. Results Phys. 9, 284–289 (2018). https://doi.org/10.1016/j.rinp.2018.02.050

    Article  Google Scholar 

  11. Al-Muntaser, A.A., Pashameah, R.A., Tarabiah, A.E., Alzahrani, E., AlSubhi, S.A., Saeed, A., Al-Harthi, A.M., Alwafi, R., Morsi, M.A.: Structural, morphological, optical, electrical and dielectric features based on nanoceramic Li4Ti5O12 filler reinforced PEO/PVP blend for optoelectronic and energy storage devices. Ceram. Int. 49, 18322–18333 (2023). https://doi.org/10.1016/j.ceramint.2023.02.204

    Article  CAS  Google Scholar 

  12. Acharya, T., Pathak, A.D., Pati, S.: High-temperature electrochemical performance of lithium Titanate (Li4Ti5O12) anode material in secondary lithium-ion batteries. J. Energy Storage. 67, 107529 (2023). https://doi.org/10.1016/j.est.2023.107529

    Article  Google Scholar 

  13. Xu, C., Xu, L.: Improved sensitivity of temperature sensor based on three-photons pumped upconversion in highly transparent Er3+ doped lead lanthanum zirconate titanate ceramics. J. Alloys Compd. 957, 170413 (2023). https://doi.org/10.1016/j.jallcom.2023.170413

    Article  CAS  Google Scholar 

  14. Yu, Y., Xu, W., Xu, J., Zhu, J., Cong, M.: Conductivity of SiCNO-BN composite ceramics and their application in wireless passive temperature sensor. Ceram. Int. 47, 14490–14497 (2021). https://doi.org/10.1016/j.ceramint.2021.02.028

    Article  CAS  Google Scholar 

  15. Li, C.-H., Chen, Y.-C., Lin, T.-L., Kuoa, C.-C.: A high-quality factor dielectric resonator antenna for use in a wireless high-temperature sensor. Ferroelectr. Lett. Sect. 47, 40–49 (2020). https://doi.org/10.1080/07315171.2020.1799633

    Article  CAS  Google Scholar 

  16. Wang, X., Bi, K., Hao, Y., Lei, M.: Thermally tunable dielectric resonator filter. J. Alloys Compd. 749, 363–368 (2018). https://doi.org/10.1016/j.jallcom.2018.03.263

    Article  CAS  Google Scholar 

  17. Yan, D., Yang, Y., Hong, Y., Liang, T., Yao, Z., Chen, X., Xiong, J.: AlN-based ceramic patch antenna-type wireless passive high-temperature sensor. Micromachines. 8, 301 (2017). https://doi.org/10.3390/mi8100301

    Article  PubMed  PubMed Central  Google Scholar 

  18. Toby, B.H., Von Dreele, R.B.: GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. (2013). https://doi.org/10.1107/S0021889813003531

    Article  Google Scholar 

  19. Silva, M.A.S., Fernandes, T.S.M., Sombra, A.S.B.: An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τ f ). J. Appl. Phys. 112, 074106 (2012). https://doi.org/10.1063/1.4755799

    Article  CAS  Google Scholar 

  20. Kao, K.C.: Dielectric Phenomena in Solids With Emphasis on Physical Concepts of Electronic Processes. Elsevier (2004). https://doi.org/10.1016/B978-0-12-396561-5.X5010-5

    Article  Google Scholar 

  21. Vadim, A.J., LvovichWiley F.: Impedance spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, Inc., (2012)

  22. Oliveira, R.G.M., Freitas, D.B., Batista, G.S., de Morais, J.E.V., Martins, V.C., Costa, M.M., Silva, M.A.S., Gouvêa, D.X., Singh, C., Sombra, A.S.B.: Dielectrical and structural studies of composite matrix BiVO4–CaTiO3 and temperature effects by impedance spectroscopy. J. Mater. Sci. Mater. Electron. 29, 16248–16258 (2018). https://doi.org/10.1007/s10854-018-9714-8

