Skip to main content

Advertisement

Log in

The effect of alpha-lithium aluminate incorporation on the properties of bovine bone-derived hydroxyapatite

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of the present paper was to investigate the effect of alpha-lithium aluminate (α-LiAlO2) incorporation (1, 3, and 5 wt%) on the properties (grain morphology, activation energy for grain growth, decomposition behavior, shrinkage, densification, hardness, fracture toughness, brittleness index, compressive strength, and in vitro bioactivity) of bovine hydroxyapatite (BHA) sintered between 900 and 1300 °C. BHA without α-LiAlO2 incorporation exhibited the shrinkage of 12.02 ± 0.52%, density of 2.86 ± 0.47 g/cm3, relative density of 90.77 ± 1.51%, porosity of 1.12 ± 0.75%, hardness of 4.19 GPa ± 0.31, fracture toughness of 0.99 ± 0.13 MPam1/2, brittleness index of 4.24 ± 0.31 μ−1/2, and compressive strength of 115.75 ± 4.27 MPa, when it was sintered at 1300 °C. It decomposed to beta- and alpha-tricalcium phosphate (β- and α-TCP) as 4.7%, in totally. The activation energy for grain growth of pure BHA was calculated as 77.9 kcal/mol, as 57.61, 59.95, and 71.64 kcal/mol for 1, 3, and 5 wt% α-LiAlO2 incorporated BHAs, respectively. The highest properties for α-LiAlO2 incorporated BHAs were obtained at the sintering temperature of 1200 °C at amount of 5 wt% α-LiAlO2. For this composite, the density of 2.87 g/cm3, fracture toughness of 1.95 ± 0.18 MPam1/2, compressive strength of 218.33 ± 14.02 MPa, and brittleness index of 1.96 ± 0.21 μ−1/2 were obtained. As a result of the in vitro bioactivity test, the bioactivation for this composite became clearly visible in 14 days. The results show that the incorporation of 5 wt% α-LiAlO2 into BHA contributes to increasing the sinterability and properties of BHA without decreasing its bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Niakan, A., Ramesh, S., Naveen, S.V., Mohan, S., Kamarul, T.: Osteogenic priming potential of bovine hydroxyapatite sintered at different temperatures for tissue engineering applications. Mater. Lett. 197, 83–86 (2017)

    CAS  Google Scholar 

  2. Ramesh, S., Loo, Z.Z., Tan, C.Y., Kelvin-Chew, W.J., Ching, Y.C., Tarlochan, F., Chandran, H., Krishnasamy, S., Bang, L.T., Sarhan, A.A.D.: Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram. Int. 44, 10525–10530 (2018)

    CAS  Google Scholar 

  3. Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W., Toque, J.A.: The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 29, 1674–1680 (2009)

    CAS  Google Scholar 

  4. Pazarlioglu, S.S., Gokce, H., Ozyegin, S., Salman, S.: Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite. Biomed. Mater. Eng. 24, 1751–1769 (2014)

    CAS  Google Scholar 

  5. Janus, A.M., Faryna, M., Haberko, K., Rakowska, A., Panz, T.: Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones. Microchim Acta 161, 349–353 (2008)

    CAS  Google Scholar 

  6. Foroutan, R., Peighambardoust, S.J., Hosseini, S.S., Akbari, A., Ramavandi, B.: Hydroxyapatite biomaterial production from chicken (femur and beak) and fish bone waste through a chemical less method for Cd2+ removal from ship building waste water. J Hazard Mater 413, 125428 (2021)

    CAS  Google Scholar 

  7. Barakat, N.A.M., Khalil, K.A., Sheikh, F.A., Omran, A.M., Gaihre, B., Khil, S.M., Kim, H.Y.: Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable HAp. Mater Sci Eng C 28, 1381–1387 (2008)

    CAS  Google Scholar 

  8. Khoo, W., Nor, F.M., Ardhyananta, H., Kurniawan, D.: Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures. Procedia Manuf 2, 196–201 (2015)

    Google Scholar 

  9. Kusrini, E., Sontang, M.: Characterization of x-ray diffraction and electron spin resonance: effects of sintering time and temperature on bovine hydroxyapatite. Radiat Phys Chem 81, 118–125 (2012)

    CAS  Google Scholar 

  10. Pazarlioglu, S., Algan, O., Isikogullari, A.M., Gokce, H.: The effect of lanthanum addition on the microstructure and mechanical properties of Mg-modified hydroxyapatite ceramics. Process Appl Ceram 15(3), 226–237 (2021)

    CAS  Google Scholar 

  11. Salman, S., Gunduz, O., Yilmaz, S., Öveçoğlu, M.L., Snyder, R.L., Agathopoulos, S., Oktar, F.N.: Sintering effect on mechanical properties of composites of natural hydroxyapatites and titanium. Ceram Int 35, 2965–2971 (2009)

    CAS  Google Scholar 

  12. Comín, R., Cid, M.P., Grinschpun, L., Oldani, C., Salvatierra, N.A.: Titanium-hydroxyapatite composites sintered at low temperature for tissue engineering: in vitro cell support and biocompatibility. J Appl Biomater Funct Mater 15(2), 176–183 (2017)

    Google Scholar 

  13. Kim, Y.G., Seo, D.S., Lee, J.K.: Dissolution of synthetic and bovine bone-derived hydroxyapatites fabricated by hot-pressing. Appl Surf Sci 255, 589–592 (2008)

    CAS  Google Scholar 

  14. Maidaniuc, A., Miculescu, F., Mocanu, A.C., Voicu, ȘI., Miculescu, M., Purcaru, A., Muhuleţ, A., Pop, C., Rada, M.E.: Sinterability study of bovine-derived hydroxyapatite and silver microcomposites. UPB Sci Bull Series B 79(1), 145–154 (2017)

