Skip to main content
Log in

Enhanced biocompatibility of biodegradable magnesium alloy modified by TiO2-MgO-GO coating

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Graphene oxide can connect sheets to other materials with covalent bonds due to the presence of oxygen groups and has medical applications due to its biocompatibility properties. In this research, TiO2-MgO dual layer coatings were applied on AZ91D magnesium alloy by magnetron sputtering method. After that, graphene oxide layer was applied as a filler to increase the surface resistance to cracks using the electrophoretic deposition (EPD) method. X-ray diffraction (XRD) analysis showed the presence of GO peaks and the Raman spectrum showed good and defect-free GO scattering. Microstructural investigations showed that the GO layer diffused the cracks on the surface of the layers and connected the cracks like a bridge. According to the results of the in vitro test, the TiO2-MgO-GO multilayer coating can provide the properties of biocompatibility optimally for the AZ91D alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmidt, S.B., Husted, S.: The biochemical properties of manganese in plants. Plants 8(10), 381 (2019). https://doi.org/10.3390/plants8100381

    Article  CAS  Google Scholar 

  2. Ahmadi, R., Afshar, A.: In vitro study: bond strength, electrochemical and biocompatibility evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS. Surf Coat Technol. 405, 126594 (2021)

    Article  CAS  Google Scholar 

  3. Siddiqui, A.R., Maurya, R., Katiyar, P.K., Balani, K.: Superhydrophobic, self-cleaning carbon nanofiber CVD coating for corrosion protection of AISI 1020 steel and AZ31 magnesium alloys. Surf Coat Technol. 404, 126421 (2020)

    Article  CAS  Google Scholar 

  4. Li, T.T., Ling, L., Lin, M.C., Peng, H.K., Ren, H.T., Lou, C.W., Lin, J.H.: Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci. 55(15), 6352–6374 (2020)

    Article  CAS  Google Scholar 

  5. Fotovvati, B., Namdari, N., Dehghanghadikolaei, A.: On coating techniques for surface protection: a review. J Manuf Mater Process. 3(1), 28 (2019)

    CAS  Google Scholar 

  6. Mkawi, E.M., Al-Hadeethi, Y., Shalaan, E., Bekyarova, E.: Substrate temperature effect during the deposition of (Cu/Sn/Cu/Zn) stacked precursor CZTS thin film deposited by electron-beam evaporation. J Mater Sci Mater Electron. 29(23), 20476–20484 (2018)

    Article  CAS  Google Scholar 

  7. Qi, J., Yang, Y., Zhou, M., Chen, Z., Chen, K.: Effect of transition layer on the performance of hydroxyapatite/titanium nitride coating developed on Ti-6Al-4V alloy by magnetron sputtering. Ceram Int. 45(4), 4863–4869 (2019)

    Article  CAS  Google Scholar 

  8. Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., et al.: Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Interf Sci 300, 102597 (2021)

    Article  Google Scholar 

  9. Kiew, S.F., Kiew, L.V., Lee, H.B., Imae, T., Chung, L.Y.: Assessing biocompatibility of graphene oxide-based nanocarriers: a review. J Control Release. 226, 217–228 (2016)

    Article  CAS  Google Scholar 

  10. Zhi, X., Fang, H., Bao, C., Shen, G., Zhang, J., Wang, K., Guo, S., Wan, T., Cui, D.: The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials. 34(21), 5254–5261 (2013)

    Article  CAS  Google Scholar 

  11. Mansoor, M., Shahid, M.: Carbon nanotube-reinforced aluminum composite produced by induction melting. J Appl Res Technol. 14(4), 215–224 (2016)

    Article  Google Scholar 

  12. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  13. Singh, R.K., Kumar, R., Singh, D.P.: Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6(69), 64993–65011 (2016)

    Article  CAS  Google Scholar 

  14. Kim, S.P., Kaseem, M., Choe, H.C.: Plasma electrolytic oxidation of Ti-25Nb-xTa alloys in solution containing Ca and P ions. Surf Coat Technol. 395, 125916 (2020)

    Article  CAS  Google Scholar 

  15. Fardi, S.R., khorsand, H., Askarnia, R., Pardehkhorram, R., Adabifiroozjaei, E., et al.: Improvement of biomedical functionality of titanium by ultrasound- assisted electrophoretic deposition of hydroxyapatite-graphene oxide nanocomposites. Ceram Int 46(11A), 18297–18307 (2020). https://doi.org/10.1016/j.ceramint.2020.05.049

    Article  CAS  Google Scholar 

  16. Usha Kiran, N., et al.: Graphene coating on copper by electrophoretic deposition for corrosion prevention. Coatings. 7(12), 214–219 (2017)

