Skip to main content
Log in

Effect of synthesis method on the structural and optical properties of Ca2V2O7

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Vanadium oxides have been extensively studied once vanadium oxidation states provide unique characteristics, allowing applications in several areas, such as light-emitting devices and photocatalysts. The solid-state reaction is the oldest route for synthesizing ceramic compounds; however, it includes a lack of homogeneity and purity in the final material. In contrast, the Pechini method enables excellent particle size and morphology control, together with high-purity materials, at lower temperatures and reaction times. Although synthesis strongly influences the material’s applicability, few studies have compared these methods experimentally. The present work expects to contribute to understanding the differences between solid-state reaction and Pechini routes in the obtention of CaV2O7 and how it impacts the final characteristics of the material. The synthesis was carried out using the solid-state method and modified Pechini in a temperature range of 650–850 °C. The powders possess a particle distribution as a function of temperature. The material shows an absorbing performance of about 500 nm, with a band gap of around 3 eV, slightly higher for the solid-state reaction route, as it is closely related to the size and purity of the particles. In summary, the results suggest that the solid-state reaction requires a higher temperature to obtain a higher purity material, while the Pechini method provides the same purity at all temperatures applied, together with a more homogeneous morphology, which shows to be a promising photocatalyst material capable of decolorizing 40% of a methylene blue solution in 120 min where it can play an important role for wastewater treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data is available if requested via email.

References

  1. Rojas-Cervantes, M., Castillejos, E.: Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts 9, 230 (2019). https://doi.org/10.3390/catal9030230

    Article  CAS  Google Scholar 

  2. Zhang, M., Dong, H., Zhao, L., et al.: Science of the total environment a review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 670, 110–121 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.180

    Article  CAS  Google Scholar 

  3. Ribeiro P, Nunes MI (2021) Recent trends and developments in Fenton processes for industrial wastewater treatment – a critical review. 197:. https://doi.org/10.1016/j.envres.2021.110957

  4. Grandhe, B.K., Ramaprabhu, S., Buddhudu, S., et al.: Spectral characterization of novel LiZnVO4 phosphor. Opt Commun 285, 1194–1198 (2012). https://doi.org/10.1016/j.optcom.2011.10.013

    Article  CAS  Google Scholar 

  5. Kuang, S.P., Meng, Y., Liu, J., et al.: A new self-activated yellow-emitting phosphor Zn2V2O7 for white LED. Optik (Stuttg) 124, 5517–5519 (2013). https://doi.org/10.1016/j.ijleo.2013.03.172

    Article  CAS  Google Scholar 

  6. Langeslay, R.R., Kaphan, D.M., Marshall, C.L., et al.: Catalytic applications of vanadium: a mechanistic perspective. Chem Rev 119, 2128–2191 (2019). https://doi.org/10.1021/acs.chemrev.8b00245

    Article  CAS  Google Scholar 

  7. Gupta, S.K., Sudarshan, K., Kadam, R.M.: Tunable white light emitting Sr2V2O7:Bi3+ phosphors: role of bismuth ion. Mater Des 130, 208–214 (2017). https://doi.org/10.1016/j.matdes.2017.05.056

    Article  CAS  Google Scholar 

  8. Sharma, A., Varshney, M., Chae, K.-H.H., Won, S.O.: Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyro-vanadates: X-ray absorption spectroscopy investigations. RSC Adv 8, 26423–26431 (2018). https://doi.org/10.1039/C8RA03347A

    Article  CAS  Google Scholar 

  9. Thiagarajan, K., Theerthagiri, J., Senthil, R.A., Madhavan, J.: Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 17354–17362 (2017). https://doi.org/10.1007/s10854-017-7668-x

    Article  CAS  Google Scholar 

  10. Camargo, L.P., Lucilha, A.C., Gomes, G.A.B., et al.: Copper pyrovanadate electrodes prepared by combustion synthesis: evaluation of photoelectroactivity. J. Solid State Electrochem. 24, 1935–1950 (2020). https://doi.org/10.1007/s10008-020-04721-z

    Article  CAS  Google Scholar 

  11. Diaz-Anichtchenko, D., Gracia, L., Errandonea, D.: Density-functional study of pressure-induced phase transitions and electronic properties of Zn2V2O7. Royal Society of Chemistry 11, 10401–10415 (2021). https://doi.org/10.1039/d1ra01413g

    Article  CAS  Google Scholar 

  12. Díaz-Anichtchenko, D., Santamaria-Perez, D., Marqueno, T., et al.: Comparative study of the high-pressure behavior of ZnV2O6, Zn2V2O7, and Zn3V2O8. Journal of Alloys and Compounds journal 837, 155505 (2020). https://doi.org/10.1016/j.jallcom.2020.155505

