Skip to main content
Log in

Effect of graphene reinforcement on hybrid bioceramic coating deposited on the produced porous Ti64 alloys

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous-Ti64 alloys (P-Ti64), produced at various porosities by hot-pressing technique with the help of Mg spacer, were coated by hybrid-Graphene Oxide (rGO) reinforced-hydroxyapatite (HAp), using the sol–gel method. The synthesized rGO powder was used in reinforcing HAp by the Modified Hummers method having 30 µm particle size and nano (nm) scale layer thickness. Hybrid coatings were executed on Ti64 substrates in four different groups as single-HAp, HAp reinforced with 0.5 wt%, 1.0 wt% and 1.5 wt% rGO for three different porosities (41, 52, and 64%) were characterized by FT-IR, Raman, XRD and SEM. The average 21 µm coating film thicknesses were obtained and desirably, the only superficial pores of the substrates were closed by coating material rather than the inner connected open pores. It was also shown that 0.5 wt% and 1.0 wt% rGO reinforcements into HAp prevented crack formation on the Ti64 surfaces, whereas 1.5 wt% rGo reinforcement and single-HAp coatings caused. The highest adhesion strength values were achieved at low porosities (41–52%) and of 0.5–1.0 wt% rGO reinforcements through the adhesion tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Shi, Biomaterials and Tissue Engineering (Springer-Verlag, Berlin Heidelberg, 2004).

    Book  Google Scholar 

  2. H. Wang, C. Lin, R. Hu, Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Appl. Surf. Sci. 255, 4074–4081 (2009). https://doi.org/10.1016/j.apsusc.2008.10.111

    Article  CAS  Google Scholar 

  3. B. Brown, P.W. Constantz, Hydroxyapatite and Related Materials (CRC Press, New York, 2017).

    Book  Google Scholar 

  4. J. Xiong, Y. Li, X. Wang, P. Hodgson, C. Wen, Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti–18Nb–4Sn alloy for biomedical applications. Acta Biomater. 4, 1963–1968 (2008). https://doi.org/10.1016/j.actbio.2008.04.022

    Article  CAS  PubMed  Google Scholar 

  5. C.E. Wang, X.J. Xiong, J.Y. Li, Y.C. Hodgson, P.D. Wen, Apatite formation on nano-structured titanium and niobium surface. Mater. Sci. Forum. 614, 85–92 (2009)

    Article  Google Scholar 

  6. Q. Zhang, Y. Leng, R. Xin, A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials 26, 2857–2865 (2005). https://doi.org/10.1016/j.biomaterials.2004.08.016

    Article  CAS  PubMed  Google Scholar 

  7. I.S. Park, T.G. Woo, W.Y. Jeon, H.H. Park, M.H. Lee, T.S. Bae, K.W. Seol, Surface characteristics of titanium anodized in the four different types of electrolyte. Electrochim. Acta. 53, 863–870 (2007). https://doi.org/10.1016/j.electacta.2007.07.067

    Article  CAS  Google Scholar 

  8. W. Jing, M. Zhang, L. Jin, J. Zhao, Q. Gao, M. Ren, Q. Fan, Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy. Int. J. Surg. 24, 51–56 (2015). https://doi.org/10.1016/j.ijsu.2015.08.030

    Article  PubMed  Google Scholar 

  9. X. Chen, Y. Li, P.D. Hodgson, C. Wen, Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng. C. 29, 165–171 (2009). https://doi.org/10.1016/j.msec.2008.06.004

    Article  CAS  Google Scholar 

  10. C. Domínguez-Trujillo, E. Peón, E. Chicardi, H. Pérez, J.A. Rodríguez-Ortiz, J.J. Pavón, J. García-Couce, J.C. Galván, F. García-Moreno, Y. Torres, Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf. Coatings Technol. 333, 158–162 (2018). https://doi.org/10.1016/j.surfcoat.2017.10.079

    Article  CAS  Google Scholar 

  11. J. Mediaswanti, K. Wen, C. Ivanova, E.P. Berndt, C.C. Pham, V.T. Malherbe, F. Wang, Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum. Int. J. Surf. Sci. Eng. 15, 255–263 (2014)

