Skip to main content
Log in

Effective function of activated bagasse ash for high early strength geopolymer

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

High early-strength concrete and geopolymer offer advantages of faster construction and require less curing time than traditional concrete. Bagasse ash (BA), an inert pozzolan with low reactivity in alkaline media, was activated with 10M NaOH to enhance its porosity and surface area. It was then incorporated into an 80:20 wt% mixture of metakaolin (MK) and BA to improve the early-strength properties of geopolymers. This study investigates the effects of varying amounts of activated bagasse ash (ABA) on the physical and mechanical properties of a binary MK-BA-based geopolymer. The pozzolan-to-alkali ratio was maintained at 1:1, with a difference of 10M NaOH-to-Na2SiO3. The results indicated that the compressive strength of formulation with 50 wt% ABA increased by approximately 33% compared with formulation without ABA. XRD analysis showed a sodium aluminum silicate peak at 3 days, which decreased after 28 days, confirmed by SEM/EDS. The transformation of sodium aluminosilicate gel into a dense geopolymer matrix was observed, with IR spectra demonstrating the presence of Si–O-(Si/Al) bonds contributing to high compressive strength formulations. Overall, the ABA led to the early formation of the geopolymer 3D network with high compressive strength values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Relevant research data are included in the text of the article.

References

  1. Aı̈tcin, P.C.: Cements of yesterday and today: concrete of tomorrow. Cem. Concr. Res. 30(9), 1349–1359 (2000). https://doi.org/10.1016/S0008-8846(00)00365-3

    Article  Google Scholar 

  2. Benhelal, E., Zahedi, G., Shamsaei, E., Bahadori, A.: Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142–161 (2013). https://doi.org/10.1016/j.jclepro.2012.10.049

    Article  Google Scholar 

  3. Saidi, I., Ben Abdelmalek, J., Ben Said, O., Chicharo, L., Beyrem, H.: Chemical composition and heavy metal content of Portland cement in Northern Tunisia. IJCCE. 39(3), 147–158 (2020)

    Google Scholar 

  4. Soe, P. S., Sornlar, W., Wannagon, A., Chaysuwan, D.: Mechanical and thermal properties of bottom ash-based porous geopolymer as thermal insulation material for construction. J. Mater. Cycles Waste Manag. 1–12 (2023). https://doi.org/10.1007/s10163-023-01732-6

  5. Gultekin, A., Yazici, S., Ramyar, K.: Effect of trass calcination on properties of geopolymer mixtures. J. Aust. Ceram. 58(5), 1623–1631 (2022). https://doi.org/10.1007/s41779-022-00799-y

    Article  CAS  Google Scholar 

  6. Arif, E., Clark, M.W., Lake, N.: Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement and mortar production. Constr. Build. Mater. 128, 287–297 (2016). https://doi.org/10.1016/j.conbuildmat.2016.10.091

    Article  CAS  Google Scholar 

  7. Parthiban, K., Mohan, K.S.R.: Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete. Constr. Build. Mater. 133, 65–72 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.050

    Article  CAS  Google Scholar 

  8. Phoo-ngernkham, T., Phiangphimai, C., Intarabut, D., Hanjitsuwan, S., Damrongwiriyanupap, N., Li, L.Y., Chindaprasirt, P.: Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Constr. Build. Mater. 247, 118543 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118543

    Article  CAS  Google Scholar 

  9. Davidovits, J.: Properties of geopolymer cements. Proceedings First InternationalConference on Alkaline Cements and Concretes. 1, 131-149 (1994)

  10. Şanal, İ: Significance of concrete production in terms of carbondioxide emissions: Social and environmental impacts. Politeknik Dergisi. 21(2), 369–378 (2018). https://doi.org/10.2339/politeknik.389590

    Article  Google Scholar 

  11. Lin, W.T., Ho, H.L., Cheng, A., Huang, R., Huang, C.C.: Using sugarcane bagasse ash as partial cement replacement in cement-based composites. Adv. Sci. Lett. 13(1), 762–767 (2012). https://doi.org/10.1166/asl.2012.3955

    Article  CAS  Google Scholar 

  12. Siriruekratana, S., Supakata, N.: Development of geopolymer bricks from synergistic use of bagasse ash and concrete residue as an alternative for industrial waste management. NUJST. 25(4), 69–78 (2017)

    Google Scholar 

  13. Bunjongsiri, K., Chearnkiatpradab, B., Bunjongsiri, J.A.: Short review on the utilization of sugarcane bagasse ash in the manufacture of concrete block in Thailand. Sau J. Sci. Tecnol. 6(2), 14–24 (2020)

    Google Scholar 

  14. To-on, P., Witchayaphong, P., Pansuwan, J.: A study of the properties of bagasse ash for the possibility in making light weight block. RMUTI J. 9(3), 1–10 (2016)

