Skip to main content
Log in

Synthesis and thermal transformations of layered double hydroxide containing samarium

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nickel-aluminum layered double hydroxide with aluminum ions partially substituted by samarium ones was successfully synthesized via coprecipitation followed by hydrothermal treatment. X-ray diffraction data showed that the obtained sample is single-phase material with hydrotalcite-like structure. The presence of samarium in the sample was confirmed by elemental analysis. Electron microscopy demonstrated that the compound consists of very small plate-like particles with a shape similar to hexagonal. The study of thermal transformations of the material revealed that it decomposed upon heating above 300 °C with the formation of mixed oxide, and spinel-type oxide was formed while the heating temperature was increased up to 1000 °C. The rehydration ability of the sample was rather limited: no reconstruction of layered structure took place after mixed oxide was formed. The “memory effect” was observed only after heating the hydroxide at a temperature not higher than 300 °C. The thermal properties of samarium-containing samples resemble closely those of nickel-containing hydrotalcites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cavani, F., Trifirò, F., Vaccari, A.: Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173–301 (1991). https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  2. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H., Zhou, C.: Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 53, 139–150 (2011). https://doi.org/10.1016/j.clay.2011.02.007

    Article  CAS  Google Scholar 

  3. Sarfraz, M., Shakir, I.: Recent advances in layered double hydroxides as electrode materials for high-performance electrochemical energy storage devices. J. Energy Storage 13, 103–122 (2017). https://doi.org/10.1016/j.est.2017.06.011

    Article  Google Scholar 

  4. Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018). https://doi.org/10.1016/j.clay.2017.12.021

    Article  CAS  Google Scholar 

  5. Zümreoglu-Karan, B., Ay, A.N.: Layered double hydroxides—multifunctional nanomaterials. Chem. Pap. 66, 1–10 (2012). https://doi.org/10.2478/s11696-011-0100-8

    Article  CAS  Google Scholar 

  6. Wei, M., Xu, X., Wang, X., Li, F., Zhang, H., Lu, Y., Pu, M., Evans, D.G., Duan, X.: Study on the photochromism of Ni–Al layered double hydroxides containing nitrate anions. Eur. J. Inorg. Chem. 2006, 2831–2838 (2006). https://doi.org/10.1002/ejic.200600058

    Article  CAS  Google Scholar 

  7. Takei, T., Miura, A., Kumada, N.: Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs) intercalated with anions with different charge density. J. Asian. Ceram. Soc. 2, 289–296 (2014). https://doi.org/10.1016/j.jascer.2014.06.002

    Article  Google Scholar 

  8. Deng, X., Huang, J., Wan, H., Chen, F., Lin, Y., Xu, X., Ma, R., Sasaki, T.: Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation. J. Energy Chem. 32, 93–104 (2019). https://doi.org/10.1016/j.jechem.2018.07.007

    Article  Google Scholar 

  9. Pérez-Ramírez, J., Ribera, A., Kapteijn, F., Coronado, E., Gómez-García, C.J.: Magnetic properties of Co–Al, Ni–Al, and Mg–Al hydrotalcites and the oxides formed upon their thermal decomposition. J. Mater. Chem. 12, 2370–2375 (2002). https://doi.org/10.1039/B110314H

    Article  Google Scholar 

  10. Abellán, G., Coronado, E., Martí-Gastaldo, C., Waerenborgh, J., Ribera, A.: Interplay between chemical composition and cation ordering in the magnetism of Ni/Fe layered double hydroxides. Inorg. Chem. 52, 10147–10157 (2013). https://doi.org/10.1021/ic401576q

    Article  CAS  Google Scholar 

  11. Coronado, E., Galán-Mascarós, J.R., Martí-Gastaldo, C., Ribera, A., Palacios, E., Castro, M., Burreil, M.: Spontaneous magnetization in Ni-Al and Ni-Fe layered double hydroxides. Inorg. Chem. 47, 9103–9110 (2008). https://doi.org/10.1021/ic801123v

    Article  CAS  Google Scholar 

  12. Liu, X.-M., Zhang, Y.-H., Zhang, X.-G., Fu, S.-Y.: Studies on Me/Al-layered double hydroxides (Me = Ni and Co) as electrode materials for electrochemical capacitors. Electrochim. Acta 49, 3137–3141 (2004). https://doi.org/10.1016/j.electacta.2004.02.028

    Article  CAS  Google Scholar 

  13. Wang, J., Song, Y., Li, Z., Liu, Q., Zhou, J., Jing, X., Zhang, M., Jiang, Z.: In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 24, 6463–6467 (2010). https://doi.org/10.1021/ef101150b

    Article  CAS  Google Scholar 

  14. Wang, W., Zhang, N., Shi, Z., Ye, Z., Gao, Q., Zhi, M., Hong, Z.: of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode. Chem. Eng. J. 338, 55–61 (2018). https://doi.org/10.1016/j.cej.2018.01.024