    Article  CAS  Google Scholar 

  13. Ninova, S., Strach, M., Buonsanti, R., Aschauer, U.: Suitability of Cu-substituted β-Mn2V2O7 and Mn-substituted β-Cu2V2O7 for photocatalytic water-splitting. J Chem Phys 153, 084704 (2020). https://doi.org/10.1063/5.0019306

    Article  CAS  Google Scholar 

  14. Chen, L., Yang, Z., Wu, J., et al.: Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7 (OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochim Acta 330, 135347 (2020). https://doi.org/10.1016/j.electacta.2019.135347

    Article  CAS  Google Scholar 

  15. Wang, J., Pei, J., Hua, K., et al.: Synthesis of Co2V2O7 Hollow Cylinders with Enhanced Lithium Storage Properties using H2O2 as an Etching Agent. ChemElectroChem 5, 737–742 (2018). https://doi.org/10.1002/celc.201701194

    Article  CAS  Google Scholar 

  16. Han, X., Liu, Q., Song, W., Liu, H.: Rapid microwave synthesis of Zn3(OH)2V2O7·2H2O nanosheets for enhanced lithium storage performances. Solid State Ion 347, 115250 (2020). https://doi.org/10.1016/j.ssi.2020.115250

    Article  CAS  Google Scholar 

  17. Ni, S., Zhou, G., Lin, S., et al.: Hydrothermal synthesis of Zn3(OH)2V2O7·nH2O nanosheets and its application in lithium ion battery. Mater Lett 63, 2459–2461 (2009). https://doi.org/10.1016/j.matlet.2009.07.070

    Article  CAS  Google Scholar 

  18. Kesavan, G., Vinothkumar, V., Chen, S.-M.: Sonochemical synthesis of copper vanadate nanoparticles for the highly selective voltammetric detection of antibiotic drug ornidazole. J Alloys Compd 867, 159019 (2021). https://doi.org/10.1016/j.jallcom.2021.159019

    Article  CAS  Google Scholar 

  19. Gu, J., Yan, B.: Hydrothermal synthesis and luminescent properties of Ca2V2O7: Eu3+ phosphors. J Alloys Compd 476, 619–623 (2009). https://doi.org/10.1016/j.jallcom.2008.09.084

    Article  CAS  Google Scholar 

  20. Zhang, S., Mu, W.: Fabrication of Ca2V2O7 microspheres and its application in lithium-ion batteries. Mater Lett 183, 311–314 (2016). https://doi.org/10.1016/j.matlet.2016.07.131

    Article  CAS  Google Scholar 

  21. Kaur, P., Khanna, A.: Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn). J. Mater. Sci.: Mater. Electron. 32, 21813–21823 (2021). https://doi.org/10.1007/s10854-021-06710-y

    Article  CAS  Google Scholar 

  22. Grabowska, E.: Selected perovskite oxides: characterization, preparation and photocatalytic properties-a review. Appl Catal B 186, 97–126 (2016). https://doi.org/10.1016/j.apcatb.2015.12.035

    Article  CAS  Google Scholar 

  23. Kim, D.H., Kang, Y.-M., Ur, S.-C., et al.: Structure and magnetic properties of La0.7Sr0.3MnO3(1–x)–SrFe12O19(x) composites. J Magn Magn Mater 449, 567–570 (2018). https://doi.org/10.1016/j.jmmm.2017.10.120

    Article  CAS  Google Scholar 

  24. Reichmann, M., Geffroy, P.M., Fouletier, J., et al.: Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3-δ and La0.5A0.5Fe0.7Co0.3O3-δ dense perovskite membranes with A = Ca, Sr and Ba (part I). J Power Sources 261, 175–183 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.074

    Article  CAS  Google Scholar 

  25. Athayde, D.D., Souza, D.F., Silva, A.M.A., et al.: Review of perovskite ceramic synthesis and membrane preparation methods. Ceram Int 42, 6555–6571 (2015). https://doi.org/10.1016/j.ceramint.2016.01.130

    Article  CAS  Google Scholar 

  26. Dimesso L (2018) Pechini processes: an alternate approach of the sol-gel method, preparation, properties, and applications. Springer International Publishing AG 1068–1087. https://doi.org/10.1007/978-3-319-32101-1

  27. Nguyen VK, Nguyen Thi VN, Tran HH, et al (2021) A facile synthesis of g-C3N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light. Bulletin of Materials Science 44:. https://doi.org/10.1007/s12034-020-02277-2

