Skip to main content
Log in

Structural and electrical charge transport properties in oxygen-deficient PbTiO3−δ ceramics

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Oxygen-deficient perovskites (PbTi1−xFexLiyO3−δ, x = 0–0.25, y = 0.15) were prepared by gel combustion technique. This study presents the effect of Fe3+ and Li+ on the morpho-structural and electrical properties of ceramics. Two structural behaviors have been identified, depending on the Fe3+ amount. At low Fe3+ concentrations (3.7%), the variation of the cell parameters is given by the tetragonal change toward cubic phase while at higher levels (>15%) the variation of the cell parameters comes mainly from Fe3+/Ti4+ ionic radii differences. Fe3+ doping at Ti sites creates oxygen and titan vacancies in order to compensate the Ti4+ charge. Introduction of oxygen vacancies reduces progressively band gap energy from 3.28 to 2.63 eV. ICP-OES measurements show that Pb and Ti are lower than theoretical formula which it generates supplementary contributions to the oxygen deficiency. Addition of Fe3+ and Li+ leads to an increase of lattice micro-strains from 17.07·10−4 up to 24.44·10−4, improving ionic conduction. Moreover, DFT calculation shows that the lattice distortion tends to decrease with the increase of the Fe concentration, in agreement with the XRD. Based on BET analysis, the pore diameter decreases from 56.9 to 16.6 nm with the increase of iron amount and is correlated with the relative densities that increase from 82.0 to 91.27%. According to EIS investigations, activation energy varies between 0.632 and 0.950 eV, showing that the conduction in perovskite ceramics is based on double ionized oxygen vacancies. The highest conductivity at 500 °C was obtained for samples doped with 15% Fe and 25% Fe (2.4 × 10−3 S·cm−1), sintered at 750 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All original measurements and data analysis of this work are not publicly available but can be required reasonably from the corresponding author.

References

  1. Whittingham, M.S.: Materials challenges facing electrical energy storage. Mater. Res. Bull. 33, 411–419 (2008). https://doi.org/10.1557/mrs2008.82

    Article  CAS  Google Scholar 

  2. Luo, X., Wang, J., Dooner, M., Clarke, J.: Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy. 137, 511–536 (2015). https://doi.org/10.1016/j.apenergy.2014.09.081

    Article  Google Scholar 

  3. Reghunadhan, A., Ajitha, A.R.: In: Thomas, S., Kalarikkal, N., Abraham, A.R. (eds.) Development of perovskite nanomaterials for energy applications, in Design in Fabrication, and Characterization of Multifunctional Nanomaterials Micro and Nano Technologies, 1st edn, pp. 269–294. Elsevier (2021)

    Google Scholar 

  4. Han, M., Tang, X., Yin, H., Peng, S.: Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power. Sources. 165, 757–763 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.054

    Article  CAS  Google Scholar 

  5. Fernández-González, R., Molina, T., Savvin, S., Moreno, R., Makradi, A., Núñez, P.: Fabrication and electrical characterization of several YSZ tapes for SOFC applications. Ceram. Int. 40, 14253–14259 (2014). https://doi.org/10.1016/j.ceramint.2014.06.015

    Article  CAS  Google Scholar 

  6. Martins, R.F., Brant, M.C., Domingues, R.Z., Paniago, R.M., Sapag, K., Matencio, T.: Synthesis and characterization of NiO-YSZ for SOFCs. Mater. Res. Bull. 44, 451–456 (2009). https://doi.org/10.1016/j.materresbull.2008.04.017

    Article  CAS  Google Scholar 

  7. Guiffard, B., Boucher, E., Eyraud, L., Lebrun, L., Guyomar, D.: Influence of donor co-doping by niobium or fluorine on the conductivity of Mn doped and Mg doped PZT ceramics. J. Eur. Ceram. Soc. 25, 2487–2490 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.087

    Article  CAS  Google Scholar 

  8. Sareecha, N., Shah, W.A., Mirza, M.L., Saleemi, A.S., Tirmizi, S.A., Awan, M.S.: Fabrication and electrical investigations of PbTiO3 ceramics with Pb/Ti contents through solid state sintering reaction method. Mat. Chem. Phys. 214, 8–16 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.058