    Article  Google Scholar 

  12. B. Aksakal, A.R. Boccaccini, Electrophoretic deposition of selenium. Mater. Lett. 76, 177–180 (2012). https://doi.org/10.1016/j.matlet.2012.02.059

    Article  CAS  Google Scholar 

  13. B. Aksakal, M. Kom, H.B. Tosun, M. Demirel, Influence of micro- and nano-hydroxyapatite coatings on the osteointegration of metallic (Ti6Al4 V) and bioabsorbable interference screws: An in vivo study. Eur. J. Orthop. Surg. Traumatol. 24, 813–819 (2014). https://doi.org/10.1007/s00590-013-1236-8

    Article  CAS  PubMed  Google Scholar 

  14. R.I.M. Asri, W.S.W. Harun, M.A. Hassan, S.A.C. Ghani, Z. Buyong, A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J. Mech. Behav. Biomed. 57, 95–108 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.031

    Article  CAS  Google Scholar 

  15. X. Pang, I. Zhitomirsky, Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf. Coat. Technol. 202, 3815–3821 (2008). https://doi.org/10.1016/j.surfcoat.2008.01.022

    Article  CAS  Google Scholar 

  16. X. Ji, W. Lou, Qi. Wang, J. Ma, H. Xu, Q. Bai, C. Liu, Liu, Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates. Int. J. Mol. Sci. 13, 5242–5253 (2012)

    Article  CAS  Google Scholar 

  17. S. Baradaran, E. Moghaddam, W.J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, M.R.N. Moghaddam, Y. Alias, Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon N. Y. 69, 32–45 (2014). https://doi.org/10.1016/j.carbon.2013.11.054

    Article  CAS  Google Scholar 

  18. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon N. Y. 61, 105–115 (2013). https://doi.org/10.1016/j.carbon.2013.04.074

    Article  CAS  Google Scholar 

  19. Y. Bai, Y. Bai, J. Gao, W. Ma, J. Su, R. Jia, Preparation and characterization of reduced graphene oxide/fluorhydroxyapatite composites for medical implants. J. Alloys Compd. 688, 657–667 (2016). https://doi.org/10.1016/j.jallcom.2016.07.006

    Article  CAS  Google Scholar 

  20. E. Bulbul, B. Aksakal, Synthesizing and characterization of nano-graphene oxide-reinforced hydroxyapatite coatings on laser treated Ti6Al4V surfaces. Acta Bioeng. Biomech. 19, 171–180 (2014). https://doi.org/10.5277/ABB-00876-2017-03

    Article  Google Scholar 

  21. E. Yılmaz, B. Çakıroğlu, A. Gökçe, F. Findik, H.O. Gulsoy, N. Gulsoy, Ö. Mutlu, M. Özacar, Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Mater. Sci. Eng. C. 101, 292–305 (2019). https://doi.org/10.1016/j.msec.2019.03.078

    Article  CAS  Google Scholar 

  22. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  23. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon N. Y. 49, 3019–3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071

    Article  CAS  Google Scholar 

  24. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon N. Y. 50, 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  25. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B 89, 79–85 (2012). https://doi.org/10.1016/j.colsurfb.2011.08.026

    Article  CAS  Google Scholar 

  26. H. Feng, R. Cheng, X. Zhao, X. Duan, J. Li, A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 4, 1539 (2013). https://doi.org/10.1038/ncomms2555

    Article  CAS  PubMed  Google Scholar 

  27. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014). https://doi.org/10.1016/j.jcis.2014.05.033

    Article  CAS  PubMed  Google Scholar 

  28. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  29. W. Chen, L. Yan, P.R. Bangal, Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. J. Phys. Chem. C. 114, 19885–19890 (2010). https://doi.org/10.1021/jp107131v

    Article  CAS  Google Scholar 

  30. B. Aksakal, M. Demirel, The effect of Zirconia/Yttria/Silver substitutions on mechanostructure and cell viability of the synthesized bioceramic bone grafts. Ceram. Int. 43, 7482–7487 (2017). https://doi.org/10.1016/j.ceramint.2017.03.026

