Skip to main content
Log in

Structural and physical properties of Ce1-xKxMoO3 for x = 0.0, 0.2, and 0.4 prepared by sol–gel method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The perovskite Ce1-xKxMoO3, where x = 0.0, 0.2, and 0.4, was prepared using sol–gel technique. Samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry DSC, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, impedance spectroscopy UV–VIS, diffuse reflectance spectroscopic, and photoluminescence (PL). Besides, the XRD and Raman spectroscopy revealed an orthorhombic phase with a Pnma space group for Ce1-xKxMoO3 samples. XPS analysis proved the existence of Mo3+ and Mo4+ ions. On the other hand, Raman spectroscopy has particularly shown the existence of the B1g mode associated to the MoO6 octahedron. And the DSC curves mark the absence of inflections which qualitatively shows the thermal stability of Ce1-xKxMoO3. Moreover, impedance spectroscopy confirmed that DC conductivity can be justified by the Arrhenius law at 475–600 K temperature range; the activation energy (≈0.314 eV) decreased with the potassium amount and by Mott’s VRH model for T < 445 K. In addition, the density’s greatest value of Fermi states, N(EF) values 1.07 1023 eV−1 cm−3, and a low relaxation time τrel≈0.5 μs were obtained with CKMO04 sample. In the end, the Tauc curves revealed that the bandgap decreased from 3.10 to 2.77 eV with K+ amount; the PL measurements exhibited intense emission of visible and near-infrared light under UV light excitation. In conclusion, all results found allow Ce1-xKxMoO3 to be too useful in the field of optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

I declare that all data are available.

References

  1. Dyakonov, V., Bukhanko, F., Kamenev, V., Zubov, E., Baran, S., Jaworska-Gołąb, T., Szytuła, A., Wawrzyńska, E., Penc, B., Duraj, R., Stüsser, N., Arciszewska, M., Dobrowolski, W., Dyakonov, K., Pientosa, J., Manus, O., Nabialek, A., Aleshkevych, P., Puzniak, R., Wisniewski, A., Zuberek, R., Szymczak, H.: Structural and magnetic properties of La1−xPrxMnO3+δ 0≤x≤10. Phys. REV. B. 74(2), 024418 (2006)

    Article  Google Scholar 

  2. Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J.J., Zhu, K.: Stabilizing hybrid perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys Chem. Mater. 28, 284–292 (2015)

    Google Scholar 

  3. Liu, C., Sun, J., Tan, W.L., Lu, J., Gengenbach, T.R., McNeill, C.R., Ge, Z., Cheng, Y., Bach, U.: Alkali cation doping for improving the structural stability of 2D perovskite in 3D/2D PSCs. Nano Lett. 20, 1240–1251 (2020)

    Article  CAS  Google Scholar 

  4. Li, C., Wang, A., Xie, L., Deng, X., Liao, K., Yang, J.-a, Li, T., Hao, F.: Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. 7, 24150 (2019)

    Article  CAS  Google Scholar 

  5. Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Cacovich, S., Stavrakas, C., Philippe, B., Richter, J.M., Alsari, M., Booker, E.P., Hutter, E.M., Pearson, A.J., Lilliu, S., Savenije, T.J., Rensmo, H., Divitini, G., Ducati, C., Friend, R.H., Stranks, S.D.: Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nat. 555, 497–501 (2018)

    Article  CAS  Google Scholar 

  6. Bi, C., Zheng, X., Chen, B., Wei, H., Huang, J.: Spontanoues passivation of hybride perovskite by sodium ion from glass substrates, mysterious enhancement of devices efficiency revealed. ACS. Energy. Lett. 2, 1400–1406 (2017)

    Article  CAS  Google Scholar 

  7. Dastidar, S., Hawley, C.J., Dillon, A.D., Gutierrez-Perez, A.D., Spanier, J.E., Fafarman, A.T.: Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 8, 1278–1282 (2017)

    Article  CAS  Google Scholar 

  8. Lee, Y.N., El-Fadli, Z., SapinÄab, F., Martinez-Tamayob, E., CorberaÂn, V.C.: Synthesis and surface characterization of nanometric La1-xKxMnO3+δ particles. Catal. Today. 52, 45–52 (1999)