    Article  CAS  Google Scholar 

  15. Sanati, S., Rezvani, Z.: Co-intercalation of acid Red-27/sodium dodecyl sulfate in a Ce-containing Ni-Al-layered double hydroxide matrix and characterization of its luminescent properties. J. Mol. Liq. 249, 318–325 (2018). https://doi.org/10.1016/j.molliq.2017.10.145

    Article  CAS  Google Scholar 

  16. Bellardita, M., Di Paola, A., Palmisano, L., Parrino, F., Buscarino, G., Amadelli, R.: Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Appl. Catal. B 104, 291–299 (2011). https://doi.org/10.1016/j.apcatb.2011.03.016

    Article  CAS  Google Scholar 

  17. Dillip, G.R., Kumar, P.M., Raju, B.D.P., Dhoble, S.J.: Synthesis and luminescence properties of a novel Na6CaP2O9:Sm3+ phosphor. J. Lumin. 134, 333–338 (2013). https://doi.org/10.1016/j.jlumin.2012.08.025

    Article  CAS  Google Scholar 

  18. Ashwini, K., Pandurangappa, C., Avinash, K., Srinivasan, S., Stefanakos, E.: Synthesis, characterization and photoluminescence studies of samarium doped zinc sulfide nanophosphors. J. Lumin. 221, 117097 (2020). https://doi.org/10.1016/j.jlumin.2020.117097

    Article  CAS  Google Scholar 

  19. Singh, S., Kaur, P., Kumar, V., Tikoo, K.B., Singhal, S.: Traversing the advantageous role of samarium doped spinel nanoferrites for photocatalytic removal of organic pollutants. J. Rare Earths 39, 781–789 (2021). https://doi.org/10.1016/j.jre.2020.12.008

    Article  CAS  Google Scholar 

  20. Smalenskaite, A., Şen, S., Salak, A.N., Ferreira, M.G.S., Beganskiene, A., Kareiva, A.: Sol–gel derived lanthanide-substituted layered double hydroxides Mg3/Al1−xLnx. Acta Phys. Pol. A 133, 884–886 (2018). https://doi.org/10.12693/APhysPolA.133.884

    Article  CAS  Google Scholar 

  21. Mitran, G., Urda, A., Tanchoux, N., Fajula, F., Marcu, I.-C.: Propane oxidative dehydrogenation over Ln-Mg-Al-O catalysts (Ln = Ce, Sm, Dy, Yb). Catal. Lett. 131, 250–257 (2009). https://doi.org/10.1007/s10562-009-0057-1

    Article  CAS  Google Scholar 

  22. Urdă, A., Popescu, I., Cacciaguerra, T., Tanchoux, N., Tichit, D., Marcu, I.-C.: Total oxidation of methane over rare earth cation-containing missed oxides derived from LDH precursors. Appl. Catal., A. 464–465, 20–27 (2013). https://doi.org/10.1016/j.apcata.2013.05.012

    Article  CAS  Google Scholar 

  23. Taherian, Z., Gharahshiran, V.S., Khataee, A., Orooji, Y.: Anti-coking freeze-dried NiMgAl catalysts for dry and steam reforming of methane. J. Ind. Eng. Chem. 103, 187–194 (2021). https://doi.org/10.1016/j.jiec.2021.07.032

    Article  CAS  Google Scholar 

  24. Shen, S., Guo, W., Zhuang, W., Yang, W., Qin, L., Liu, X., Yue, Z.: Effect of Sm-doped Ni-Al layered double hydroxide on electrochemical performance for supercapacitors. J. Phys. Conf. Ser. 2009, 012008 (2021). https://doi.org/10.1088/1742-6596/2009/1/012008

    Article  CAS  Google Scholar 

  25. Kulyukhin, S.A., Krasavina, E.P., Rumer, I.A.: Sorption of 60Co, 90Sr, 90Y and 137Cs from aqueous solutions onto Mg-Ln layered double hydroxides (Ln = Ce, Pr, Sm, Gd). Radiochemistry 55, 569–600 (2013). https://doi.org/10.1134/S1066362213060052

    Article  CAS  Google Scholar 

  26. Golovin, S.N., Yapryntsev, M.N., Ryltsova, I.G., Veligzhanin, A.A., Lebedeva, O.E.: Novel cerium-containing layered double hydroxide. Chem. Pap. 74, 367–370 (2020). https://doi.org/10.1007/s11696-019-00877-9

    Article  CAS  Google Scholar 

  27. Golovin, S. N., Yapryntsev, M. N., Ryl’tsova, I. G., Savilov, S. V., Maslakov, K. I., Lebedeva, O. E.: Synthesis and thermal behavior of Co AlCe layered double hydroxide. Solid State Sci. 111:106498 (2021). https://doi.org/10.1016/j.solidstatesciences.2020.106498

  28. Bugaenko, L.T., Ryabykh, S.M., Bugaenko, A.L.: A nearly complete system of average crystallographic ionic radii and its use for determining ionization potentials. Moscow Univ. Chem. Bull. 63, 303–317 (2008). https://doi.org/10.3103/S0027131408060011