    Article  CAS  Google Scholar 

  9. Smyth, D.M.: Comments on the defect chemistry of undoped and acceptor-doped BaTiO3. J. Electroceram. 11, 89–100 (2003). https://doi.org/10.1023/B:JECR.0000015665.07280.60

    Article  CAS  Google Scholar 

  10. Sangwan, K.M., Ahlawat, N., Rani, S., Rani, S., Kundu, R.S.: Influence of Mn doping on electrical conductivity of lead free BaZrTiO3 perovskite ceramic. Ceram. Int. 44, 10315–10321 (2018). https://doi.org/10.1016/j.ceramint.2018.03.039

    Article  CAS  Google Scholar 

  11. Boubchir, M., Aourag, H.: Materials genome project: mining the ionic conductivity in oxide perovskites. Mat. Sci. Eng. B. 267, 114984 (2021). https://doi.org/10.1016/j.mseb.2020.114984

    Article  CAS  Google Scholar 

  12. Adnan, M.A.B., Arifin, K., Minggu, L.J., Kassim, M.B.: Titanate-based perovskites for photochemical and photoelectrochemical water splitting applications: a review. Int. J. Hydrog. Energy. 4, 23209–23220 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.173

    Article  CAS  Google Scholar 

  13. Abirami, R., Senthil, T.S., Kalpana, S., Kungumadevi, L., Kang, M.: Hydrothermal synthesis of pure PbTiO3 and silver doped PbTiO3 perovskite nanoparticles for enhanced photocatalytic activity. Mat. Lett. 279, 128507 (2020). https://doi.org/10.1016/j.matlet.2020.128507

    Article  CAS  Google Scholar 

  14. Madolappa, S., Choudhary, K.H., Punia, N., Anupama, A.V., Sahoo, B.: Dielectric properties of A-site Mn-doped bismuth sodium titanate perovskite: (Bi0.5Na0.5)0.9Mn0.1TiO3. Mat. Chem. Phys. 270, 124849 (2021). https://doi.org/10.1016/j.matchemphys.2021.124849

    Article  CAS  Google Scholar 

  15. Li, C.X., Hong, Y.N., Yang, B., Zhang, S.T., Liu, D.Q., Wang, X.M., Liu, Q., Zhao, L., Cao, W.: W.: Phase transition, ferroelectric and piezoelectric properties of B-site complex cations (Fe0.5Nb0.5)4+-modified Ba0.70Ca0.30TiO3 ceramics. Ceram. Int. 46(7), 9519–9529 (2020). https://doi.org/10.1016/j.ceramint.2019.12.214

    Article  CAS  Google Scholar 

  16. Petrovic, M., Chellappan, V., Ramakrishna, S.: Perovskites: solar cells & engineering applications – materials and device developments. Solar Energy. 122, 678–699 (2015). https://doi.org/10.1016/j.solener.2015.09.041

    Article  CAS  Google Scholar 

  17. Tu, R., Zhang, B., Sodano, H.A.: Lead titanate nanowires/polyamide-imide piezoelectric nanocomposites for high-temperature energy harvesting. Nano Energy. 97, 107175 (2022). https://doi.org/10.1016/j.nanoen.2022.107175

    Article  CAS  Google Scholar 

  18. Fujishiro, F., Sasaoka, C., Oishi, M., Hashimoto, T., Shozugawa, K., Matsuo, M.: Relationship among the local structure, chemical state of Fe ions in Fe-O polyhedra, and electrical conductivity of cubic perovskite Ba1-xSrxFe0.9In0.1O3- δ with varying number of oxide ion vacancies. Mater. Res. Bull. 133, 111063 (2021). https://doi.org/10.1016/j.materresbull.2020.111063

    Article  CAS  Google Scholar 

  19. Baek, K.S., Baek, S.W., Kang, H., Choi, W., Park, J.Y., Saxin, S., Lee, S.K., Kim, J.H.: Electrical conductivity characteristics of Sr substituted layered perovskite cathode (SmBa0.5Sr0.5Co2O5+d) for intermediate temperature-operating solid oxide fuel cell. Ceram. Int. 11, 48, 15770–15779 (2022). https://doi.org/10.1016/j.ceramint.2022.02.114