    Article  Google Scholar 

  9. Kim, H., Zheng, H., Park, J., Kim, D., Kang, C., Jang, J., Kim, D., Yoon, T.: Artificial synaptic characteristics with strong analog memristive switching in a Pt/CeO2/Pt structure. Nanotechnol. 28, 285203 (2017)

    Article  Google Scholar 

  10. Chen, L., Zheng, G., Yao, G., Zhang, P., Dai, S., Jiang, Y., Li, H., Binbin, Yu., Ni, H., Wei, S.: Lead-free perovskite narrow-bandgap oxide semiconductors of rare-earth manganates. ACS. Omega. 5, 8766–8776 (2020)

    Article  CAS  Google Scholar 

  11. Ansari, A.A., Adil, S.F., Alam, M., Ahmad, N., Assal, M.E., Labis, J.P., Alwarthan, A.: Catalytic performance of the Ce-doped LaCoO3 perovskite nanoparticles. Sci. Rep. 10, 15012 (2020)

    Article  CAS  Google Scholar 

  12. Konstantinou, K., Sushko, P.V., Duffy, D.M.: Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations. Phys. Chem. Chem. Phys. 18, 26125–26132 (2016)

    Article  CAS  Google Scholar 

  13. Emery, A.A., Saal, J.E., Kirklin, S., Hegde, V.I., Wolverton, C.: High-throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 28, 5621–6563 (2016)

    Article  CAS  Google Scholar 

  14. Domenichini, B., Aymes, D., Perriat, P., Gillot, B.: Evidence of a hopping mechanism between Mo3+ and Mo4+ octahedral cations in molybdenum spine1 ferrites. Mater. Chem. Phys. 39, 80–84 (1994)

    Article  CAS  Google Scholar 

  15. Dou, B., Lv, G., Wang, C., Hao, Q., Hui, KwanSan: Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia. Chem. Eng. J. 270, 549–556 (2015)

    Article  CAS  Google Scholar 

  16. Thuy, N.T., Minh, D.L.: Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. 2012, 1–6 (2012)

    Article  Google Scholar 

  17. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  CAS  Google Scholar 

  18. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. 32, 751 (1976)

    Google Scholar 

  19. Bartel, C.J., Sutton, C., Goldsmith, B.R., Ouyang, R., Musgrave, C.B., Ghiringhelli, L.M., Scheffler, M.: New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5(2), 0693 (2019)

    Article  Google Scholar 

  20. Huang, Y., Yan, C., Wang, Z., Liao, C., Xu, G.: Variation of structural, magnetic and transport properties in RE07Sr03MnO3 granular perovskites. Solid. State. Commun. 118, 541–546 (2001)

    Article  CAS  Google Scholar 

  21. Moure, A., et al.: Mechanosynthesis of the orthorhombic perovskites ErMn1-xNixO3 (x =0, 0.1) processing and characterization of nanostructured ceramics. Chem. Mater. 22, 2908–2915 (2010)

    Article  CAS  Google Scholar 

  22. Stranger, R., Moran, G., Krausz, E.: Octahedral monomeric molybdenum A magneto-optical study Mo3+ doped in Cs2NaYCl6. Mol. Phys. 60, 11–31 (1990)

    Article  Google Scholar 

  23. Klug, H.P., Alexander, L.E.: Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixture. Anal. Chem. 20, 886–889 (1948)

    Article  Google Scholar 

  24. Pijush, Ch.: Dey, Sumit Sarkar, Ratan Das, X-ray diffraction study of the elastic properties of jagged spherical CdS nanocrystals. Mater. Sci.-Pol. 38, 271–278 (2020)

    Article  Google Scholar 

  25. Karmakar, A., Majumdar, S., Giri, S.: Orthorhombic distortion and novel magnetic phase separation in Pr0.5Eu0.5MnO3. J. Appl. Phys. 110, 063914 (2011)

    Article  Google Scholar 

  26. Haque, F., Wright, M.: Md Arafat Mahmud, Haimang Yi, Dian Wang, Leiping Duan, Cheng Xu, Mushfika Baishakhi Upama, and Ashraf Uddin, Effects of Hydroiodic acid concentration on the properties of CsPbI 3 perovskite solar cells. ACS. Omega. 3, 11937–11944 (2018)