    Google Scholar 

  15. Xu, Q., Ji, T., Gao, S.J., Yang, Z., Wu, N.: Characteristics and applications of sugar cane bagasse ash waste in cementitious materials. Materials. 12(1), 39 (2018). https://doi.org/10.3390/ma12010039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tippayasam, C., Keawpapasson, P., Thavorniti, P., Panyathanmaporn, T., Leonelli, C., Chaysuwan, D.: Effect of Thai Kaolin on properties of agricultural ash blended geopolymers. Constr. Build. Mater. 53, 455–459 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.079

    Article  Google Scholar 

  17. Davidovits, J.: Geopolymers: Ceramic-like inorganic. J. Ceram. Sci. Technol. 8(3), 335–350 (2017). https://doi.org/10.4416/JCST2017-00038

    Article  Google Scholar 

  18. Yip, C.K., Lukey, G.C., Van Deventer, J.S.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005). https://doi.org/10.1016/j.cemconres.2004.10.042

    Article  CAS  Google Scholar 

  19. Tippayasam, C., Sutikulsombat, S., Kamseu, E., Rosa, R., Thavorniti, P., Chindaprasirt, P., Leonelli, C., Henessa. G., Chaysuwan, D.: In vitro surface reaction in SBF of a non-crystalline aluminosilicate (geopolymer) material. J. Aust. Ceram. 55, 11–17 (2019). https://doi.org/10.1007/s41779-018-0205-4

  20. Khale, D., Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007). https://doi.org/10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  21. Neupane, K., Chalmers, D., Kidd, P.: High-strength geopolymer concrete-properties, advantages and challenges. Adv. Mater. Sci. 7(2), 15–25 (2018). https://doi.org/10.11648/j.am.20180702.11

  22. Davidovits, J.: Geopolymer cement. A review. Geopolymer Institute, Technical papers. 21, 1–11 (2013)

  23. Gupta, C.K., Sachan, A.K., Kumar, R.: Utilization of sugarcane bagasse ash in mortar and concrete: A review. Mater. Today: Proc. 65(2), 798–807 (2022). https://doi.org/10.1016/j.matpr.2022.03.304

    Article  CAS  Google Scholar 

  24. Davidovits, J.: Geopolymer chemistry and applications. Geopolymer Institute, France (2008)

  25. Allahverdi, A., NajafiKani, E.: Construction wastes as raw materials for geopolymer binders. Int. J. Civ. Eng. 7(3), 154–160 (2009)

    Google Scholar 

  26. Temuujin, J., van Riessen, A., MacKenzie, K.J.D.: Preparation and characterisation of fly ash based geopolymer mortars. Constr. Build. Mater. 24(10), 1906–1910 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.012

    Article  Google Scholar 

  27. Bhutta, M. A. R., Hasanah, N., Farhayu, N., Hussin, M. W., bin Md Tahir, M., Mirza, J.: Properties of porous concrete from waste crushed concrete (recycled aggregate). Constr. Build. Mater. 47, 1243–1248 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.022

  28. Arafa, S. A., Ali, A. M., Awal, A. A., Shamsuddin, S. M., Hossain, M. Z.: Properties of Coated and uncoated biomass aggregates and their effects on the strength and water permeability of pervious geopolymer concrete. Int J. 14(41), 44–51 (2018). https://doi.org/10.21660/2018.41.73423

  29. Khater, H.M., El Naggar, A.: Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite. J. Aust. Ceram. 56, 599–608 (2020). https://doi.org/10.1007/s41779-019-00371-1

    Article  CAS  Google Scholar 

  30. Pantongsuk, T., Kittisayarm, P., Muenglue, N., Benjawan, S., Thavorniti, P., Tippayasam, C., Nilpairach, S., Heness, G., Chaysuwan, D.: Effect of hydrogen peroxide and bagasse ash additions on thermal conductivity and thermal resistance of geopolymer foams. Mater. Today Commun. 26, 102–149 (2021). https://doi.org/10.1016/j.mtcomm.2021.102149

    Article  CAS  Google Scholar 

  31. Yasin, A.K., Bayuaji, R., Susanto, T.E.: A review in high early strength concrete and local materials potential. IOP Conf. Ser.: Mater. Sci. Eng. 267(1), 012004 (2017). https://doi.org/10.1088/1757-899X/267/1/012004

    Article  Google Scholar 

  32. Tippayasam, C., Sutikulsombat, S., Paramee, J., Leonelli, C., Chaysuwan, D.: Development of geopolymer mortar from metakaolin blended with agricultural and industrial wastes. Key Eng. Mater. 766, 305–310 (2018). https://doi.org/10.4028/www.scientific.net/KEM.766.305