    Article  CAS  Google Scholar 

  20. Tasleem, S., Tahir, M.: Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: a review. Int. J. Hydrog. Energy. 45(38), 19078–19111 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.090

    Article  CAS  Google Scholar 

  21. Li, C., Soh, K.C.K., Wu, P.: Formability of ABO3 perovskites. J. Alloys Compd. 372, 40–48 (2004). https://doi.org/10.1016/j.jallcom.2003.10.017

    Article  CAS  Google Scholar 

  22. Sofi, S.A., Gupta, D.C.: Investigation of structural, elastic, thermophysical, magneto-electronic, and transport properties of newly tailored Mn-based Heuslers: a density functional theory study. Int. J. Quant. Chem. 120, 12, 26216 (2020). https://doi.org/10.1002/agua.26216

    Article  Google Scholar 

  23. Bhatti, H. S., Hussain, S. T.,. Khan, F.A, Hussain, S.: Synthesis and induced multiferroicity of perovskite PbTiO3 - a review. ASurf. Sci., 367, 291-306 (2016). https://doi.org/10.1016/j.apsusc.2016.01.164

  24. Udomporn, A., Ananta, S.: The phase formation of lead titanate powders prepared by solid-state reaction. Curr. Appl. Phys. 4, 186–188 (2004). https://doi.org/10.1016/j.cap.2003.11.005

    Article  Google Scholar 

  25. Hu, Y., Gu, H., Chen, W., Wang, Y.: Preparation of PbTiO3 nanoceramics based on hydrothermal nanopowders and characterization of their electrical properties. Mater. Chem. Phys. 121, 10–13 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.008

    Article  CAS  Google Scholar 

  26. Lemziouka, H., Omari, L.E.H., Moubah, R., Boutahar, A., Bahhar, S., Abid, M., Lassri, H.: Structural, dielectric and optical properties of Cu-doped PbTiO3 ceramics prepared by sol–gel. Materials Today: Proceedings. 37, 3940–3945 (2021). https://doi.org/10.1016/j.matpr.2020.09.094

    Article  CAS  Google Scholar 

  27. Dhage, S.R., Khollam, Y.B., Potdar, H.S., Deshpande, S.B.: Chemical co-precipitation of mixed (Pb+Ti) oxalates precursor for the synthesis of PbTiO3 powders. Mater. Lett. 56(4), 564–570 (2002). https://doi.org/10.1016/S0167-577X(02)00553-0

    Article  CAS  Google Scholar 

  28. Suresh, M.K., Thomas, J.K.: Structural and temperature dependent dielectric properties of nanocrystalline PbTiO3 synthesized through auto-igniting combustion technique. Solid State Sci. 98, 106025 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106025

    Article  CAS  Google Scholar 

  29. Udomporn, A., Ananta, S.: Effect of calcination condition on phase formation and particle size of lead titanate powders synthesized by the solid-state reaction. Mater. Lett. 58, 1154–1159 (2004). https://doi.org/10.1016/j.matlet.2003.08.028

    Article  CAS  Google Scholar 

  30. Fox, G.R., Adairand, J.H., Newnham, R.E.: Effect of pH and H2O2 upon coprecipitated PbTiO3 powders. J. Mater. Sci. 25, 3634–3640 (1990). https://doi.org/10.1007/BF00575398

    Article  CAS  Google Scholar 

  31. Tahar, R.B.H., Abboud, M.: Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach. Solid State Sci. 78, 74–85 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.02.002

    Article  CAS  Google Scholar 

  32. Zare, K., Sadjadi, M., Enhessari, M., Khanahmadzadeh, S.: Synthesis and characterization of PbTiO3 nanopowders by citric acid gel method. J. Phys. Theor. Chem. 6, 9–12 (2009) https://www.researchgate.net/publication/291432123

    Google Scholar 

  33. Oanh, L.M., Do, D. B., Phu ,N. D., Mai, N. T. P., Minh, N.V.: Influence of Mn doping on the structure, optical, and magnetic properties of PbTiO3 material. IEEE Trans. Magn., 50, 2502004 (2014). https://doi.org/10.1109/TMAG.2013.2297516