    Article  CAS  Google Scholar 

  27. Modi, A., Thakur, R., Thakur, R., Gaur, N.K., Kaurav, N., Okram, G.S.: Structural properties of chromium doped gadolinium manganites. Int. J. Modern. Phys. 22, 511–516 (2013)

    CAS  Google Scholar 

  28. Wang, H., Zuo, R., Jian, Fu., Liu, Yi.: Sol–gel derived (Li, Ta, Sb) modified sodium potassium niobate ceramics: processing and piezoelectric properties. J. Alloy. Compd. 509, 936–941 (2011)

    Article  CAS  Google Scholar 

  29. Paunovi´c, P., Popovski, O., Dimitrov, A., Slavkov, D., Lefterova, E., Hadˇzi Jordanov, S.: Study of structural and electrochemical characteristics of Co-based hypo–hyper d-electrocatalysts for hydrogen evolution. Electrochim. Acta 52(14), 4640–4648 (2007)

    Article  Google Scholar 

  30. Beche, E., Charvin, P., Perarnau, D.: St ´ephane Abanades and Gilles Flamant, Ce3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008)

    Article  CAS  Google Scholar 

  31. Mannepalli, V.R.: MM Saj Mohan, R Ranjith, Tailoring the bandgap and magnetic properties by bismuth substitution in neodymium chromite. Bull. Mater. Sci. 40, 1503e1511 (2017)

    Article  Google Scholar 

  32. Chen, D., et al.: Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. J. Mater. Chem. 21(25), 9332–42 (2011)

    Article  CAS  Google Scholar 

  33. Diaz-Droguett, D.E., El Far, R., Fuenzalida, V.M., Cabrera, A.L.: In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2. Mater. Chem. Phys. 134(2–3), 631–638 (2012)

    Article  CAS  Google Scholar 

  34. Dieterle, M., Weinberg, G., Mestl, G.: Raman spectroscopy of molybdenum oxides Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002)

    Article  CAS  Google Scholar 

  35. Hangchun, Hu., Wachs, I.E.: Surface structures of supported molybdenum oxide catalysts: characterization by Raman and Mo L3-Edge XANES. J. Phys. Chem. 99, 10897–10910 (1995)

    Article  Google Scholar 

  36. Joya, M.R., Alfonso, J.E., Moreno, L.C.: Photoluminescence and Raman studies of α -MoO3 doped with erbium and neodymium, Curèrent. Sci. 116, 1690–1695 (2019)

    CAS  Google Scholar 

  37. Franklin, D.: Hardcastle and Israel E Wachs, Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy. J. Raman. Spectros. 21, 683–691 (1990)

    Article  Google Scholar 

  38. Christiansen, T.L., Emil, T. S., Kovyakh, K.A., Morten, L.: Röderen,c Martin Høj,Tom Vosch and Kirsten M. O. Jensen, Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster. 1,148–158 (2020)

  39. Avisar, D., Livneh, T.: The Raman-scattering of A-type Ce2O3. Vib.. Spectrosc. 86, 14–16 (2016)

    Article  CAS  Google Scholar 

  40. Philip, D., Aruldhas, G., Ramakrishnan, V.: Infrared and Raman spectra of aquamolybdenum VI oxide hydrate (MoO3.2H2O). J. Phys. 30, 129–133 (1988)

    CAS  Google Scholar 

  41. Jonscher, A.K.: “The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys. Status. Solidi. 32, 665676 (1975)

    Article  Google Scholar 

  42. Prasad, K., Lily, K., Kumari, K.P., Chandra, K.L., Yadav, S.: Sen, Electrical properties of a lead-free perovskite ceramic:(Na05Sb0.5)TiO3. Appl. Phys. A. 88, 377–383 (2007)

    Article  CAS  Google Scholar 

  43. Ranjan, R., Kumar, N., Behera, B., Choudhary, R.N.P.: Investigations of electrical impedance and modulus properties of Pb1-xSmx (Zr0.45Ti0.55)1–x/4 O3 ceramics. Adv. Mat. Lett. 5, 138–142 (2014)