    Article  Google Scholar 

  33. Kittisayarm, P., Pantongsuk, T., Srikhacha, A., Chaysuwan, D., Tippayasam, C.: Development of high-strength geopolymers by high-reactive bagasse ash. J. Ind. Technol. 16(3), 66–79 (2020). https://doi.org/10.14416/10.14416/j.ind.tech.2020.12.006

  34. Chandel, A.K., Antunes, F.A., Anjos, V., Bell, M.J., Rodrigues, L.N., Polikarpov, I., de Azevedo, E.R., Bernardinelli, O.D., Rosa, C.A., Pagnocca, F.C., da Silva, S.S.: Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnol. Biofuels 7(1), 1–17 (2014). https://doi.org/10.1186/1754-6834-7-63

    Article  CAS  Google Scholar 

  35. Singh, N. B.: Fly ash-based geopolymer binder: A future construction material. Minerals. 8(7), 299 (2018). https://doi.org/10.3390/min8070299

  36. Sun, Q., Zhao, S., Zhao, X., Song, Y., Ban, X., Zhang, N.: Influence of different grinding degrees of fly ash on properties and reaction degrees of geopolymers. PLoS ONE 18(3), e0282927 (2023). https://doi.org/10.1371/journal.pone.0282927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tippayasam, C., Boonsalee, S., Sajjavanich, S., Ponzoni, C., Kamseu, E., Chaysuwan, D.: Geopolymer development by powders of metakaolin and waste in Thailand. Adv. Sci. Tech. 69, 63–68 (2010). https://doi.org/10.4028/www.scientific.net/AST.69.63

    Article  CAS  Google Scholar 

  38. Duxson, P., Provis, J.L., Lukey, G.C., Van Deventer, J.S.J., Separovic, F., Gan, Z.H.: 39K NMR of free potassium in geopolymers. Ind. Eng. Chem. Res. 45(26), 9208–9210 (2006). https://doi.org/10.1021/ie060838g

    Article  CAS  Google Scholar 

  39. Wang, Z., Rehemituli, R., Zhang, X.: Study on the compressive strength of alkali activated fly ash and slag under the different silicate structure. Materials. 14(9), 2227 (2021). https://doi.org/10.3390/ma14092227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saraya, M.E.S.I., El-Fadaly, E.: Preliminary study of alkali activation of basalt: effect of NaOH concentration on geopolymerization of basalt. MSCE. 5(11), 58–76 (2017). https://doi.org/10.4236/msce.2017.511006

    Article  Google Scholar 

  41. Pantongsuk, T., Tippayasam, C., Kittisayarm, P., Nilpairach, S., Chaysuwan, D.: geopolymer synthesis using metakaolin and high calcium fly ash as binary system geopolymer. Mater. Sci. 1007, 65–70 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1007.65

    Article  Google Scholar 

  42. Asante, B., Schmidt, G., Teixeira, R., Krause, A., Savastano Junior, H.: Influence of wood pretreatment and fly ash particle size on the performance of geopolymer wood composite. Eur. J. Wood Wood Prod. 79(3), 597–609 (2021). https://doi.org/10.1007/s00107-021-01671-9

    Article  CAS  Google Scholar 

  43. Djobo, J.Y., Tchadjié, L.N., Tchakoute, H.K., Kenne, B.B.D., Elimbi, A., Njopwouo, D.: Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2(4), 387–398 (2014). https://doi.org/10.1016/j.jascer.2014.08.003

    Article  Google Scholar 

  44. Trusilewicz, L., Fernández-Martínez, F., Rahhal, V., Talero, R.: TEM and SAED characterization of metakaolin. Pozzolanic activity. J. Am. Ceram. Soc. 95(9), 2989–2996 (2012). https://doi.org/10.1111/j.1551-2916.2012.05325

    Article  CAS  Google Scholar 

  45. Li, C., Sun, H., Li, L.: A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. Cem. Concr. Res. 40(9), 1341–1349 (2010). https://doi.org/10.1016/j.cemconres.2010.03.020

    Article  CAS  Google Scholar 

  46. Hamdane, H., Tamraoui, Y., Mansouri, S., Oumam, M., Bouih, A., Ghailassi, E., Boulif, T., Manoun, B., Hannache, H.: Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material. Mater. Chem. Phys. 248, 122938 (2020). https://doi.org/10.1016/j.matchemphys.2020.122938

    Article  CAS  Google Scholar 

  47. He, P., Wang, M., Fu, S., Jia, D., Yan, S., Yuan, J., Wang, P., Zhou, Y.: Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram. 42(13), 14416–14422 (2016). https://doi.org/10.1016/j.ceramint.2016.06.033