  34. Aggarwal, S., Chakrabarti, S., Pinto, R., Palkar, V.: R.: Room temperature magnetoelectric multiferroic behavior of 50 mol% Fe substituted PbTiO3 (PbTi0.5Fe0.5O3-δ) nanoparticles. RSC Adv. 6, 90132–90137 (2016). https://doi.org/10.1039/c6ra14681c

    Article  CAS  Google Scholar 

  35. Gou, G.Y., Bennett, J.W., Takenaka, H., Rappe, A.M.: Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−xNix)O3−x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B. 83, 205115 (2011). https://doi.org/10.1103/PhysRevB.83.205115

    Article  CAS  Google Scholar 

  36. Pavithra, C., Madhuri, W.: Dielectric, piezo and ferroelectric properties of microwave sintered PbTiO3 synthesized by sol–gel method. J. Sol-Gel Sci. Technol. 85, 437–445 (2018). https://doi.org/10.1007/s10971-017-4565-y

    Article  CAS  Google Scholar 

  37. Tiwari, B., Babu, T., Choudhary, R.N.P.: Impedance spectroscopic studies of lead zirconate titanate ferroelectrics. Mater Today: Proceedings. 42, 764–770 (2021). https://doi.org/10.1016/j.matpr.2020.11.311

    Article  CAS  Google Scholar 

  38. Roy, R., Dutta, A.: Effect of vanadium doping on the electrical charge transport and dielectric relaxation properties of sodium bismuth titanate perovskite. Ceram. Int. 47, 15732–15742 (2021). https://doi.org/10.1016/j.ceramint.2021.02.145

    Article  CAS  Google Scholar 

  39. Shi, J., Liu, X., Zhu, F., Tian, W., Xia, Y., Li, T., Rao, R., Zhang, T., Liu, L.: Oxygen vacancy migration and its lattice structural origin in A-site non-stoichiometric bismuth sodium titanate perovskites. J. Materiomics. 8(3), 719–729 (2022). https://doi.org/10.1016/j.jmat.2021.09.008

    Article  Google Scholar 

  40. Mote, V.D., Purushotham, Y., Dole, B.N.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012) http://www.jtaphys.com/content/2251-7235/6/1/6

    Article  Google Scholar 

  41. Dassault Systèmes Biovia Software, Materials Studio, Dassault Systèmes, San Diego, (2014) [v 8.0.0.843]

  42. Rosado, M.T., Duarte, M.L.T.S., Fausto, R.: Vibrational spectra of acid and alkaline glycine salts. Vib. Spectrosc. 16(1), 35–54 (1998). http://hdl.handle.net/10316/17729

    Article  CAS  Google Scholar 

  43. Burgos, M., Langlet, M.: The sol-gel transformation of TIPT coatings: a FTIR study. Thin. Solid. Films. 349, 19–23 (1999). https://doi.org/10.1016/S0040-6090(99)00139-X

    Article  CAS  Google Scholar 

  44. Guo, Y.C., Cai, C., Zhang, Y.H.: Observation of conformational changes in ethylene glycol–water complexes by FTIR–ATR spectroscopy and computational studies. AIP Adv. 8, 055308 (2018). https://doi.org/10.1063/1.4995975

    Article  CAS  Google Scholar 

  45. Popa, A., Stefan, M., Toloman, D., Pana, O., Mesaros, A., Leostean, C., Macavei, S., Marincas, O., Suciu, R., Barbu-Tudoran, L.: Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability. Powder Technol. 325, 441–451 (2018). https://doi.org/10.1016/j.powtec.2017.11.049

    Article  CAS  Google Scholar 

  46. Dragoi, C., Gheorghe, N.G., Lungu, G.A., Trupina, L., Ibanescu, A.G., Teodorescu, C.M.: X-ray photoelectron spectroscopy of pulsed laser deposited Pb(Zr,Ti)O3-δ. Phys. Status Solidi A. 1–4, (2012). https://doi.org/10.1002/pssa.201127740