    Article  CAS  Google Scholar 

  44. Cheng, Q., Chen, Z.: The cause analysis of the incomplete semi-circle observed in high frequency region of EIS obtained from TEL-covered pure copper. Int. J. Electrochem. Sci. 8, 8282–8290 (2013)

    CAS  Google Scholar 

  45. Debbebi, I.S., Megdiche-Borchani, S., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A.: Study of complex impedance spectroscopic properties of La0.7-xDyxSr03MnO.3 perovskite oxides. R. Soc. Open. Sci. 5(11), 172201 (2018)

    Article  CAS  Google Scholar 

  46. Balasubramani, V., Chandraleka, S., Subba Rao, T., Sasikumar, R., Kuppusamy, M.R., Sridhar, T.M.: Review—Recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides. J. Electrochem. Soc. 167(3), 037572 (2020)

    Article  CAS  Google Scholar 

  47. Zainuddin, Z., Shaari, A.H.: Structural and electrical transport properties of La0.67Ba0.33Mn1-yTiyO3 ceramics. Adv. Mater. Res. 501, 86–90 (2012)

    Article  CAS  Google Scholar 

  48. Bai, L., Zhang, Y., Zhang, L., Zhang, Y., Sun, Li., Ji, N., Li, X., Haochen Si, Yu., Zhang, H.H.: Jahn-Teller distortions in molybdenum oxides: an achievement in exploringhigh rate supercapacitor applications and robust photocatalytic potential. Nano. Energy. 53, 982 (2018)

    Article  CAS  Google Scholar 

  49. Medarde, M., Mesot, J., Lacorre, P., Rosenkranz, S., Fischer, P., Gobrecht, K.: Highpressure neutron-diffraction study of the metallization process in PrNiO3. Phys. Rev. B 52, 9248–9258 (1995)

    Article  CAS  Google Scholar 

  50. Böttger, H., Bryksin, V.V.: Hopping conductivity in ordered and disordered solids (II). Phys. Atat. Ssol. (b) 78, 415–451 (1976)

    Article  Google Scholar 

  51. Zakhvalinskii, V.S., Laiho, R., Lisunov, K.G., Lähderanta, E., Petrenko, P.A., Stepanov, Yu.P., Stamov, V.N., Shubnikov, M.L., Khokhulin, A.V.: Variable-range hopping conduction in LaMnO3+δ. Phys. Solid. State. 49, 918–924 (2007)

    Article  CAS  Google Scholar 

  52. Silveira, L.G.D., Dias, G.S., Cotica, L.F., Eiras, J.A., Garcia, D., Sampaio, J.A., Yokaichiya, F., Santos, I.A.: Charge carriers and small-polaron migration as the origin of intrinsic dielectric anomalies in multiferroic TbMnO3 polycrystals. J. Phys. Condens. Matter 25, 475401 (2013)

    Article  CAS  Google Scholar 

  53. Karmakar, A., Majumdar, S., Giri, S.: Polaron relaxation and hopping conductivity in LaMn1−x FexO3. Phys. Rev. B 79, 094406 (2009)

    Article  Google Scholar 

  54. La Macchia, G., Li Manni, G., Todorova, T.K., Brynda, M., Aquilante, F., Roos, B.O., Gagliardi, L.: G Li Manni, TK Todorova, M Brynda, F Aquilante, BO Roos, L Gagliardi, On the analysis of the Cr-Cr multiple bond in several classes of dichromium compounds. Inorg. Chem. 49, 5216–5222 (2010)

    Article  Google Scholar 

  55. Chou, C.Y., Kaurav, N., Kuo, Y.K., Kuo, D.H.: Electrical properties of A/B –site substituted Ni-deficient La(NiFe03)O3 perovskites with A=Ag+ Pb2+ Nd+3 and B=Mn3+ Ga3+. J. Appl. Phys. 103(9), 093716 (2008)

    Article  Google Scholar 

  56. Badapanda, T., Harichandan, R., Kumar, T.B., Mishra, S.R., Anwar, S.: Dielecric relaxation and conduction mechanism ofdysprosium doped barium bismuth titanate Aurivilliusceramics. J. Mater. Sci: Mater. Electron. 28, 2775–2787 (2017)

    CAS  Google Scholar 

  57. Ben Taher, Y., Oueslati, A., Maaloul, N.K., Khirouni, K., Gargouri, M.: Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. Mater. Sci. Process. 120, 1537–43 (2015)

