Skip to main content
Log in

Structural, microstructural, and electrical behavior of a relaxor (Mg0.5W0.5)(Pb0.5Ni0.5)O3 electronic material

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The perovskite solid solution (Mg0.5W0.5)(Pb0.5Ni0.5)O3, or MWPN, is synthesized for this study utilizing a solid-state reaction technique. The material’s structure, shape, and electrical properties have been meticulously investigated and documented in order to get a better knowledge of its possible uses in electronic devices and sensors. Using X-ray diffraction investigations, we were able to conclude that the structure is tetragonal (space group 141/a(88), z = 4). Dielectric property, impedance spectroscopy, and alternating current conductivity tests have been performed over a wide range of temperatures and frequencies (ranging from 25 °C through 500 °C for temperatures and from 10 kHz to 1 MHz for frequencies). The appearance of a single semicircular arc in the Nyquist analysis findings suggests that the sample in issue is made up of grains. An analog model of an equivalent circuit has been built in order to analyze the electrical functioning. The activation energy for different frequency has been calculated. Methodical study is carried out on the dielectric properties of the material when it is exposed to high temperatures in order to explore the electrical differences that occur between surfaces, grain boundaries, or grains in a material. Relaxor behavior of the sample has been revealed. This is required for both the basic characterization and the construction of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kumar, N.S., Naidu, K.C.B.: J Materiomics 7, 940–956 (2021). https://doi.org/10.1016/j.jmat.2021.04.002

    Article  Google Scholar 

  2. Cao, L., Liu, X., Li, Y., et al.: Front. Phys. 16, 33201 (2021). https://doi.org/10.1007/s11467-020-1026-9

    Article  Google Scholar 

  3. Das, S.N.: J Appl Phys 128, 114101 (2020). https://doi.org/10.1063/5.0014110

    Article  CAS  Google Scholar 

  4. Gajula, G.R., Chidambara Kumar, K.N., Buddiga, L.R., et al.: J Mater Sci: Mater Electron 30, 3889 (2019). https://doi.org/10.1007/s10854-019-00674-w

    Article  CAS  Google Scholar 

  5. Tian, X., Dou, H., Wu, L.: J. Mater. Sci.: Mater. Electron. 31, 3944 (2020). https://doi.org/10.1007/s10854-020-02942-6

    Article  CAS  Google Scholar 

  6. Jeon, N., Noh, J., Yang, W., et al.: Nature 517, 476 (2015). https://doi.org/10.1038/nature14133

    Article  CAS  Google Scholar 

  7. Prasad, K.G., Niranjan, M.K., Asthana, S.: Physica B 506, 42 (2017). https://doi.org/10.1016/j.physb.2016.10.040

    Article  CAS  Google Scholar 

  8. Kim, W.S., Kim, E.S., Yoon, K.H.: J. of Am Ceram Soc 82, 2111 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02049.x

    Article  CAS  Google Scholar 

  9. Mathe, V.L., Patankar, K.K., Patil, R.N., Lokhande, C.D.: J. Mag. and Mag. Mater. 270, 380 (2004). https://doi.org/10.1016/j.jmmm.2003.09.004

    Article  CAS  Google Scholar 

  10. Chickpatil, M., Chitgopikar, G.M., Raibagkar, R.L.: J. Mater Sci: Mater Electron. 18, 991 (2007). https://doi.org/10.1007/s10854-007-9342-1

    Article  CAS  Google Scholar 

  11. Ghasdi, M., Alamdari, H., Royer, S., Adnot, A.: Sensors and Actuators B 156, 147 (2011). https://doi.org/10.1016/j.snb.2011.04.003

    Article  CAS  Google Scholar 

  12. Okada, S., Kobayashi, S., Ohashi, K., Nishikawa, N., Tokunaga, T., Sasaki, K., Yamamoto, T.: Appl. Phys. Lett. 108, 251905 (2016). https://doi.org/10.1063/1.4954945

    Article  CAS  Google Scholar 

  13. Ding, H., Virkar, A.V., Liu, M., Lieu, F.: Phys. Chem. Chem. Phys. 15, 489–496 (2013). https://doi.org/10.1039/C2CP43148C

    Article  CAS  Google Scholar 

  14. Munoz, H.J., Korili, S.A., Gil, A.: Materials 15, 3288 (2022). https://doi.org/10.3390/ma15093288

    Article  CAS  Google Scholar 

  15. Das, S.N., Pardhan, S.K., et al.: J. of Electron. Mater. 47, 843 (2018). https://doi.org/10.1007/s11664-017-5848-3

    Article  CAS  Google Scholar 

  16. Limali, S., Bhuyan, S., Das, S.N.: Physica B: Condens Matter 654, 414705 (2023)

    Article  Google Scholar 

  17. Cheng, J., Yu, S.W., Chen, J., Meng, Z., Cross, L.E.: Appl. Phys. Lett. 89, 122911 (2006). https://doi.org/10.1063/1.2353806

    Article  CAS  Google Scholar 

  18. Wu, Z., Lin, B., Fan, J., Zhao, J., Zhang, Q., Li, L.: IEEE Trans. Dielectr. Electr. Insul. 29(5), 1651–1658 (2022). https://doi.org/10.1109/TDEI.2022.3193652

    Article  Google Scholar 

  19. Tang, R., Jiang, C., Qian, W., Jian, J., Zhang, X., Wang, H., Yang, H.: Sci. Rep. 5, 13645 (2015). https://doi.org/10.1038/srep13645

    Article  CAS  Google Scholar 

  20. Halder, S., Parida, K., et al.: Phys. Lett. A 382, 716–722 (2018). https://doi.org/10.1016/j.physleta.2017.12.048

    Article  CAS  Google Scholar 

  21. Jonscher, A.K.: Nature 267, 673 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  22. Tripathy, A., et al.: J Mater. Sci. Mater. Electron. 29, 4770 (2018). https://doi.org/10.1007/s10854-017-8432-y

    Article  CAS  Google Scholar 

  23. Mishra, K.K., Satya, A.T., Bharathi, A., Sivasubramanian, V., Murthy, V.R.K., Arora, A.K.: J. Appl. Phys. 110, 123529 (2011). https://doi.org/10.1063/1.3673240

    Article  CAS  Google Scholar 

  24. Liu, Y., Wei, J., et al.: J Mater. Sci. Mater. Electron. 27, 3095 (2016). https://doi.org/10.1007/s10854-015-4135-4

    Article  CAS  Google Scholar 

  25. Provenzano, V., Boesch, L.P., Volterra, V., Moynihan, C.T., Macedo, P.B.: J. Am. Ceram. Soc. 55, 492 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13413.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Das.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, D., Nayak, P.P., Bhuyan, S. et al. Structural, microstructural, and electrical behavior of a relaxor (Mg0.5W0.5)(Pb0.5Ni0.5)O3 electronic material. J Aust Ceram Soc 59, 1337–1348 (2023). https://doi.org/10.1007/s41779-023-00914-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00914-7

Keywords

Navigation