Skip to main content
Log in

Preparation and chemical stability evaluation of new (Nd,An)2Zr2O7-SrZrO3 multiphase ceramics

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A series of new Nd(1-x)SrxZrO(3.5–0.5x) (0 ≤ x ≤ 1) multiphase ceramic waste forms, which can simultaneously immobilize An and Sr (with Nd3+ simulating An3+), were synthesized in situ by a sol-spray pyrolysis method. These multiphase ceramics are composed of a cubic pyrochlore phase Nd2Zr2O7(NZO) and an orthogonal perovskite phase SrZrO3(SZO) without any impurities. The content of the two phases can change regularly with the change of x. Nd and Sr can occupy the ceramics’ most stable lattice sites. The measured density of multiphase ceramics can reach more than 88% of the theoretical density. At the same time, the leaching rates of target Nd, Sr and Zr elements reached ~ 10−5 g·m−2·d−1, ~ 10−3 g·m−2·d−1, and ~ 10−7 g·m−2·d−1 at 90 ℃ and deionized water for 72 days, respectively, which shows that the multiphase ceramics had strong leaching resistance. The experimental results confirm that the new multiphase ceramics can immobilize An and Sr simultaneously and separately, and they have high chemical stability and strong adaptability to waste components. The multiphase ceramics is expected to be an ideal candidate waste form for An and Sr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hatch, L.P.: Ultimate disposal of radioactive wastes. Amer. Sci. 41, 410–421 (1953)

    CAS  Google Scholar 

  2. Ringwood, A.E., Kesson, S.E., Ware, N.G.: Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278, 219–223 (1979)

    Article  CAS  Google Scholar 

  3. Wang, S.X., Begg, B.D., Wang, L.M.: Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. J. Mater. Res. 14, 4470–4473 (1999)

    Article  CAS  Google Scholar 

  4. Ding, Y., Li, Z., Bai, Z.: Rapid preparation of Nd-doped zirconia ceramics for high-level radioactive waste immobilization. Ceram. Int. 48, 16773–16777 (2022)

    Article  CAS  Google Scholar 

  5. Gong, W.L., Lutze, W., Ewing, R.C.: Zirconia ceramics for excess weapons plutonium waste. J. Nucl. Mater. 277, 239–249 (2000)

    Article  CAS  Google Scholar 

  6. Nästren, C., Jardin ,R., Somer,J. : Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7+x (An = Th, U, Np, Pu, Am). J.Solid.State.Chem. 182,1–7 (2009).

  7. Sykora, R.E., Raison, P.E., Haire, R.G.: Self-irradiation induced structural changes in the transplutonium pyrochlores An2Zr2O7 (An = Am, Cf ). J. Solid. State. Chem. 178, 578–583 (2005)

    Article  CAS  Google Scholar 

  8. Lian, J., Yudintsev, S.V.: Ion beam irradiation of U-, Th- and Ce-doped pyrochlores. J. Alloys. Comp. 444, 429–433 (2007)

    Article  Google Scholar 

  9. Guo, Y.C., Zhang, Y., Allix, M.: Rapid solidification synthesis of novel (La, Y)2(Zr, Ti)2O7 pyrochlore-based glass-ceramics for the immobilization of high-level wastes. J. Eur. Ceram. Soc. 41, 7253–7260 (2021)

    Article  CAS  Google Scholar 

  10. Wang, Y., Wang, J., Zhan, X.: Order–disorder structural tailoring and its effects on the chemical stability of (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic for nuclear waste forms. Nucl. Eng. Technol. 54, 2427–2434 (2022)

    Article  CAS  Google Scholar 

  11. Wei, G.L., Liu, X.D., Chen, S.Z.: Direct immobilization of simulated nuclear waste in preformed Gd2Zr2O7 pyrochlore via spark plasma sintering reaction. Mater. Chem. Phys. 291, 126711 (2022)

    Article  CAS  Google Scholar 

  12. Strachan, D.M.: Radiation damage effects in candidate titanates for Pu disposition: Zirconolite. J. Nucl. Mater. 372, 16–31 (2008)

    Article  CAS  Google Scholar 

  13. Grey, I.E., Mumme, W.G., Ness, T.J., Roth, R.S., Smith, K.L.: Structural relations between weberite and zirconolite polytypes—refinements of doped 3T and 4M Ca2Ta2O7 and 3T CaZrTi2O7. J. Sold. State. Chem. 174, 285–259 (2003)

    Article  CAS  Google Scholar 

  14. Titanate-based ceramics for separated long-lived radionuclides: Catherine, Thierry, F. A., Florence, B. C. R. Chimie. 7, 1165–1172 (2004)

    Google Scholar 

  15. Jafar,M., Sengupta,P. Achary,S.N.: Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)–Sm2Ti2O7 (pyrochlore) system. J. Eur, Ceram, Soc. 34, 4373–4381(2014).