    Article  CAS  Google Scholar 

  58. Srinivas, K., Sarah, P., Suryanarayana, S.V.: Impedancespectroscopy study of polycrystalline Bi6Fe2Ti3O18. Bull. Mater. Sci. 2, 247–53 (2003)

    Article  Google Scholar 

  59. Aneesh Kumar, K.S., Bhowmik, R.N.: Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni15Fe15O4 spinel ferrite prepared by chemical reaction at different pH values. Mater. Res. Express. 4(12), 126105 (2017)

    Article  Google Scholar 

  60. James, A.R., Srinivas, K.: Low temperature and impedance spectroscopy of PMNPT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)

    Article  CAS  Google Scholar 

  61. Jin, F., Li, J., Wang, Y., Chu, X., Mingze, Xu., Zhai, Y., Zhang, Ye., Fang, W., Zou, P., He, T.: Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature Solid-oxide fuel cell. Ceram. Int. 44, 22489–22496 (2018)

    Article  CAS  Google Scholar 

  62. Chithambaram, V., Das, S.J., Krishnan, S.: “ Synthesis, optical and dielectric studies on novel semi organic nonlinear optical crystal by solution growth technique. J. Alloys. Compd. 509, 4543–4546 (2011)

    Article  CAS  Google Scholar 

  63. Ncib, W.: A Ben Jazia Kharrat, MA Wederni, N Chniba-Boudjada, K Khirouni, W Boujelben, Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa033Mn0.85Fe0.15O3 (x¼0.0, 0.1) manganites. J. Alloys. Compd. 768, 249–262 (2018)

    Article  CAS  Google Scholar 

  64. Khasa, S., Singh, P., Sanghi, S., Singh, N., Agarwal, A.: Science and technology structural analysis and dielectric characterization of Aurivillius type CaSr-Bi2Nb2O9 ceramics. J. Integr. Sci. Technol. At. J. Integr. 2, 13–21 (2014)

    Google Scholar 

  65. Chaouchi, A., Kennour, S.: Impedance spectroscopy studies on lead free (Ba0.85Ca0.15) (Ti0.9 Zr0.1)O3 ceramics. Process. Appl. Ceram. 6, 201–207 (2012)

    Article  CAS  Google Scholar 

  66. Dutta, A., Sinha, T.P.: Dielectric relaxation in perovskite BaAl1/2Nb1/2O3. J. Phys. Chem. Solid. 67, 1484–1491 (2006)

    Article  CAS  Google Scholar 

  67. Das, P.R., Biswal, L., Behera, B., Choudhary, R.N.P.: Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X = Nb, Ta) ferroelectric ceramics. Mater. Res. Bull. 44, 1214–1218 (2009)

    Article  CAS  Google Scholar 

  68. Li, M.-D., Tang, X.-G., Zeng, S.-M., Jiang, Y.-P., Liu, Q.-X., Zhang, T.-F., Li, W.-H.: Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J. Materiomics. 4, 194–201 (2018)

    Article  Google Scholar 

  69. Raut, R.R., Ambhore, N.V., Ulhe, C.S.: Synthesis, structural and dielectric properties of La doped 95BiFeO3-5BaTiO3 ceramic. IJIRSET. 7, 58–63 (2018)

    Google Scholar 

  70. Zhang, T.F., Tang, X.G., Liu, Q.X., Lu, S.G., Jiang, Y.P., Huang, X.X., Zhou, Q.F,.: Oxygen-vacancy-related relaxation and conduction behavior in (Pb1-xBax)(Zr0.95Ti0.05)O3 ceramics, AIP ADVANCES 4 107141 (2014)

  71. Jancar, B., Suvorov, D., Valant, M., Drazic, G.: Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391–1400 (2003)

    Article  CAS  Google Scholar 

  72. Hasnaouia, S., Sdiri, N.: Karima Horchani-Naifer, Mokhtar Férid, Study of the physical properties of 90 P2O5+ xV2O5(10–x) BaO(0≤x≤3%) glasses. Sensors. Actuators. A. 319, 112540 (2021)

