Skip to main content
Log in

Evaluation of the Dielectric Properties of CaMoO4‒TiO2 Composites for Microwave Applications Under Temperature Variation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work presents experimental and numerical investigations of the microwave dielectric properties of the ceramic matrix CaMoO4 (CMO) with the addition of 8, 12, and 20 wt% TiO2, obtained through the solid-state reaction method. X-ray diffraction and Rietveld’s refinement revealed no evidence of secondary phases, indicating no reaction between the CMO and TiO2 phases. The dielectric properties presented an improvement with the addition of TiO2, with the CMO8 sample presenting \(\varepsilon^{\prime}_{r}\) = 12.8, tan δ = 7.8 × 10–4, and τf =  − 6 ppm°C−1, demonstrating that this material has thermal stability (τf < 0). The ceramic was tested as a dielectric resonator antenna (DRA) and numerical simulation results showed that the materials have a realized gain of 4.40–4.92 dBi, a bandwidth of 741‒1079 MHz, and a radiation efficiency above 86%. The results indicate that CMO‒TiO2 systems could be employed in devices operating in the S-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. S. Parida, S.K. Rout, V. Subramanian, P.K. Barhai, N. Gupta, and V.R. Gupta, J. Alloys Compd. 528, 126 (2012).

    Article  CAS  Google Scholar 

  2. M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st ed., (Oxford: Elsevier, 2008).

    Google Scholar 

  3. S. George and M.T. Sebastian, J. Am. Ceram. Soc. 93, 2164 (2010).

    Article  CAS  Google Scholar 

  4. M.A.S. Silva, T.S.M. Fernandes, and A.S.B. Sombra, J. Appl. Phys. 112, 074106 (2012).

    Article  Google Scholar 

  5. G. Kaur, K. Pubby, S. Bahel, and S.B. Narang, Ceram. Int. 44, 20484 (2018).

    Article  CAS  Google Scholar 

  6. W. Liu and R. Zuo, J. Eur. Ceram. Soc. 38, 119 (2018).

    Article  Google Scholar 

  7. T.O. Abreu, R.F. Abreu, F.F. do Carmo, W.V. de Sousa, H.O. de Barros, J.E.V. de Morais, J.P.C. do Nascimento, M.A.S. da Silva, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, and A.S.B. Sombra, Ceram. Int. 47, 15424 (2021).

    Article  CAS  Google Scholar 

  8. V.C. Martins, R.G.M. Oliveira, F.F. Carmo, M.A.S. Silva, S.A. Pereira, J.C. Goes, M.M. Costa, D.X. Gouveia, and A.S.B. Sombra, J. Phys. Chem. Solids 125, 51 (2019).

    Article  CAS  Google Scholar 

  9. X. Hu, J. Jiang, J. Wang, L. Gan, and T. Zhang, J. Mater. Sci. Mater. Electron. 31, 2544 (2020).

    Article  CAS  Google Scholar 

  10. E. Sinha and P. Yadav, Ferroelectrics 517, 1 (2017).

    Article  CAS  Google Scholar 

  11. E.C. Xiao, Q. Ren, Z. Cao, G. Dou, Z.M. Qi, and F. Shi, J. Mater. Sci. Mater. Electron. 31, 5686 (2020).

    Article  CAS  Google Scholar 

  12. T. Qin, Q. Wang, D. Yue, W. Shen, Y. Yan, Y. Han, Y. Ma, and C. Gao, J. Alloys Compd. 730, 1 (2018).

    Article  CAS  Google Scholar 

  13. C. Bouzidi, K. Horchani-Naifer, Z. Khadraoui, H. Elhouichet, and M. Ferid, Phys. B Condens. Matter 497, 34 (2016).

    Article  CAS  Google Scholar 

  14. F. Huang, Y. Gao, J. Zhou, J. Xu, and Y. Wang, J. Alloys Compd. 639, 325 (2015).

    Article  CAS  Google Scholar 

  15. P. Dixit, V. Chauhan, S.B. Rai, and P.C. Pandey, J. Alloys Compd. 897, 162820 (2022).

    Article  CAS  Google Scholar 

  16. A.A.G. Santiago, E.M. Macedo, F.K.F. Oliveira, R.L. Tranquilin, M.D. Teodoro, E. Longo, F.V. Motta, and M.R.D. Bomio, Mater. Res. Bull. 146, 111621 (2022).

