Skip to main content
Log in

Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ceramic matrix containing zirconolite, hollandite, and perovskite phases is proposed as a potential host for HLW immobilization. Hollandite phase principally immobilizes Cs, while perovskite phase mainly immobilizes Sr. In this study, hollandite–perovskite composite ceramics are considered as a specialized waste form for immobilizing the separated Cs and Sr from HLW streams and synthesized by a solid-state reaction method at 1300 °C for 5 h. The phase compositions of the synthesized composites were characterized by XRD and BSE. The XRD results indicated that the as-prepared ceramics are composed of tetragonal hollandite Ba0.8Cs0.4Al2Ti6O16, cubic perovskite SrTiO3, alongside a lesser amount of TiO2. The BSE—EDX results confirm that Cs partitions into the hollandite matrix, while Sr incorporates into perovskite host with homogenous distribution. In addition, aqueous durability testing was carried out using the MCC-1 static leach test method. The normalized release rates of Cs and Sr in HP-3 sample (i.e., 75 wt% Ba0.8Cs0.4Al2Ti6O16 + 25 wt% SrTiO3) were < 10−2 g·m−2·d−1 after 42 days, exhibiting excellent chemical durability. These results indicate that the hollandite–perovskite ceramic matrix could be considered as a customized host matrix for immobilization of the separated Cs and Sr from HLW streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ewing RC, Whittleston RA, Yardley BW (2016) Geological disposal of nuclear waste: a primer. Elements 12:233–237. https://doi.org/10.2113/gselements.12.4.233

    Article  CAS  Google Scholar 

  2. Dhara A, Mishra RK, Shukla R, Valsala TP, Sudarsan V, Tyagi AK, Kaushik CP (2016) A comparative study on the structural aspects of sodium borosilicate glasses and barium borosilicate glasses: effect of Al2O3 addition. J Non Cryst Solids 447:283–289. https://doi.org/10.1016/j.jnoncrysol.2016.04.040

    Article  CAS  Google Scholar 

  3. Goel A, McCloy JS, Pokorny R, Kruger AA (2019) Challenges with vitrification of hanford high-level waste (HLW) to borosilicate glass: an overview. J Non Cryst Solids X 4:100033 (1-19). https://doi.org/10.1016/j.nocx.2019.100033

    Article  CAS  Google Scholar 

  4. Salvatores M, Palmiotti G (2011) Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog Part Nucl Phys 66:144–166. https://doi.org/10.1016/j.ppnp.2010.10.001

    Article  CAS  Google Scholar 

  5. McMaster SA, Ram R, Faris N, Pownceby MI (2018) Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix: a review. J Hazard Mater 360:257–269. https://doi.org/10.1016/j.jhazmat.2018.08.037

    Article  CAS  Google Scholar 

  6. Beswick AJ, Gibb FGF, Travis KP (2014) Deep borehole disposal of nuclear waste: engineering challenges. Proc Inst Civil Eng Energy 167:47–66. https://doi.org/10.1680/ener.13.00016

    Article  Google Scholar 

  7. Ojovan MI, Lee WE (2011) Glassy wasteforms for nuclear waste immobilization. Metall Mater Trans A 42:837–851. https://doi.org/10.1007/s11661-010-0525-7

    Article  CAS  Google Scholar 

  8. Gin S, Jollivet P, Tribet M, Peuget S, Schuller S (2017) Radionuclides containment in nuclear glasses: an overview. Radiochim Acta 105:927–959. https://doi.org/10.1515/ract-2016-2658

    Article  CAS  Google Scholar 

  9. Ringwood AE, Oversby VM, Kesson SE, Sinclair W, Ware N, Hibberson W, Major A (1981) Immobilization of high-level nuclear reactor wastes in synroc: a current appraisal. Nucl Chem Waste Manag 2:287–305. https://doi.org/10.1016/0191-815X(81)90055-3

    Article  CAS  Google Scholar 

  10. Meng C, Li W, Ren C, Zhao J (2020) Structure and chemical durability studies of powellite ceramics Ca1−xLix/2 Gdx/2MoO4 (0 ≤ x ≤ 1) for radioactive waste storage. J Mater Sci 55:2741–2749. https://doi.org/10.1007/s10853-019-04223-y