  16. Sun, S.K., Martin, C.: Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition. J. Nucl. Mater. 500, 11–14 (2018)

    Article  Google Scholar 

  17. Kong, L.G., Wei, T., Zhang, Y.J., Karatchevtseva, I.: Phase evolution and microstructure analysis of CaZrTi2O7 zirconolite in glass. Ceram. Int. 44, 6285–6292 (2018)

    Article  CAS  Google Scholar 

  18. Kong, L.G., Karatchevtseva, I., Zhang, Y.J., Wei, T.: The incorporation of Nd or Ce in CaZrTi2O7 zirconolite: Ceramic versus glass-ceramic. J. Nucl. Mater. 543, 152583 (2021)

    Article  CAS  Google Scholar 

  19. Tu, H., Duan, T., Ding, T., Lu, X.R., Tang, Y., Li, Y.: Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave. Mater. Lett. 131, 171–173 (2014)

    Article  CAS  Google Scholar 

  20. Nasdala, L., Hanchar, J.M., Kronz, A., Whitehouse, M.J.: Long-term stability of alpha particle damage in natural zircon. Chem. Geol. 220, 83–103 (2005)

    Article  CAS  Google Scholar 

  21. Du, J., Devanathan, R., Corrales, L.R., Weber, W.J.: First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. Comput. Theor. Chem. 987, 62–7 (2012)

    Article  CAS  Google Scholar 

  22. Ding, Y., Lu, X., Dan, H.: Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides. Ceram. Int. 41, 10044–10050 (2015)

    Article  CAS  Google Scholar 

  23. Li, J.J., Xian, Q., Chen, Z.Y., Zhang, X.R.: High-efficiency preparation of zircon ceramics using borosilicate glass as sintering additive. Ceram.Int. 48, 22547–22556 (2022)

    Google Scholar 

  24. Xiong,Y.W., Li, J.J., Zhao,D.D., Dan, H., Ding, Y.: High capacity synergistic immobilization of simulated trivalent actinides by zirconia/zircon multiphase ceramics. Ceram.Int.in press.

  25. Flowers, R.M., Shuster, D.L.: Apatite (U-Th)/ He thermochronometry using a radiation damage accumulation and annealing model. Comp.Mater.SC. 73, 2347–2365 (2009)

    CAS  Google Scholar 

  26. Yuan, Z.H., Li, S.C., Liu, J.C., Kong, X.G., Gao, T.: Structural, electronic, dynamical and thermodynamic properties of Ca10(PO4)6(OH)2 and Sr10(PO4)6(OH)2: First-principles study. Int. J. Hydrogen. Energ. 43, 13639–13648 (2018)

    Article  CAS  Google Scholar 

  27. Das, P., Pathak, N., Modak, P., Modak, B.: Multifunctional Ca10(PO4)6F2 as a host for radioactive waste immobilization: Am3+/Eu3+ ions distribution, phosphor characteristics and radiation induced changes. J. Hazard. Mater. 411, 125025 (2021)

    Article  CAS  Google Scholar 

  28. Zhou, J.R., Kirk, M., Baldo, P., Lu, F.Y.: Radiation stability of nanostructured hydroxyapatite Ca10(PO4)6(OH)2 under ion irradiations. J. Nucl. Mater. 557, 153271 (2021)

    Article  CAS  Google Scholar 

  29. Teng, Y., Wu, L., Ren, X., Li, Y., Wang, S.: Synthesis and chemical durability of U-doped sphene ceramics. J. Nucl. Mater. 444, 270–273 (2014)

    Article  CAS  Google Scholar 

  30. Teng, Y.C., Zhao, W., Ren, X.T., Li, Y.X., Wu, L.: The Preparation and Leaching Performance of Sphene Synroc Form Doped Uranium. Radiation Protection. 32, 72–75 (2012)

    CAS  Google Scholar 

  31. Phase evolution of sphene based ceramics during annealing: Maletaškić, J., Matović, Stanković, B., N. Energy Procedia. 131, 407–412 (2017)

    Google Scholar 

  32. Asuvathraman, R., Joseph, K., Madhavan, R.R.: A versatile monazite–IPG glass–ceramic waste form with simulated HLW: synthesis and characterization. J. Ceram. Soc. 35, 4233–4239 (2015)