    Article  CAS  Google Scholar 

  48. Duna, L.L., Audrey, N.N.G., Tchamba, A.B., Billong, N., Kamseu, E., Qoku, E., Bier, T.A.: Engineering and mineralogical properties of Portland cement used for building and road construction in Cameroon. Int. J. Pavement Res. Technol. 15(4), 821–834 (2022)

    Article  Google Scholar 

  49. Ram, A.K., Mohanty, S.: State of the art review on physiochemical and engineering characteristics of fly ash and its applications. Int. J. Coal Sci. Technol. 9(1), 1–25 (2022). https://doi.org/10.1007/s40789-022-00472-6

    Article  CAS  Google Scholar 

  50. Hammood, H. S., Mahmood, A. S., Irhayyim, S. S.: Effect of graphite particles on physical and mechanical properties of nickel matrix composite. Period. Eng. Nat. Sci. 7(3), 1318–1328 (2019). https://doi.org/10.21533/pen

  51. Sornlar, W., Wannagon, A., Supothina, S.: Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers. J. Build. Eng. 44, 103273 (2021). https://doi.org/10.1016/j.jobe.2021.103273

    Article  Google Scholar 

  52. Liu, J., Li, X., Lu, Y., Bai, X.: Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Constr. Build. Mater. 263, 120653 (2020). https://doi.org/10.1016/j.conbuildmat.2021.125910

    Article  CAS  Google Scholar 

  53. Shafigh, P., Yousuf, S., Lee, J. C., Ibrahim, Z.: The effect of cement mortar composition on the pH value. IOP Conf. Ser.: Mater. Sci. Eng. 770, 012026 (2020). https://doi.org/10.1088/1757-899X/770/1/012026

  54. Kumar, S., Kumar, R.: Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceram. 37(2), 533–541 (2011). https://doi.org/10.1016/j.ceramint.2010.09.038

    Article  CAS  Google Scholar 

  55. Nuruddin, M.F., Malkawi, A.B., Fauzi, A., Mohammed, B.S., Almattarneh, H.M.: Evolution of geopolymer binders: a review. IOP Conf. Ser.: Mater. Sci. Eng. 133(1), 012052 (2016). https://doi.org/10.1088/1757-899X/133/1/012052

    Article  Google Scholar 

  56. Lee, W.H., Lin, K.L., Chang, T.H., Ding, Y.C., Cheng, T.W.: Sustainable development and performance evaluation of marble-waste-based geopolymer concrete. Polymers. 12(9), 1924 (2020). https://doi.org/10.3390/polym12091924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trochez, J. J., Mejía de Gutiérrez, R., Rivera, J., & Bernal, S. A.: Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. de Construccion. 65(317), e046 (2015). https://doi.org/10.3989/mc.2015.00814

  58. Mohammed, B.S., Haruna, S., Wahab, M.M.A., Liew, M.S., Haruna, A.: Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator. Heliyon. 5(9), 02255 (2019). https://doi.org/10.1016/j.heliyon.2019.e02255

    Article  CAS  Google Scholar 

  59. Kóth, J., Sinkó, K.: Geopolymer composites—in environmentally friendly aspects. Gels 9(3), 196 (2023). https://doi.org/10.3390/gels9030196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dal Poggetto, G., Kittisayarm, P., Pintasiri, S., Chiyasak, P., Leonelli, C., Chaysuwan, D.: Chemical and mechanical properties of metakaolin-based geopolymers with waste corundum powder resulting from erosion testing. Polymers 14(23), 5091 (2022). https://doi.org/10.3390/polym14235091

    Article  CAS  Google Scholar 

  61. Das, D., Rout, P. K.: Synthesis and characterization of fly ash and GBFS based geopolymer material. Biointerface Res. Appl. Chem. 11(6), 14506–14519 (2021). https://doi.org/10.33263/BRIAC116.1450614519

Download references

Acknowledgements

The authors are grateful to the Research and Innovation Fund, Faculty of Engineering, Kasetsart University, for research funds and scholarship assistance and to Kasetsart University Research and Development Institute (KURDI), Bangkok, Thailand, for the revision of the English language by a native speaker. They are also thankful to Mineral Resources Development Co., Ltd. and New Kwang Soon Lee Co., Ltd. for providing metakaolin and bagasse ash used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangrudee Chaysuwan.

Ethics declarations

Conflict of interest

Pakamon Kittisayarm has received research support from the Research and Innovation Fund, the Faculty of Engineering, Kasetsart University, Bangkok, Thailand.

The authors declare that they have no personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittisayarm, P., Tippayasam, C., Leonelli, C. et al. Effective function of activated bagasse ash for high early strength geopolymer. J Aust Ceram Soc (2024). https://doi.org/10.1007/s41779-024-01008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-024-01008-8

Keywords

Navigation