    Article  CAS  Google Scholar 

  11. Hsieh YH, Rushton MJD, Fossati PCM, Lee WE (2020) Thermal footprint of a geological disposal facility containing EURO-GANEX wasteforms. Prog Nucl Energy 118:103065. https://doi.org/10.1016/j.pnucene.2019.103065

    Article  CAS  Google Scholar 

  12. Wang L, Liang T (2012) Ceramics for high level radioactive waste solidification. J Adv Ceram 1:194–203. https://doi.org/10.1007/s40145-012-0019-8

    Article  CAS  Google Scholar 

  13. Ravikumar R, Gopal B, Jena H (2020) Fabrication, chemical and thermal stability studies of crystalline ceramic wasteform based on oxyapatite phosphate host LaSr4(PO4)3O for high level nuclear waste immobilization. J Hazard Mater 394:122552. https://doi.org/10.1016/j.jhazmat.2020.122552

    Article  CAS  Google Scholar 

  14. Orlova AI, Ojovan MI (2019) Ceramic mineral waste-forms for nuclear waste immobilization. Materials 12:2638. https://doi.org/10.3390/ma12162638

    Article  CAS  Google Scholar 

  15. Stefanovsky SV, Yudintsev SV, Gieré R, Lumpkin GR (2004) Nuclear waste forms. Geol Soc Lond Spec Publ 236:37–63. https://doi.org/10.1144/GSL.SP.2004.236.01.04

    Article  CAS  Google Scholar 

  16. Luo S, Li L, Tang B, Wang D (1998) Synroc immobilization of high level waste (HLW) bearing a high content of sodium. Waste Manag 18:55–59. https://doi.org/10.1016/S0956-053X(97)00019-6

    Article  CAS  Google Scholar 

  17. Newkirk H, Ryerson F, Coles D, Hoenig C, Rozsa R, Rossington C, Bazan F, Tewhey J (1980). Phase equilibria, leaching characteristics and ceramic processing of SYNROC D formulations for US defense wastes (No. UCRL-85483; CONF-801124–45). California Univ, Livermore (USA) Lawrence Livermore National Lab

  18. Hambley MJ, Dumbill S, Maddrell ER, Scales CR (2008) Characterisation of 20 year old 238Pu-doped Synroc C (conference paper). Mater Res Soc Symp Proc 1107:373–380. https://doi.org/10.1557/PROC-1107-373

    Article  Google Scholar 

  19. Chao X, Wang J, Chen J (2012) Solvent extraction of strontium and cesium: a review of recent progress. Solvent Extr Ion Exc 30:623–650. https://doi.org/10.1080/07366299.2012.700579

    Article  CAS  Google Scholar 

  20. Sengupta P, Sanwal J, Mathi P, Mondal JA, Mahadik P, Dudwadkar N, Gandhi PM (2017) Sorption of Cs and Sr radionuclides within natural carbonates. J Radioanal Nucl Chem 312:19–28. https://doi.org/10.1007/s10967-017-5206-1

    Article  CAS  Google Scholar 

  21. Dozol JF, Dozol M, Macias RM (2000) Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes. J Incl Phenom Macro 38:1–22. https://doi.org/10.1023/A:1008145814521

    Article  CAS  Google Scholar 

  22. Mimura H, Akiba K, Igarshi H (1993) Removal of heat-generating nuclides from high-level liquid wastes through mixed zeolite columns. J Nucl Sci Technol 30:239–247. https://doi.org/10.1080/18811248.1993.9734476

    Article  CAS  Google Scholar 

  23. Tumurugoti P, Clark BM, Edwards DJ, Amoroso J, Sundaram SK (2017) Cesium incorporation in hollandite-rich multiphasic ceramic waste forms. J Solid State Chem 246:107–112. https://doi.org/10.1016/j.jssc.2016.11.007

    Article  CAS  Google Scholar 

  24. Xu H, Wu L, Zhu J, Navrotsky A (2015) Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr- substituted barium aluminium titanate hollandites. J Nucl Mater 459:70–76. https://doi.org/10.1016/j.jnucmat.2015.01.014