    Article  CAS  Google Scholar 

  33. Heuser, J., Bukaemski, A.A., Neumeier, S.: Raman and infrared spectroscopy of monazite-type ceramics used for nuclear waste conditioning. Prog. Nucl. Energ. 72, 149–155 (2014)

    Article  CAS  Google Scholar 

  34. Lu, F.Y.: Size dependence of radiation-induced amorphization and recrystallization of synthetic nanostructured CePO4 monazite. Acta Mater. 61, 2984–2992 (2013)

    Article  CAS  Google Scholar 

  35. Ewing, R.C.: Ceramic matrices for plutonium disposition. Prog. Nucl. Energ. 49, 635–643 (2007)

    Article  CAS  Google Scholar 

  36. Jia, Y.Q., Marks, N.A., Bosbach, D., Kowalski, P.M.: Elastic and thermal parameters of lanthanide-orthophosphate (LnPO4) ceramics from atomistic simulations. J. Ceram. Soc. 39, 4264–4274 (2019)

    Article  Google Scholar 

  37. Zhao, X.F., Li, Y.X., Yang, X.Y., Wu, L., Wang, L.L., Zhang, T.M.: The structure properties, defect stability and excess properties in Am-doped LnPO4 (Ln = La, Ce, Nd, Sm, Eu, Gd) monazites. J. Alloy. Compd. 806, 113–119 (2019)

    Article  CAS  Google Scholar 

  38. Weber, W.J., Ewing, G.R.C.: Plutonium immobilization and radiation effects. Sci. 289, 2051–2052 (2000)

    Article  CAS  Google Scholar 

  39. Belin, R.C., Valenza, P.J., Raison, P.E.: Synthesis and Rietveld structure refinement of americium pyrochlore Am 2Zr2O7. J. Alloy. Compd. 448, 321–324 (2008)

    Article  CAS  Google Scholar 

  40. Yamamura, H., Nishinoa, H., Kakinumaa, K.: Thermal expansion and solubility limits of plutonium-doped lanthanum zirconates. Solid State Ionics 158, 359–365 (2003)

    Article  CAS  Google Scholar 

  41. Martin, P.M., Belin, R.C., Valenza, P.J.: EXAFS study of the structural phase transition in the americium zirconate pyrochlore. J. Nucl. Mater. 385, 126–130 (2009)

    Article  CAS  Google Scholar 

  42. Ewing, R.C., Weber, W.J., Lian, J.: Nuclear waste disposal—pyrochlore A2B2O7: nuclear waste form for the immobilization of plutonium and minor actinides. J.Appl.Phy. 95, 5949–5969 (2004)

    Article  CAS  Google Scholar 

  43. Deokattey, S., Jahagirdar, P.B., Kumar, V.: Borosilicate glass and Synroc R&D for radioactive waste immobilization: an international perspective. TMS. 55, 48–51 (2003)

    CAS  Google Scholar 

  44. Luo, S.G., Yang, J.W., Zhu, X.Z.: Synroc solidification of actinide wastes. Acta Chim. Sinica 58, 1608–1614 (2000)

    CAS  Google Scholar 

  45. Gong, W.P.: Experimentation and thermodynamic modelling on SrZrO3. Trans. Nonferrous Met. SOC. 17, 739–743 (2007)

    Article  CAS  Google Scholar 

  46. Yang, Y.S., Ning, X.Z., Luo, S.Z., Dong, F.Q., Li, L.F.: Electron irradiation effects of SrZrO3 ceramic for radioactive strontium immobilization. Procedia Environ. Sci. 31, 330–334 (2016)

    Article  Google Scholar 

  47. Santosh, K., Gupta, A., Nimai, P., Ruma, G., Thulasidas, S.K., Natarajan, V.: Probing the oxidation state and coordination geometry of uranium ion in SrZrO3 perovskite. J. Mol. Struct. 1068, 204–209 (2014)

    Article  Google Scholar 

  48. Xie, H., Wang, L.L., Luo, D.L., Yang, Y.S.: Vibrational Spectrum and X-ray diffraction studies of CeZrO4 phase with an ordered arrangement of Ce and Zr ions prepared by graphite reduction. J. Mater. Sci. 49, 3314–3321 (2014)

    Article  CAS  Google Scholar 

  49. Xie, H., Wang, L.L., Luo, D.L., Chen, M.: Vibrational spectrum and XPS contrastive studies on pyrochlore-type oxygen-rich Ce2Zr2O8 and oxygen-defective Nd2Zr2O7 phases. Spectrosc. Spect. Anal. 34, 1–6 (2014)