  47. Li, Y., Wang, Z., Li, C., Cao, Y., Guo, X.: Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J. Power Sources. 248, 642–646 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.140

    Article  CAS  Google Scholar 

  48. Makuła, P., Pacia, M., Macyk, W.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV−vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  49. Landi Jr., S., Segundo, I.R., Freitas, E., Vasilevskiy, M., Carneiro, J., Tavares, C.J.: Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 341, 114573 (2022). https://doi.org/10.1016/j.ssc.2021.114573

    Article  CAS  Google Scholar 

  50. Ordejon, P., Artacho, E., Soler, J.M.: Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B. 53, R10441 (1996). https://doi.org/10.1103/physrevb.53.r10441

    Article  CAS  Google Scholar 

  51. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Condens. Matter. Phys. 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  52. Troullier, N., Martins, J.L.: Structural and electronic properties of C60. Phys. Rev. B. 46, 1754 (1992). https://doi.org/10.1103/physrevb.46.1754

    Article  CAS  Google Scholar 

  53. Cooper, V.R.: Van der Waals density functional: an appropriate exchange functional. Phys. Rev. B. 81, 161104 (2010). https://doi.org/10.1103/PhysRevB.81.161104

    Article  CAS  Google Scholar 

  54. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.: P.: Electron-energy-loss spectra and the structural stability of nickel oxide:  an LSDA+U study. Phys. Rev. B. 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  55. Irvine, J.T.S., Sinclair, D.C., West, A.R.: Electroceramics - characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990). https://doi.org/10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  56. Ashter, S.A.: Thermoforming of Single and Multilayer Laminates in Mechanics of Materials, 2nd edn, pp. 124–143, London Elsevier (2014). https://doi.org/10.1016/B978-1-4557-3172-5.00006-2

  57. Elmadjida, K.A., Gheorghiuc, F., Zerdalia, M., Kadria, M., Hamzaoui, S.: Preparation, structural and functional properties of PbTiO3-δ ceramics. Ceram. Int. 45, 9043–9047 (2019). https://doi.org/10.1016/j.ceramint.2019.01.240

    Article  CAS  Google Scholar 

  58. Ang, C., Yu, Z., Cross, L.E.: Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B. 62, 228–236 (2000). https://doi.org/10.1103/PhysRevB.62.228

    Article  Google Scholar 

  59. Ciomaga, C.E., Buscaglia, M.T., Buscaglia, V., Mitoseriu, L.: Oxygen deficiency and grain boundary-related giant relaxation in Ba(Zr,Ti)O3 ceramics. J. Appl. Phys. 110, 114110 (2011). https://doi.org/10.1063/1.3664749

    Article  CAS  Google Scholar 

  60. Padilla-Rosales, I., Lopez-Juarez, R., Lopez-Pacheco, G., Falcony, C., Gonzalez, F.: Near infrared photon-downshifting in Yb3+doped titanates: the influence of intrinsic defects. J. Alloys Compd. 834, 155081 (2020). https://doi.org/10.1016/j.jallcom.2020.155081

    Article  CAS  Google Scholar 

  61. Chen, T.T., Chang, I.C., Yang, M.H., Chiu, H.T., Lee, C.Y.: The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies. Appl. Catal., B. 142–143, 442–449 (2013). https://doi.org/10.1016/j.apcatb.2013.05.059

    Article  CAS  Google Scholar 

  62. Park, C.H., Chadi, D.J.: Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B. 57(22), R13961–R13964 (1998). https://doi.org/10.1103/PhysRevB.57.R13961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Babes-Bolyai University, Cluj-Napoca, Romania, for its support to undertake this work.

Funding

L. P. Zârbo, L. M. Pioraş-Ţimbolmaş, and C. Morari acknowledge funding from Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, through the project PCCF16/2018 Project No. PN-IIIP4-ID-PCCF-2016-0047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Mureşan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perhaiţa, I., Mureşan, L.E., Garabagiu, S. et al. Structural and electrical charge transport properties in oxygen-deficient PbTiO3−δ ceramics. J Aust Ceram Soc 59, 1039–1052 (2023). https://doi.org/10.1007/s41779-023-00895-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00895-7

Keywords

Navigation