    Article  CAS  Google Scholar 

  31. F. Songur, B. Dikici, M. Niinomi, E. Arslan, The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: The combined effect of duty cycle and the deposition frequency. Surf. Coatings Technol. 374, 345–354 (2019). https://doi.org/10.1016/j.surfcoat.2019.06.025

    Article  CAS  Google Scholar 

  32. Y. Say, B. Aksakal, Enhanced corrosion properties of biological NiTi alloy by hydroxyapatite and bioglass based biocomposite coatings. J. Mater. Res. Technol. 9, 1742–1749 (2020). https://doi.org/10.1016/j.jmrt.2019.12.005

    Article  CAS  Google Scholar 

  33. A.-R. Ibrahim, X. Li, Y. Zhou, Y. Huang, W. Chen, H. Wang, J. Li, Synthesis of spongy-like mesoporous hydroxyapatite from raw waste eggshells for enhanced dissolution of ibuprofen loaded via supercritical CO2. Intern. J. Mol. Sci. 16, 7960–7975 (2015). https://doi.org/10.3390/ijms16047960

    Article  CAS  Google Scholar 

  34. F. Bakan, O. Laçin, H. Sarac, A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 233, 295–302 (2013). https://doi.org/10.1016/j.powtec.2012.08.030

    Article  CAS  Google Scholar 

  35. C.Y. Ooi, M. Hamdi, S. Ramesh, Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int. 33, 1171–1177 (2007). https://doi.org/10.1016/j.ceramint.2006.04.001

    Article  CAS  Google Scholar 

  36. P. Wang, C. Li, H. Gong, X. Jiang, H. Wang, K. Li, Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technol. 203, 315–321 (2010). https://doi.org/10.1016/j.powtec.2010.05.023

    Article  CAS  Google Scholar 

  37. V. Miskovic-Stankovic, S. Erakovic, A. Jankovic, M. Vukašinović-Sekulić, M. Mitrić, Y.-C. Jung, S.-J. Park, K.-Y. Rhee, Electrochemical synthesis of nanosized hydroxyapatite/graphene composite powder. Carbon Lett. 16, 233–240 (2015). https://doi.org/10.5714/CL.2015.16.4.233

    Article  Google Scholar 

  38. H.-W. Kim, Y.-H. Koh, L.-H. Li, S. Lee, H.-E. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 25, 2533–2538 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.041

    Article  CAS  PubMed  Google Scholar 

  39. S. Zhang, Y.S. Wang, X.T. Zeng, K.A. Khor, W. Weng, D.E. Sun, Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516, 5162–5167 (2008). https://doi.org/10.1016/j.tsf.2007.07.063

    Article  CAS  Google Scholar 

  40. K. Cheng, C. Ren, W. Weng, P. Du, G. Shen, G. Han, S. Zhang, Bonding strength of fluoridated hydroxyapatite coatings: A comparative study on pull-out and scratch analysis. Thin Solid Films 517, 5361–5364 (2009). https://doi.org/10.1016/j.tsf.2009.03.122

    Article  CAS  Google Scholar 

  41. Cook, K.A. Thomas, J.F. Kay, M. Jarcho. Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. Clin. Orthopaedic. Relat. Res. 303–312. (1988) http://europepmc.org/abstract/MED/2835198.

  42. B. Aksakal, C. Hanyaloglu, Bioceramic dip-coating on Ti–6Al–4V and 316L SS implant materials. J. Mater. Sci. Mater. Med. 19, 2097–2104 (2008). https://doi.org/10.1007/s10856-007-3304-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NA contributing the tests and characterization analysis. BA Conducting-supervising the research and writing the paper.

Corresponding author

Correspondence to B. Aksakal.

Ethics declarations

Conflict of interest

The work content has not been published yet before; it is not under consideration for publication anywhere else. The authors declare that they have no any competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Behalf of authors: Prof B. Aksakal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, N., Aksakal, B. Effect of graphene reinforcement on hybrid bioceramic coating deposited on the produced porous Ti64 alloys. J Porous Mater 28, 1301–1313 (2021). https://doi.org/10.1007/s10934-021-01081-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01081-5

Keywords

Navigation