    Google Scholar 

  50. Xie, H., Wang, L.L., Jiang, K.: The stability study on crystal structure of (La1-yNdy)2Zr2O7 pyrochlore simulated immobilizing 241Am. Atomic. Energy Sci. Technol. 47, 724–729 (2013)

    CAS  Google Scholar 

  51. Li, Z.X., Yin, F.: Automated measurement of Vickers hardness using image segmentation with neural networks. Meas. 186, 110200 (2021)

    Article  Google Scholar 

  52. Feng, Z.Q., Xie, H., Wang, L.L.: Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes. Ceram Int. 14, 16999–17005 (2019)

    Article  Google Scholar 

  53. Xie, H., Wang, L.L., Jiang, K., Mi, G.Y., Long, Y., Deng, C.: Stability study on crystal structure of (La1-yNdy)2Zr2O7 pyrochlore simulated immobilizing 241Am. Atomic Energy Sci. Technol. 5, 724–729 (2013)

    Google Scholar 

  54. Esfahania, M.H., Naji, H., Marjerrison, C.A., Greedan, J., Behzad, M.: Microstructural characterization and phase analysis of new pyrochlore-type mixed metal oxides RESmTi2O7 (RE = Gd, Er) by X-ray powder diffraction using Rietveld refinement method and spectroscopic studies. Ceram. Int. 48, 13651–13658 (2022)

    Article  Google Scholar 

  55. Mandala, B.P., BSathec, A.V.: Order-disorder transition in Nd2-yGdyZr2O7 pyrochlore solid solution: an X-ray diffraction and Raman spectroscopic study. J. Solid. State. Chem. 180, 2643–2648 (2007)

    Article  Google Scholar 

  56. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S., Weber, W.J.: Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. Acta Mater. 289, 188–193 (2001)

    CAS  Google Scholar 

  57. Wang, L.L., Xie, H., Chen, Q.Y.: Synthesis and characterization of thorium-doped Nd2Zr2O7 pyrochlore. J. Inorg. Mater. 30, 81–86 (2015)

    Google Scholar 

  58. Kamishima, O., Hattori, T., Ohta, K., Chiba, Y., Ishigame, M.: Raman scattering of single-crystal SrZrO3. J Phys-Condens Matter. 11, 5355–5365 (1999)

    Article  CAS  Google Scholar 

  59. Yang, J.W., Luo, S.G., Li, B.J., Tang, B.L.: Pyrochlore-rich Synroc for immobilization of actinide. Atomic Energy Sci. Technol. 35, 104–109 (2001)

    Google Scholar 

  60. Feng, J., Xiao, B., Qu, Z.X.: Mechanical properties of rare earth stannate pyrochlores. Appl. Phys. Lett. 99, 201909 (2001)

    Article  Google Scholar 

  61. Lutique, S., Konings, R.J.M., Rondinella, V.V., Somers, J., Wiss, T.: The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel. J. Alloy. Compd. 352, 1–5 (2003)

    Article  CAS  Google Scholar 

  62. Tang, C.H., Zhu, X.Y., Cai, M.Q.: First-principle study of electronic band structure and optical properties of strontium zirconate. J. Nanjing Univ. Aeronaut .Astronaut. 39, 273–276 (2007)

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Sichuan Science and Technology Program (No. 2020YJ0356) and Natural Science Foundation of Sichuan Province (2022NSFSC0252) and the National Natural Science Foundation of China (41502028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1) A series of new (Nd,An)2Zr2O7-SrZrO3 multiphase ceramics containing actinide nuclides and the fission product Sr were synthesized by sol-spray pyrolysis method.

2) (Nd,An)2Zr2O7-SrZrO3 multiphase ceramics has strong adaptability to waste streams, the component of the two phases can change regularly with the content of Sr.

3) The measured density of multiphase ceramics can reach more than 88% of the theoretical density.

4) (Nd,An)2Zr2O7-SrZrO3 multiphase ceramics have high chemical stability, the leaching rates of target Nd, Sr and Zr elements reached ~ 10−5 g·m−2·d−1, ~ 10−3 g·m−2·d−1, and ~ 10−7 g·m−2·d−1 at 90 ℃ and deionized water for 72 days.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Lan, R., Wang, L. et al. Preparation and chemical stability evaluation of new (Nd,An)2Zr2O7-SrZrO3 multiphase ceramics. J Aust Ceram Soc 59, 751–761 (2023). https://doi.org/10.1007/s41779-023-00871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00871-1

Keywords

Navigation