    Article  CAS  Google Scholar 

  17. E.A. Moore and L.E. Smart, Solid State Chemistry: An Introduction, 4th ed., (Boca Raton: CRC Press, 2012).

    Google Scholar 

  18. K. Shigeno, M. Li, and H. Fujimori, J. Eur. Ceram. Soc. 41, 376 (2021).

    Article  CAS  Google Scholar 

  19. Z. Wang, L. Liu, Q. Du, R. Tang, J. Ai, and Y. Chen, Ceram. Int. 48, 14378 (2022).

    Article  CAS  Google Scholar 

  20. Z. Weng, C. Song, Z. Xiong, H. Xue, W. Sun, Y. Zhang, B. Yang, M.J. Reece, and H. Yan, Ceram. Int. 45, 13251 (2019).

    Article  CAS  Google Scholar 

  21. M.A.S. Silva, R.G.M. Oliveira, and A.S.B. Sombra, Ceram. Int. 45, 20446 (2019).

    Article  CAS  Google Scholar 

  22. Y. Yang, Q. Chang, Z. Hu, and X. Zhang, Membranes 8, 49 (2018).

    Article  Google Scholar 

  23. J.E.V. de Morais, R.G.M. de Oliveira, A.J.N. de Castro, J.C. Sales, M.A.S. Silva, J.C. Goes, M.M. Costa, and A.S.B. Sombra, J. Electron. Mater. 46, 5193 (2017).

    Article  Google Scholar 

  24. D.V.M. Paiva, M.A.S. Silva, A.S.B. Sombra, and P.B.A. Fechine, J. Alloys Compd. 748, 766 (2018).

    Article  CAS  Google Scholar 

  25. M. Haydoura, R. Benzerga, C. Le Paven, L. Le Gendre, V. Laur, A. Chevalier, A. Sharaiha, F. Tessier, and F. Cheviré, J. Alloys Compd. 872, 159728 (2021).

    Article  CAS  Google Scholar 

  26. R.G.M. Oliveira, J.E.V. de Morais, D.C. Souza, M.A.S. Silva, D.X. Gouveia, S. Trukhanov, A. Trukhanov, L. Panina, C. Singh, D. Zhou, and A.S.B. Sombra, J. Aust. Ceram. Soc. 57, 369 (2021).

    Article  CAS  Google Scholar 

  27. F.F. do Carmo, J.P.C. do Nascimento, J.E.V. de Morais, V.C. Martins, J.C. Sales, M.A.S. Silva, R.S. Silva, and A.S.B. Sombra, Mater. Chem. Phys. 271, 124956 (2021).

    Article  Google Scholar 

  28. D.V.M. Paiva, M.A.S. Silva, R.G.M. de Oliveira, A.R. Rodrigues, L.M.U.D. Fechine, A.S.B. Sombra, and P.B.A. Fechine, J. Alloys Compd. 783, 652 (2019).

  29. R.G.M. Oliveira, R.A. Silva, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, H.D. de Andrade, I.S. Queiroz Júnior, C. Singh, and A.S.B. Sombra, Compos. Part B Eng. 175, 107122 (2019).

  30. H.-H. Guo, M.-S. Fu, D. Zhou, C. Du, P.-J. Wang, L.-X. Pang, W.-F. Liu, A.S.B. Sombra, and J.-Z. Su, ACS Appl. Mater. Interfaces 13, 912 (2021).

Download references

Funding

This work was partly sponsored by the Brazilian Research Agencies CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant INCT NANO(BIO)SIMES), CAPES—Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (Grant Project PNPD), FINEP-Financiadora de Estudos e Projetos (Grant INFRAPESQ-11 and INFRAPESQ-12), and the U.S. Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Costa do Nascimento.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, F.E.A., Abreu, T.O., Martins, V.C. et al. Evaluation of the Dielectric Properties of CaMoO4‒TiO2 Composites for Microwave Applications Under Temperature Variation. J. Electron. Mater. 52, 2843–2851 (2023). https://doi.org/10.1007/s11664-023-10248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10248-6

Keywords

Navigation