  28. Kavitha, S., Jayamani, N., Barathi, D.: Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull. Mater. Sci. 44, 26 (2021). https://doi.org/10.1007/s12034-020-02291-4

    Article  CAS  Google Scholar 

  29. Shokoofehpoor, F., Chaibakhsh, N., Ghanadzadeh Gilani, A.: Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles. Separation Sci Technol (Philadelphia) 54, 2943–2958 (2019). https://doi.org/10.1080/01496395.2018.1556299

    Article  CAS  Google Scholar 

  30. Rajput P, Singh P, Vashishtha P, Kamni (2021) Investigation on structural, morphological and luminescent properties of Mg2+-doped ZnO nanophosphors prepared by simple combustion synthesis. Bulletin of Materials Science 44:. https://doi.org/10.1007/s12034-021-02438-x

  31. Hassanpour, M., Salavati-Niasari, M., Safardoust-Hojaghan, H.: Sol-gel synthesis and characterization of Co3O4/CeO2 nanocomposites and its application for photocatalytic discoloration of organic dye from aqueous solutions. Environ. Sci. Pollut. Res. 28, 7001–7015 (2021). https://doi.org/10.1007/s11356-020-11040-3

    Article  CAS  Google Scholar 

  32. Mersian, H., Alizadeh, M.: Effect of diverse Pechini sol-gel parameters on the size, morphology, structural and optical properties of the Tenorite (CuO) NPs: a facile approach for desired properties. Ceram Int 46, 17197–17208 (2020). https://doi.org/10.1016/j.ceramint.2020.03.275

    Article  CAS  Google Scholar 

  33. Razavi, F.S., Hajizadeh-Oghaz, M., Amiri, O., et al.: Barium cobaltite nanoparticles: sol-gel synthesis and characterization and their electrochemical hydrogen storage properties. Int J Hydrogen Energy 46, 886–895 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.196

    Article  CAS  Google Scholar 

  34. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent no 3,330.697 1–2

  35. Tractz, G.T., da Luz, F.S., Antunes, S.R.M., et al.: Nb2O5 synthesis and characterization by Pechini method to the application as electron transport material in a solar device. Sol. Energy 216, 1–6 (2021). https://doi.org/10.1016/j.solener.2021.01.029

    Article  CAS  Google Scholar 

  36. Cao, Z., Wu, W., Li, Y., et al.: Lithium ionic conductivity of Li7-3xFexLa3Zr2O12 ceramics by the Pechini method. Ionics (Kiel) 26, 4247–4256 (2020). https://doi.org/10.1007/s11581-020-03580-y

    Article  CAS  Google Scholar 

  37. Souza, D.R., Neves, J.V.S., França, Y.K.S., Malheiro, W.C.: TiO2 synthesis by the Pechini’s method and application for diclofenac photodegradation†. Photochem Photobiol 97, 32–39 (2021). https://doi.org/10.1111/php.13355

    Article  CAS  Google Scholar 

  38. Ranjeh, M., Masjedi-Arani, M., Amiri, O., Salavati-Niasari, M.: Li2MnO3/LiMnBO3/MnFe2O4 ternary nanocomposites: Pechini synthesis, characterization and photocatalytic performance. Int J Hydrogen Energy 45, 21241–21251 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.147

    Article  CAS  Google Scholar 

  39. Khatkar, A., Khatkar, S.P.: Nanomaterials synthesis, characterization and photoluminescent properties of Ca2V2O7: Eu nanomaterials. In: National conference on trends and advances in mechanical engineering, pp. 641–645. Faridabad, India (2012)

    Google Scholar 

  40. Taxak, V.B., Sheetal, D., Khatkar, S.P.: Synthesis, structural and optical properties of Eu3+-doped Ca2V2O7 nanophosphors. Curr. Appl. Phys. 13, 594–598 (2013). https://doi.org/10.1016/j.cap.2012.10.011

    Article  Google Scholar 

  41. Li, L., Liu, X., Noh, H.M., et al.: Crystal structure and two types of Eu3+-centered emission in Eu3+ doped Ca2V2O7. J Lumin 161, 318–322 (2015). https://doi.org/10.1016/j.jlumin.2015.01.020

    Article  CAS  Google Scholar 

  42. Han R, Cao H, Li B (2022) Microwave dielectric properties of a novel low-temperature sintering H3BO3-added Ca2V2O7 ceramics. J Alloys Compd 890:. https://doi.org/10.1016/j.jallcom.2021.161803