    Article  Google Scholar 

  73. Das, R., Choudhary, R.N.: Structural and electrical properties of double perovskite: (BaSr)FeMoO6. Physica B: Condensed. Matter. 603, 412522 (2021)

    Article  CAS  Google Scholar 

  74. Anwara, Z., Khan, M.A., Ali, I., Asghar, M., Sher, M., Shajir, I., Sarfraz, M.: M Farook Warsi, Investigation of dielectric behaviour of new Tb3+ doped BiFeO3 nanocrystals synthesized via va micro-emulsion route. J. Ovonic. Res. 10, 265–273 (2014)

    Google Scholar 

  75. Bobe, J.M., Reau, J.M., Senegas, J., Poulain, M.: F ion conductivity and diffusion properties in ZrF4-based fluoride glasses with various NaF concentrations (0≤ xNaF ≤ 045). Solid. State. Ionics. 82, 39–52 (1995)

    Article  CAS  Google Scholar 

  76. Bergman, R.: General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000)

    Article  CAS  Google Scholar 

  77. Melnikov, P., Leon, C., Santamaria, J., Sanchez-Quesada, F.: Lanthanum–lithium–sodium double chromates as ionic conductors. J. Alloy. Compd. 250, 520–523 (1997)

    Article  CAS  Google Scholar 

  78. Daniels, L.M., Kashtiban, R.J., Kepaptsoglou, D., Ramasse, Q.M., Sloan, J., Walton, R.I.: Local A-site layering in rare-earth orthochromite perovskites by solution synthesis. Chem. Eur J. 22, 18362–18367 (2016)

    Article  CAS  Google Scholar 

  79. Wilson, J.N., Frost, J.M., Wallace, S.K., Walsh, A.: Dielectric and ferroic properties of metal halide perovskites. APL. Mater.. 7, 010901 (2019)

    Article  Google Scholar 

  80. Jia, T., Zeng, Z., Lin, H.Q., Duan, Y., Ohodnicki, P.: First-principles study on the electronic, optical and thermodynamic properties of ABO3 (A = La, Sr B =Fe, Co) perovskites. RSC. Adv. 7(62), 38798–804 (2017)

    Article  CAS  Google Scholar 

  81. Kim, K.H., Jung, J.H., Noh, T.W.: Polaron absorption in a perovskite manganite La0.7Ca0.3MnO3. Phys. Rev. Lett. 81(7), 1517 (1998)

    Article  CAS  Google Scholar 

  82. Yakuphanoglu, F., Sekerci, M., Ozturk, O.F.: The determination of the optical constant of Cu(ll) compound having 1-chloro-2, 3- o -cyclohexylidinepropane thin film. Opt. Commun. 239, 275–280 (2004)

    Article  CAS  Google Scholar 

  83. Kumar, S., Thakur, N.,: Effect of alkali metal (Na, K) ion ratio on structural, optical and photoluminescence properties of K0.5Na0.5NbO3 ceramics prepared by sol–gel technique. Bull. Mater. Sci. 1—4 (2021)

  84. Im, J.H., Chung, J., Kim, S.J., Park, N.G.: Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3) PbI3. Nanoscale. Res. Lett. 7, 353 (2012)

    Article  Google Scholar 

  85. Arima, T., Tokura, Y., Torrance, J.B.: Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006–17009 (1993)

    Article  CAS  Google Scholar 

  86. Marzouk, S., Abo-Naf, S.M., Hammam, M., El-Gendy, Y.A., Hassan, N.S.: FTIR spectra and optical properties of molybdenum phosphate glasses. J. Appl. Sci. Res. 7, 935–946 (2011)

    CAS  Google Scholar 

  87. Inzani, K., Nematollahi, M., Vullum-Bruer, F., Grande, T., Reenaas, T.W., Selbach, S.M.: Electronic properties of reduced molybdenum oxides. Phys. Chem. Chem. Phys. 19, 9232 (2017)

    Article  CAS  Google Scholar 

  88. Huang, P.R., He, Y., Cao, C., Lu, Z.H.: Impact of lattice distortion and electron doping on a-MoO3 electronic structure. Sci. Rep. 4(1), 7131 (2014)

    Article  CAS  Google Scholar 

  89. He, C.J., et al.: Orientation effects on the bandgap and dispersion behavior of0.91Pb(Zn 1/3Nb 2/3)O3–009PbTiO3 single crystals. Chin. Phys. B 21(5), 054207 (2012)