    Article  Google Scholar 

  17. Asgar, H., Deen, K.M., Rahman, Z.U., Shah, U.H., Raza, M.A., Haider, W.: Functionalized graphene oxide coating on Ti6Al4V alloy for improved biocompatibility and corrosion resistance. Mater Sci Eng C. 94, 920–928 (2019)

    Article  CAS  Google Scholar 

  18. Tasnim, N., Kumar, A., Joddar, B.: Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating. Mater Sci Eng C. 73, 788–797 (2017)

    Article  CAS  Google Scholar 

  19. Maqsood, M.F., Raza, M.A., Rehman, Z.U., Tayyeb, A., Makhdoom, M.A., Ghafoor, F., Latif, U., Khan, M.F.: Role of solvent used in development of graphene oxide coating on az31b magnesium alloy: Corrosion behavior and biocompatibility analysis. Nanomaterials. 12(21), 3745 (2022)

    Article  CAS  Google Scholar 

  20. Yigit, O., Dikici, B., Kaseem, M., Nakai, M., Niinomi, M.: Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: morphological and electrochemical insights. J Mater Res. 37(16), 2512–2524 (2022)

    Article  CAS  Google Scholar 

  21. Askarnia, R., Fardi, S.R., Sobhani, M., Staji, H., Aghamohammadi, H.: Effect of graphene oxide on properties of AZ91 magnesium alloys coating developed by micro-arc oxidation process. J Alloys Compd. 892, 162106 (2022)

    Article  CAS  Google Scholar 

  22. Khayatian, S.A., Kompany, A., Shahtahmassebi, N., Khorsand Zak, A.: Preparation and characterization of Al doped ZnO NPs/graphene nanocomposites synthesized by a facile one-step solvothermal method. Ceram Int. 42(1), 110–115 (2016)

    Article  CAS  Google Scholar 

  23. Li, M., Wang, Y., Liu, Q., Li, Q., Cheng, Y., Zheng, Y., et al.: In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B. 1(4), 475–484 (2013)

    Article  CAS  Google Scholar 

  24. Liu, Y., Huang, J., Li, H.: Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applicatio oriented nucleation and epitaxial growth of hydroxyapatite. Mater Chem B. 1(13), 1826–1834 (2013)

    Article  CAS  Google Scholar 

  25. Aujara, K.M., Chieng, B.W., Ibrahim, N.A., Zainuddin, N., Thevy Ratnam, C.: Gamma-irradiation induced functionalization of graphene oxide with organosilanes. Int J Mol Sci. 20(8), 1910 (2019)

    Article  CAS  Google Scholar 

  26. Bharath, G., Anwer, S., Mangalaraja, R.V., Alhseinat, E., Banat, F., Ponpandian, N.: Sunlight-induced photochemical synthesis of Au nanodots on α-Fe2O3@ reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties. Sci Rep. 8(1), 1–14 (2018)

    Article  CAS  Google Scholar 

  27. Jana, A., Das, M., Balla, V.K.: In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J Biomed Mater Res A. 110(2), 462–487 (2022)

    Article  CAS  Google Scholar 

  28. Myrissa, A., Agha, N.A., Lu, Y., Martinelli, E., Eichler, J., Szakacs, G., Kleinhans, C., Willumeit-Römer, R., Schäfer, U., Weinberg, A.M.: In vitro and in vivo comparison of binary Mg alloys and pure Mg. Mater Sci Eng C. 61, 865–874 (2016)

    Article  CAS  Google Scholar 

  29. Pang, L., Dai, C., Bi, L., Guo, Z., Fan, J.: Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Res Lett. 12(1), 1–9 (2017)

    Article  CAS  Google Scholar 

  30. Wang, J., Cheng, Y., Chen, L., Zhu, T., Ye, K., Jia, C., Wang, H., Zhu, M., Fan, C., Mo, X.: In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater. 84, 98–113 (2019)

    Article  CAS  Google Scholar 

  31. Samiee, M., Hanachi, M., Seyedraoufi, Z.S., Eshraghi, M.J., Shajari, Y.: Biodegradable magnesium alloy coated with TiO2/MgO two-layer composite via magnetic sputtering for orthopedic applications: a study on the surface characterization, corrosion, and biocompatibility. Ceram Int. 47(5), 6179–6186 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Eshraghi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiee, M., Noori, A., Seyedraoufi, Z.S. et al. Enhanced biocompatibility of biodegradable magnesium alloy modified by TiO2-MgO-GO coating. J Aust Ceram Soc 60, 231–238 (2024). https://doi.org/10.1007/s41779-023-00960-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00960-1

Keywords

Navigation