    Article  CAS  Google Scholar 

  23. Filho, J.M.S., Rodrigues Junior, C.A., Sousa, D.G., Oliveira, R.G.M., Costa, M.M., Barroso, G.C., Sombra, A.S.B.: Impedance spectroscopy analysis of Mg4Nb2O9 ceramics with different additions of V2O5 for microwave and radio frequency applications. J. Electron. Mater. 46, 4344–4352 (2017). https://doi.org/10.1007/s11664-017-5324-0

    Article  CAS  Google Scholar 

  24. Jonscher, A.K.: Dielectric relaxation in solids, Chelsea Dielectric Press Ltd., London (1983)

  25. Vasconcelos, S.J.T., Silva, M.A.S., de Oliveira, R.G.M., Junior, M.H.B., de Andrade, H.D., Junior, I.S.Q., Singh, C., Sombra, A.S.B.: High thermal stability and colossal permittivity of novel solid solution LaFeO3/CaTiO3. Mater. Chem. Phys. 257, 123239 (2021). https://doi.org/10.1016/j.matchemphys.2020.123239

    Article  CAS  Google Scholar 

  26. Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., Varadan, V.K.: Microwave electronics: measurement and materials characterization, 1st ed., Wiley. (2004)

  27. Luk, K.M., Leung, K.W.: Dielectric resonator Antennas, 1st ed., Research studies Pr Ltd, Baldock, England. (2003)

  28. Jiang, Y., Liu, H., Muhammad, R., Luo, X., Song, K., Mao, M., Sun, S., Bafrooei, H.B., Taheri-Nassaj, E., Iqbal, Y., Sun, R., Wang, D.: Broadband and high-efficiency of garnet-typed ceramic dielectric resonator antenna for 5G/6G communication application. Ceram. Int. 48, 26922–26927 (2022). https://doi.org/10.1016/j.ceramint.2022.05.396

    Article  CAS  Google Scholar 

  29. Nogueira, F.E.A., Abreu, T.O., Martins, V.C., Abreu, R.F., do Carmo, F.F., do Nascimento, J.P.C., Ghosh, A., Sales, A.J.M., da Silva, M.A.S., da Silva, R.S., Sombra, A.S.B.: Evaluation of the dielectric properties of CaMoO4-TiO2 composites for microwave applications under temperature variation. J. Electron. Mater. 52, 2843–2851 (2023). https://doi.org/10.1007/s11664-023-10248-6

    Article  CAS  Google Scholar 

  30. Martins, V.C., Oliveira, R.G.M., Carmo, F.F., Silva, M.A.S., Pereira, S.A., Goes, J.C., Costa, M.M., Gouveia, D.X., Sombra, A.S.B.: High thermal stability OF Li2TiO3-Al2O3 composite in the microwave C-Band. J. Phys. Chem. Solids 125, 51–56 (2019). https://doi.org/10.1016/j.jpcs.2018.10.011

    Article  CAS  Google Scholar 

  31. Balanis, C.A.: Antenna theory: Analysis and design. (2012). https://doi.org/10.1049/ep.1982.0113

  32. Bezerra, J.W.O., Oliveira, R.G.M., Silva, M.A.S., Maciel, T.F., Goes, J.C., Sombra, A.S.B.: Dielectric resonator antennas with frequency stability under severe temperature variations based on Li2MgTi3O8 ceramic matrix added with Bi2O3. J. Electron. Mater. 47, 7272–7280 (2018). https://doi.org/10.1007/s11664-018-6664-0

    Article  CAS  Google Scholar 

  33. Wu, F.F., Zhou, D., Du, C., Jin, B.B., Li, C., Qi, Z.M., Sun, S., Zhou, T., Li, Q., Zhang, X.Q.: Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1- xBix)NbO4(x = 0–0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces. 14, 7030–7038 (2022). https://doi.org/10.1021/acsami.1c24307