    Article  Google Scholar 

  29. Ramesh, T.N., Jayashree, R.S., Kamath, P.V.: Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide. Clays Clay Miner. 51, 570–576 (2003). https://doi.org/10.1346/CCMN.2003.0510511

    Article  CAS  Google Scholar 

  30. Shivaramaiah, R., Navrotsky, A.: Energetics of order-disorder in layered magnesium aluminum double hydroxides with interlayer carbonate. Inorg. Chem. 54, 3253–3259 (2015). https://doi.org/10.1021/ic502820q

    Article  CAS  Google Scholar 

  31. Sławińsky, W.A., Sjåstad, A.O., Fjellvåg, H.: Stacking faults and polytypes for layered double hydroxides: what can we learn from simulated and experimental X-ray powder diffraction data? Inorg. Chem. 55, 12881–12889 (2016). https://doi.org/10.1021/acs.inorgchem.6b02247

    Article  CAS  Google Scholar 

  32. Wang, L., Lü, Z., Li, F., Duan, X.: Study on the mechanism and kinetics of the thermal decomposition of Ni/Al layered double hydroxide nitrate. Ind. Eng. Chem. Res. 47, 7211–7218 (2008). https://doi.org/10.1021/ie800609c

    Article  CAS  Google Scholar 

  33. Mahjoubi, F.Z., Elhalil, A., Elmoubarki, R., Sadiq, M., Khalidi, A., Cherkaoui, O., Barka, N.: Performance of of Zn-, Mg- and Ni-Al layered double hydroxides in treating an industrial textile wastewater. J. Appl. Surf. Interfaces. 2, 1–11 (2017). https://doi.org/10.48442/IMIST.PRSM/jasi-v2i1-3.10033

    Article  Google Scholar 

  34. Herrero, M., Benito, P., Labajos, F.M., Rives, V.: Stabilization of Co2+ in layered double hydroxides (LDHs) by microwave-assisted ageing. J. Solid State Chem. 180, 873–884 (2007). https://doi.org/10.1016/j.jssc.2006.12.011

    Article  CAS  Google Scholar 

  35. Zhang, Y., Liu, J., Li, Y., Yu, M., Yin, X., Li, S.: Enhancement of active anticorrosion via Ce-doped Zn-Al layered double hydroxides embedded in sol-gel coatings on aluminum alloy. J. Wuhan. Univ. Technol. Mater. Sci. Ed. 32, 1199–1204 (2017). https://doi.org/10.1007/s11595-017-1731-6

    Article  CAS  Google Scholar 

  36. Rey, F., Fornés, V., Rojo, J.M.: Thermal decomposition of hydrotalcites An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc Faraday Trans. 88, 2233–2238 (1992). https://doi.org/10.1039/FT9928802233

    Article  CAS  Google Scholar 

  37. Prevot, V., Caperaa, N., Taviot-Guého, C., Forano, C.: Glycine-assisted hydrothermal synthesis of NiAl-layered double hydroxide nanostructures. Cryst. Growth Des. 9, 3646–3654 (2009). https://doi.org/10.1021/cg900384n

    Article  CAS  Google Scholar 

  38. Vicente, P., Pérez-Bernal, M.E., Ruano-Casero, R.J., Duarte, A., Almeida Paz, F.A., Rocha, J., Rives, V.: Luminescence properties of lanthanide-containing layered double hydroxides. Microporous Mesoporous Mater. 226, 209–220 (2016). https://doi.org/10.1016/j.micromeso.2015.12.036

    Article  CAS  Google Scholar 

  39. Dubey, P., Kaurav, N.: Stoichiometric and nonstoichiometric compounds. In: Tanasescu, S. (ed.) Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides. IntechOpen, London (2019). https://doi.org/10.5772/intechopen.89402

  40. Sato, T., Fujita, H., Endo, T., Shimada, M., Tsunashima, A.: Synthesis of hydrotalcite-like compounds and their physico-chemical properties. React. Solids 5, 216–228 (1988). https://doi.org/10.1016/0168-7336(88)80089-5

    Article  Google Scholar 

Download references

Funding

The reported study was funded by Russian Foundation for Basic Research according to the research project no. 20–33-90178. The work was carried out using the equipment of the Joint Research Center of Belgorod State National Research University «Technology and Materials».

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: OEL; methodology: OEL; investigation: SNG, MNY; writing — original draft: SNG; writing — review and editing: OEL; funding acquisition: OEL; resources: MNY; supervision: OEL; visualization: SNG.

Corresponding author

Correspondence to Sergei N. Golovin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, S.N., Yapryntsev, M.N. & Lebedeva, O.E. Synthesis and thermal transformations of layered double hydroxide containing samarium. J Aust Ceram Soc 58, 1615–1622 (2022). https://doi.org/10.1007/s41779-022-00798-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00798-z

Keywords

Navigation