    Article  Google Scholar 

  90. Haron, W., Wisitsoraat, A., Sirimahachai, U., Wongnawa, S.: A simple synthesis and characterization of LaMO3 (M=Al Co, Fe, Gd) perovskites via chemical co-precipitation method, Songklanakarin. J. Sci. Technol. 40, 484–491 (2018)

    CAS  Google Scholar 

  91. Prasanna, R., Gold-Parker, A., Leijtens, T., Conings, B., Babayigit, A., Boyen, H.G., Toney, M.F., McGehee, M.D.: Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017)

    Article  CAS  Google Scholar 

  92. Wahab, H.: Effect of A – site disorder on the bonding mechanism and optical properties of Smx(Al2O3)1–x system. Phys. B Condens. Matter. 481, 24–31 (2016)

    Article  CAS  Google Scholar 

  93. Muhammed Shafi, P., Chandra Bose, A.: Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5(5), 057137 (2015)

    Article  Google Scholar 

  94. Xinyu Shen, Yu., Zhang, S.V., Kershaw, T.L., Wang, C., Zhang, X., Wang, W., Li, D., Wang, Y., Min, Lu., Zhang, L., Sun, C., Zhao, D., Qin, G., Xue, B., Yu, W.W., Rogach, A.L.: Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano. Lett. 19, 1552–1559 (2019)

    Article  Google Scholar 

  95. Feng, L., Yan, H., Zhang, R., Liu, J.: Growth of S-doped MoO2 nanosheets with a controlled bandgap by chemical vapour deposition. J. Vac. Sci. Technol., A 36, 05G507 (2018)

    Article  Google Scholar 

  96. Kepenekian, M., Molard, Y., Costuas, K., Lemoine, P., Gautier, R., et al.: Red-NIR luminescence of Mo 6 monolayered assembly directly anchored on Au(001). Materials Horizons, cRoyal Society of Chemistry 6, 1828–1833 (2019)

    Article  CAS  Google Scholar 

  97. Peters, T.E.,  Baglio, J.A.: “Luminescence and structural property of thiogallate phosphors Ce3+ and Eu2+ - activated phosphors” Part-1. J. Electrochemn. Soc. Solid. State. Sci .Techno. 119 230 (1972)

  98. Ramanantoanina, H., Urland, W., García-Fuente, A., Cimpoesu, F., Daul, C.: Calculation of the 4f1→ 4f05d1 transitions in Ce3+-doped systems by ligand field density functional theory. Chem. Phys. Lett. 588, 260–266 (2013)

    Article  CAS  Google Scholar 

  99. Herrmann, A., Othman, H.A., Assadi, A.A., Tiegel, M.: Stefan Kuhn1 and Christian Rüssel Spectroscopic properties of cerium-doped aluminosilicate glasses. Opt. Mater. Express. 5, 676–925 (2015)

    Article  Google Scholar 

  100. Taheri, M., Kremer, R.K., Trudel, S., Razavi, F.S.: Exchange bias effect and glassy-like behavior of EuCrO3 and CeCrO3 nano-powders. J. Appl. Phys. 118, 124306 (2015)

    Article  Google Scholar 

  101. Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., Fairley, N.: Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl. Surf. Sci. 326, 151–161 (2015)

    Article  CAS  Google Scholar 

  102. Ji, W., Shen, R., Yang, R., Yu, G., Guo, X., Peng, L., Ding, W.: Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2, 699–704 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We confirm that all the authors have had material input into the submission.

Corresponding author

Correspondence to Nasr Sdiri.

Ethics declarations

Conflict of interest

In our paper, we have provided a new perovskite with electronic conduction, high electrical conductivity, good dielectric properties, good optics refractive index, and a good chemical and thermal stability.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghrissi-Hamrouni, W., Sdiri, N., Horchani-Naifer, K. et al. Structural and physical properties of Ce1-xKxMoO3 for x = 0.0, 0.2, and 0.4 prepared by sol–gel method. J Aust Ceram Soc 59, 685–705 (2023). https://doi.org/10.1007/s41779-023-00866-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00866-y

Keywords

Navigation