Skip to main content

Advertisement

Log in

Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple preparation of nanoplatelet like Ca2V2O7/PANI composite via co-precipitation technique has been reported and it is used as an electrode material for supercapacitor application. The structure and morphology of the as-prepared pure Ca2V2O7 and Ca2V2O7/PANI composite are characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analysis. The electrochemical performance of Ca2V2O7 and Ca2V2O7/PANI composite based electrodes is investigated by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance analysis in 6 M KOH as supporting electrolyte. It is found that the specific capacitance of Ca2V2O7/PANI composite was 542 F g−1 at current density 1 A g−1 which is much higher than that of pure Ca2V2O7 (202 F g−1). Meanwhile, the composite electrode also showed an excellent cyclic stability and retained 84.2% efficiency of its initial discharge capacitance after 1000 cycles (at current density of 5 A g−1). Therefore, the described Ca2V2O7/PANI nanoplatelets are found to be a highly suitable electrode material for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  Google Scholar 

  2. A. Yoshino, Angew. Chem., Int. Ed. 51, 5798 (2012)

    Article  Google Scholar 

  3. M. Armand, J.M. Tarascon, Nature 451, 652 (2008)

    Article  Google Scholar 

  4. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18, 2619 (2006)

    Article  Google Scholar 

  5. Y.G. Wang, Z.D. Wang, Y.Y. Xia, Electrochim. Acta 50, 5641 (2005)

    Article  Google Scholar 

  6. D.D. Zhu, Y.D. Wang, G.L. Yuan, H. Xia, Chem. Commun. 50, 2876 (2014)

    Article  Google Scholar 

  7. X.F. Xia et al., J. Mater. Chem. 22, 16844 (2012)

    Article  Google Scholar 

  8. C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53, 1488 (2014)

    Article  Google Scholar 

  9. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28 (2010)

    Article  Google Scholar 

  10. Z. Zhao, S. Hao, P. Hao, Y. Sang, A. Manivannan, N. Wu, H. Liu, J. Mater. Chem. A 3, 15049 (2015)

    Article  Google Scholar 

  11. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nano Lett. 13, 3135 (2013)

    Article  Google Scholar 

  12. H. Wu, Z. Lou, H. Yang, G. Shen, Nanoscale 7, 1921 (2015)

    Article  Google Scholar 

  13. J.F. Shen, T. Li, W.S. Huang, Y. Long, N. Li, M.X. Ye, Electrochim. Acta 95, 155 (2013)

    Article  Google Scholar 

  14. Y.M. Shulga, S.A. Baskakov, V.V. Abalyaeva, O.N. Efimov, N.Y. Shulga, A. Michtchenko, L. Lartundo-Rojas, L.A. Moreno-R, J.G. Caba˜nas-Moreno, V.N. Vasilets, J. Power Sources 224, 195 (2013)

    Article  Google Scholar 

  15. C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano Lett. 6, 2690 (2006)

    Article  Google Scholar 

  16. U.C. Chung, C. Elissalde, S. Mornet, M. Maglione, C. Estournès, Appl. Phys. Lett. 94, 072903-1 (2009)

    Google Scholar 

  17. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  Google Scholar 

  18. P. Ren, Z. Yang, W.G. Zhu, C.H.A. Huan, L. Wang, J. Appl. Phys. Lett. 109, 074109-1 (2011)

    Google Scholar 

  19. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  20. A. Ponrouch, S. Garbarino, E. Bertin, D. Guay, J. Power Sources 221, 228 (2013)

    Article  Google Scholar 

  21. .M. Itoh, M. Shikano, H. Kawaji, T. Nakamura, Solid State Commun. 80, 545 (1991)

    Article  Google Scholar 

  22. A. Nozaki, H. Yoshikawa, T. Wada, H. Yamauchi, S. Tanaka, Phys. Rev. B 43, 181 (1991)

    Article  Google Scholar 

  23. .M. Cyrot, B. Lambert-Andron, J.L. Soubeyroux, M.J. Rey, P.H. Dehaudt, F. Cyrot-Lackmann, G. Fourcaudot, J. Beille, J.L. Tholence, J. Solid State Chem. 85, 321 (1990)

    Article  Google Scholar 

  24. F. Deslandes, A.I. Nazzi, J.B. Torrance, Physica C 179, 85 (1991)

    Article  Google Scholar 

  25. S. Zhang, W. Mu, Mater. Lett. 183, 311 (2016)

    Article  Google Scholar 

  26. C.L. Dai, X.Y. Wang, Y. Wang, N. Li, J.L. Wei, Mater. Chem. Phys. 112, 461 (2008)

    Article  Google Scholar 

  27. L.P. Zheng, Y. Wang, X.Y. Wang, N. Li, H.F. An, H.J. Chen, J. Guo, J. Power Sources 195, 1747 (2010)

    Article  Google Scholar 

  28. C. Peng, S.W. Zhang, D. Jewell, G.Z. Chen, Prog. Nat. Sci. 18, 777 (2008)

    Article  Google Scholar 

  29. B. Senthilkumar, K. Vijaya Sankar, R. Kalai Selvan, M. Danielle, M. Manickam, RSC Adv. 3, 352 (2013)

    Article  Google Scholar 

  30. T.T. Nguyen., V.H. Nguyen., R.K. Deivasigamani, D. Kharismadewi, Y. Iwai, J.J. Shim, Solid State Sci. 53, 71 (2016)

    Article  Google Scholar 

  31. H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, V.A. Strong, R.B. Kaner, J. Mater. Chem. 21, 3534 (2011)

    Article  Google Scholar 

  32. P. Justin, S.K. Meher, G.R. Raob, J. Phys. Chem. 114, 5203 (2010)

    Google Scholar 

  33. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  34. J.A. Yan, E. Khoo, A. Sumboja, P.S. Lee, ACS Nano 4, 4247 (2010)

    Article  Google Scholar 

  35. W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, J. Power Sources 269, 250 (2014)

    Article  Google Scholar 

  36. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  37. S.G. Krishnan, M.V. Reddy, M. Harilal, B. Vidyadharan, I.I. Misnon, M.H.A. Rahim, J. Ismail, R. Jose, Electrochim. Acta 161, 312 (2015)

    Article  Google Scholar 

  38. K. Pandey, P. Yadav, I. Mukhopadhyay, J. Solid State Electrochem. 18, 453 (2014)

    Article  Google Scholar 

  39. L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, G. Yang, Nanoscale 5, 3793 (2013)

    Article  Google Scholar 

  40. H. Yang, G.H. Guai, C. Guo, Q. Song, S.P. Jiang, Y. Wang, W. Zhang, C.M. Li, J. Phys. Chem. C 115, 12209 (2011)

    Article  Google Scholar 

  41. C.C. Hu, K.H. Chang, T.Y. Hsu, J. Electrochem. Soc. 155, F196 (2008)

    Article  Google Scholar 

  42. J. Xu, X. Gu, J. Cao, W. Wang, Z. Chen, J. Solid State Electrochem. 16, 2667 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors K. Thiagarajan, J. Theerthagiri, R.A. Senthil and J. Madhavan are grateful to the authorities of Thiruvalluvar University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Madhavan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiagarajan, K., Theerthagiri, J., Senthil, R.A. et al. Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. J Mater Sci: Mater Electron 28, 17354–17362 (2017). https://doi.org/10.1007/s10854-017-7668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7668-x

Navigation