  43. Kumar, V., Bedyal, A.K., Sharma, J., et al.: Spectral and surface investigations of Ca2V2O7:Eu3+ nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes. Appl Phys A Mater Sci Process 116, 1785–1792 (2014). https://doi.org/10.1007/s00339-014-8331-5

    Article  CAS  Google Scholar 

  44. Curelaru, I.M., Strid, K.G., Suoninem, E., et al.: Electron structure of excited configurations in Ca2V2O7 studied by electron-induced core-ionization loss spectroscopy, appearance-potential spectroscopy, and x-ray-photoelectron spectroscopy. Phisical Review B 23, 1982 (1981)

    Google Scholar 

  45. Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., et al.: Theoretical and experimental study of the crystal structures, lattice vibrations, and band structures of monazite-type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorg Chem 54, 7524–7535 (2015). https://doi.org/10.1021/acs.inorgchem.5b01135

    Article  CAS  Google Scholar 

  46. Makuła, P., Pacia, M., Macyk, W.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  47. Zhang, Q., Wu, X., Qin, S.: Pressure-induced phase transition of V2O3. Chinese Physics Letters 29, 106101 (2012). https://doi.org/10.1088/0256-307X/29/10/106101

    Article  CAS  Google Scholar 

  48. Nath, R.K., Zain, M.F.M., Kadhum, A.A.H.: New material LiNbO3 for photocatalytically improvement of indoor air - an overview. Adv Nat Appl Sci 6, 1030–1035 (2012)

    CAS  Google Scholar 

  49. Beauregard, P.: Behavior of particle size distributions, means and BET values in ideal and non-ideal morphology systems in a TEM. Micros Today 12, 30–33 (2004). https://doi.org/10.1017/s1551929500051798

    Article  Google Scholar 

  50. Project TM (2022) Materials Data on Ca2V2O7 (SG:2) by Materials Project. https://materialsproject.org/materials/mp-32434/

  51. Botella P, Errandonea D, Garg AB, et al (2019) High-pressure characterization of the optical and electronic properties of InVO4, InNbO4, and InTaO4. SN Appl Sci 1:. https://doi.org/10.1007/s42452-019-0406-7

  52. Yu, R., Xue, N., Huo, S., et al.: Structure characteristics and photoactivity of simultaneous luminescence and photocatalysis in CaV2O6 nanorods synthesized by the sol-gel Pechini method. RSC Adv 5, 63502–63512 (2015). https://doi.org/10.1039/c5ra10465c

    Article  CAS  Google Scholar 

  53. Lu Y, Chen L, Huang Y, et al (2015) Photocatalytic ability of vanadate garnet Ca5Ni4(VO4)6 under visible-light irradiation. J Phys D Appl Phys 48:. https://doi.org/10.1088/0022-3727/48/30/305107

  54. Matsushima, Y., Koide, T., Hiro-Oka, M., et al.: Self-activated vanadate compounds toward realization of rare-earth-free full-color phosphors. J. Am. Ceram. Soc. 98, 1236–1244 (2015). https://doi.org/10.1111/jace.13463

    Article  CAS  Google Scholar 

  55. Panchal V, Errandonea D, Segura A, et al (2011) The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution. J Appl Phys 110:. https://doi.org/10.1063/1.3626060

  56. Ronde, H., Blasse, G.: The nature of the electronic transitions of the vanadate group. J. Inorg. Nucl. Chem. 40, 215–219 (1978). https://doi.org/10.1016/0022-1902(78)80113-4

    Article  CAS  Google Scholar 

  57. Shinde, S.S., Shinde, P.S., Bhosale, C.H., Rajpure, K.Y.: Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. J Photochem Photobiol B 104, 425–433 (2011). https://doi.org/10.1016/j.jphotobiol.2011.04.010

    Article  CAS  Google Scholar 

  58. Errandonea, D., Gomis, O., Garc, B., et al.: New polymorph of InVO4: a high-pressure structure with six- coordinated vanadium. Inor 52, 12790–12798 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Coordination for the Improvement of Higher Education Personnel (CAPES) and Santa Catarina Research Support Foundation (FAPESC) for financial support and the Ponta Grossa State University (UEPG, the C-LABMU for the UV–Vis analysis, and Douglas Washington da Silva, an incredible researcher (in memoriam)). This work has been supported by the State University of Santa Catarina (UDESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Trezecik Silvano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvano, L.T., Folgueras, M.V. & De Souza, E.C.F. Effect of synthesis method on the structural and optical properties of Ca2V2O7. J Aust Ceram Soc 59, 985–994 (2023). https://doi.org/10.1007/s41779-023-00891-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00891-x

Keywords

Navigation