    Article  CAS  Google Scholar 

  25. Navi NU, Shneck RZ, Shvareva TY, Kimmel G, Zabicky J, Mintz MH, Navrotsky A (2012) Thermochemistry of (CaxSr1-x)TiO3, (BaxSr1-x)TiO3, and (BaxCa1-x)TiO3 perovskite solid solutions. J Am Ceram Soc 95:1717–1726. https://doi.org/10.1111/j.1551-2916.2012.05137.x

    Article  CAS  Google Scholar 

  26. Bailey DJ, Stennett MC, Mason AR, Hyatt NC (2018) Synthesis and characterisation of the hollandite solid solution Ba1.2-xCsxFe2.4-xTi5.6+xO16 for partitioning and conditioning of radiocaesium. J Nucl Mater 503:164–170. https://doi.org/10.1016/j.jnucmat.2018.03.005

    Article  CAS  Google Scholar 

  27. Levy MR, Steel BC, Grimes RW (2004) Divalent cation solution in A3+B3+O3 perovskites. Solid State Ionics 175:349–352. https://doi.org/10.1016/j.ssi.2004.02.072

    Article  CAS  Google Scholar 

  28. Maddrell E (2013) Hot isostatically pressed waste forms for future nuclear fuel cycles. Chem Eng Res Des 91:735–741. https://doi.org/10.1016/j.cherd.2012.11.004

    Article  CAS  Google Scholar 

  29. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  30. Strachan DM, Turcotte RP, Barnes BO (1982) MCC-1: a standard leach test for nuclear waste forms. Nucl Technol 56:306–312. https://doi.org/10.13182/NT82-A32859

    Article  CAS  Google Scholar 

  31. Feng T, Li L, Lv Z, Li B, Zhang Y, Li G (2019) Temperature-dependent electrical transport behavior and structural evolution in hollandite-type titanium-based oxide. J Am Ceram Soc 102:6741–6750. https://doi.org/10.1111/jace.16520

    Article  CAS  Google Scholar 

  32. Wang X, Ma J, Lu X, Fang Z, Li L, Li L, Yang Y (2020) Investigations on the structural evolution and aqueous durability of [CsxBay][Fe3+2y+xTi4+8-2y-x]O16 ceramics for radioactive cesium storage. J Solid State Chem 288:121457. https://doi.org/10.1016/j.jssc.2020.121457

    Article  CAS  Google Scholar 

  33. Luxová J, Šulcová P, Trojan M (2008) Study of perovskite compounds. J Therm Anal Calorim 93:823–827. https://doi.org/10.1007/s10973-008-9329-z

    Article  Google Scholar 

  34. Grote R, Zhao M, Shuller-Nickles L, Amoroso J, Gong W, Lilova K, Brinkman KS (2019) Compositional control of tunnel features in hollandite-based ceramics: structure and stability of (Ba, Cs)1.33(Zn, Ti)8O16. J Mater Sci 54:1112–1125. https://doi.org/10.1007/s10853-018-2904-1

    Article  CAS  Google Scholar 

  35. Grigor’eva LF, Petrov SA, Sinel’shchikova OY, Gusarov VV (2003) Mechanism of the formation of Ba2Ti9O20-based phases in the course of solid-phase interaction in the BaO-TiO2(ZrO2) and Cs2O-BaO-TiO2(ZrO2) systems. Glass Phys Chem 29:188–193. https://doi.org/10.1023/A:1023415327336

    Article  CAS  Google Scholar 

  36. Amoroso JW, Marra J, Dandeneau CS, Brinkman K, Xu Y, Tang M, Maio V, Webb SM, Chiu WKS (2017) Cold crucible induction melter test for crystalline ceramic waste form fabrication: a feasibility assessment. J Nucl Mater 486:283–297. https://doi.org/10.1016/j.jnucmat.2017.01.028