    Article  CAS  PubMed  Google Scholar 

  34. Haydoura, M., Benzerga, R., Le Paven, C., Le Gendre, L., Laur, V., Chevalier, A., Sharaiha, A., Tessier, F., Cheviré, F.: Perovskite (Sr2Ta2O7)100–x(La2Ti2O7)x ceramics: From dielectric characterization to dielectric resonator antenna applications. J. Alloys Compd. 872, 159728 (2021). https://doi.org/10.1016/j.jallcom.2021.159728

    Article  CAS  Google Scholar 

  35. do Carmo, F.F., do Nascimento, J.P.C., de Morais, J.E.V., Martins, V.C., Sales, J.C., Silva, M.A.S., Silva, R.S., Sombra, A.S.B.: High thermal stability of the YNbO4 − CaYTiNbO7 composites for radio frequency and microwave applications. Mater. Chem. Phys. 271, 124956 (2021). https://doi.org/10.1016/j.matchemphys.2021.124956

    Article  CAS  Google Scholar 

  36. Guo, H.-H., Fu, M.-S., Zhou, D., Du, C., Wang, P.-J., Pang, L.-X., Liu, W.-F., Sombra, A.S.B., Su, J.-Z.: Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li 2 Ti 1–x (Cu 1/3 Nb 2/3) x O 3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces 13, 912–923 (2021). https://doi.org/10.1021/acsami.0c18836

    Article  CAS  PubMed  Google Scholar 

  37. Enilton, F., Nogueira, A., Abreu, T.O., Martins, V.C., Abreu, R.F., Felix, F., Paulo, J., Ghosh, A., Jefferson, A., Sales, M., Antonio, M., Ronaldo, S., Sérgio, A., Sombra, B.: Evaluation of the dielectric properties of ­CaMoO4 - TiO2 composites for microwave applications under temperature variation. J. Electron. Mater. (2023). https://doi.org/10.1007/s11664-023-10248-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly sponsored by the Brazilian Research Agencies CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant INCT NANO(BIO)SIMES), CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant Project PNPD), FUNCAP—Fundação Cearense de Apoio ao Desenvolvimento Cientifico e Tecnológico, FINEP—Financiadora de Estudos e Projetos (grants INFRAPESQ-11 and INFRAPESQ-12) and the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Contributions

Authors statement for the manuscript entitled "Investigation of dielectric properties of a Li4Ti5O12 ceramic matrix for microwave temperature sensing applications”. All the authors participated in the work, however some dedicated more time to some specific activities, which we describe below:

• Conceptualization - Marcelo Antonio Santos da Silva, Francisco Alekson Chaves Nobrega

• Methodology - Software - Felipe Felix do Carmo, Francisco Alekson Chaves Nobrega

• Validation - Francisco Enilton Alves Nogueira, Antonio Jefferson Mangueira Sales

• Formal analysis - Felipe Felix do Carmo, Ronaldo Santos da Silva

• Investigation - Francisco Alekson Chaves Nobrega, S. V. Trukhanov

• Resources - Antonio Sérgio Bezerra Sombra

• Data curation - Antonio Jefferson Mangueira Sales, C. Singh

• Writing-original draft preparation - João Paulo Costa do Nascimento, Felipe Felix do Carmo

• Writing-review and editing - João Paulo Costa do Nascimento, Marcelo Antonio Santos da Silva

• Visualization - Di Zhou, Marcelo Antonio Santos da Silva

• Supervision - Ronaldo Santos da Silva, S. V. Trukhanov

• Project administration - S. V. Trukhanov, Di Zhou

• Funding acquisition - Antonio Sérgio Bezerra Sombra

Corresponding author

Correspondence to João Paulo Costa do Nascimento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.A.S., Nobrega, F.A.C., do Carmo, F.F. et al. Investigation of dielectric properties of a Li4Ti5O12 ceramic matrix for microwave temperature sensing applications. J Aust Ceram Soc 60, 355–362 (2024). https://doi.org/10.1007/s41779-024-01009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-024-01009-7

Keywords

Navigation