    Article  CAS  Google Scholar 

  37. Zhao MY, Russell P, Amoroso J, Misture S, Utlak S, Besmann T, Nickles LS, Brinkman KS (2020) Exploring the links between crystal chemistry, cesium retention, thermochemistry and chemical durability in single-phase (Ba, Cs)1.33(Fe, Ti)8O16 hollandite. J Mater Sci 55:6401–6416. https://doi.org/10.1007/s10853-020-04447-3

    Article  CAS  Google Scholar 

  38. Amoroso J, Marra J, Conradson SD, Tang M, Brinkman K (2014) Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A = Cr, Fe. Al J Alloy Compd 584:590–599. https://doi.org/10.1016/j.jallcom.2013.09.087

    Article  CAS  Google Scholar 

  39. Xu Y, Wen Y, Grote R, Amoroso J, Nickles LS, Brinkman KS (2016) A-site compositional effects in Ga-doped hollandite materials of the form BaxCsyGa2x+yTi8-2x-yO16: implications for Cs immobilization in crystalline ceramic waste forms. Sci Rep 6:27412. https://doi.org/10.1038/srep27412

    Article  CAS  Google Scholar 

  40. Leinekugel-le-Cocq AY, Deniard P, Jobic S, Cerny R, Bart F, Emerich H (2006) Synthesis and characterization of hollandite-type material intended for the specific containment of radioactive cesium. J Solid State Chem 179:3196–3208. https://doi.org/10.1016/j.jssc.2006.05.047

    Article  CAS  Google Scholar 

  41. Yang Y, Wang X, Luo S, Yang X, Ma J (2019) Stability studies of [CsxBay][(Al3+, Ti3+)2y+xTi4+8-2y-x]O16 ceramics for radioactive caesium immobilization. Ceram Int 45:7865–7870. https://doi.org/10.1016/j.ceramint.2019.01.095

    Article  CAS  Google Scholar 

  42. Bailey DJ, Stennett MC, Hyatt NC (2020) Ba1.2-xCsxM1.2-x/2Ti6.8+x/2O16 (M = Ni, Zn) hollandites for the immobilisation of radiocaesium. MRS Adv 5:55–64. https://doi.org/10.1557/adv.2020.43

    Article  CAS  Google Scholar 

  43. Danelska A, Ulkowska U, Socha RP, Szafran M (2013) Surface properties of nanozirconia and their effect on its rheological behaviour and sinterability. J Eur Ceram Soc 33:1875–1883. https://doi.org/10.1016/j.jeurceramsoc.2013.01.019

    Article  CAS  Google Scholar 

  44. Tang Y, Shih K (2015) Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases. Environ Technol 36:2977–2986. https://doi.org/10.1080/09593330.2014.982715

    Article  CAS  Google Scholar 

  45. Gregg DJ, Farzana R, Dayal P, Holmes R, Triani G (2020) Synroc technology: perspectives and current status. J Am Ceram Soc 103:5424–5441. https://doi.org/10.1111/jace.17322

    Article  CAS  Google Scholar 

  46. Luca V, Cassidy D, Drabarek E, Murray K, Moubaraki B (2005) Cesium extraction from Cs0.8Ba0.4Ti8O16 hollandite nuclear waste form ceramics in nitric acid solutions. J Mater Res 20:1436–1446. https://doi.org/10.1557/JMR.2005.0204

    Article  CAS  Google Scholar 

  47. Kumar SP, Gopal B (2015) Simulated monazite crystalline wasteform La0.4Nd0.1Y0.1Gd0.1Sm0.1Ce0.1Ca0.1(P0.9Mo0.1O4): synthesis, phase stability and chemical durability study. J Nucl Mater 458:224–232. https://doi.org/10.1016/j.jnucmat.2014.12.081

    Article  CAS  Google Scholar 

  48. Li WQ, Ding XG, Meng C, Ren CR, Wu HT, Yang H (2018) Phase structure evolution and chemical durability studies of Gd1-xYbxPO4 ceramics for immobilization of minor actinides. J Mater Sci 53:6366–6377. https://doi.org/10.1007/s10853-018-2031-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 41574100, 11705152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Fang, Z., Yang, X. et al. Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium. J Mater Sci 56, 9644–9654 (2021). https://doi.org/10.1007/s10853-021-05886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05886-2

Navigation