    CAS  Google Scholar 

  15. Szewczyk-Nykiel, A., Nykiel, M.: Analysis of the sintering process of 316L-hydroxyapatite composite biomaterials. Tech Trans Mech 3–M, 79–92 (2015)

    Google Scholar 

  16. Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials 31, 1465–1485 (2010)

    CAS  Google Scholar 

  17. Willmann, G.: Coating of implants with hydroxyapatite-material connections between bone and metal. Adv Eng Mater 1, 95–105 (1999)

    CAS  Google Scholar 

  18. Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N.: Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mech Behav Biomed Mater 35, 70–76 (2014)

    CAS  Google Scholar 

  19. Öksüz, K.E., Özer, A.: Effect of yttria on the phase formation and sintering of HA-Al2O3 biocomposites. Acta Phys Pol 131(3), 576–579 (2017)

    Google Scholar 

  20. Gunduz, O., Ozyegin, L.S., Dorozhkin, S., Meydanoglu, O., Eruslu, N., Kayali, S., Agathopoulos, S., Oktar, F.N.: Bovine hydroxyapatite (BHA) boron oxide composites. Key Eng Mater 396–398, 403–406 (2009)

    Google Scholar 

  21. Gunduz, O., Ozyegin, L.S., Dorozhkin, S., Meydanoglu, O., Eruslu, N., Kayali, S., Goller, G., Agathopoulos, S., Oktar, F.N.: Bovine hydroxyapatite (BHA) strontium oxide composites. Key Eng Mater 396–398, 407–410 (2009)

    Google Scholar 

  22. Gunduz, O., Erkan, E.M., Daglilar, S., Salman, S., Agathopoulos, S., Oktar, F.N.: Composites of bovine hydroxyapatite (BHA) and ZnO. J. Mater Sci 43, 2536–2540 (2008)

    CAS  Google Scholar 

  23. Oktar, F.N.: Hydroxyapatite-TiO2 composites. Mater Lett 60, 2207–2210 (2006)

    CAS  Google Scholar 

  24. Unal, S., Ekren, N., Sengil, A.Z., Oktar, F.N., Irmak, S., Oral, O., Sahin, Y.M., Kilic, O., Agathopoulos, S., Gunduz, O.: Synthesis characterization and biological properties of composites of hydroxyapatite and hexagonal boron nitride. J Biomed Mater Res Part B Appl Biomater 106(6), 2384–2392 (2018)

    CAS  Google Scholar 

  25. Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N.: Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater Sci Eng C 77, 470–475 (2017)

    CAS  Google Scholar 

  26. Celik, H.H., Gunduz, O., Ekren, N., Ahmad, Z., Oktar, F.N.: Predicting the mechanical properties of BHA-Li2O composites using artificial neural networks. J Biomater Nanobiotechnol 2, 98–101 (2011)

    CAS  Google Scholar 

  27. Shainberg, A.P.M., Valério, P., Zonari, A., Oktar, F.N., Ozyegin, L.S., Grac, M.P.F., Leite, M.F., Goes, A.M.: Attachment and proliferation of osteoblasts on lithium-hydroxyapatite composites. Adv Mater Sci Eng (2012). https://doi.org/10.1155/2012/650574

  28. Du, J., Poelman, D.: Energy efficient microwave-assisted preparation of deep red/near-infrared emitting lithium aluminate and gallate phosphors. J. of Lumin. 237, 118168 (2021)

    CAS  Google Scholar 

  29. Suriyamurthy, N., Panigrahi, B.S., Natarajan, A.: Luminescence study of iron doped lithium aluminate phosphors. Mater Sci Eng A 403, 182–185 (2005)

    Google Scholar 

  30. Marezio, M., Remeika, J.P.: High-pressure synthesis and crystal structure of α-LiAlO2. J Chem Phys 44(8), 3143–3144 (1966)

    CAS  Google Scholar 

  31. Fischer, A. K.: Atmospheric pressure synthesis for β-LiAlO2. Inorg Chem 16(4), 974–974 (1977), Marezio, M. The crystal structure and anomalous dispersion of γ-LiAlO2. Acta Crystallograp 19(3), 396–400 (1965)

  32. Twardak, A., Bilski, P., Marczewska, B., Gieszczyk, W.: Analysis of TL and OSL kinetics of lithium aluminate. Radiat Meas 71, 143–147 (2014)

    CAS  Google Scholar 

  33. Gao, J., Shi, S., Xiao, R., Li, H.: Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ion 286, 122–134 (2016)

    CAS  Google Scholar 

  34. Thi, N., Ha, T., Giap, T.V., Thanh, N.T.: Synthesis of lithium aluminate for application in radiation dosimetry. Mater Lett 267, 127506 (2020)

    Google Scholar 

  35. Wani, M.A., Dhoble, S.J., Belekar, R.M.: Synthesis, characterization and spectroscopic properties of some rare earth activated LiAlO2 phosphor. Optik 226, 165938 (2021)

    CAS  Google Scholar 

  36. Pazarlioglu, S., Salman, S.: Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. J Aust Ceram Soc 53, 391–401 (2017)

    CAS  Google Scholar 

  37. Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K.: Sintering effects on the strength hydroxyapatite. Biomaterials 16, 409–415 (1995)

    CAS  Google Scholar 

  38. Beckerman, S., Ford, R., Nemeth, M.: Conversion of gamma lithium aluminate to lithium aluminum carbonate hydroxide hydrate. Powder Diffr 11(4), 312–317 (1996)

    CAS  Google Scholar 

  39. Pandey, A., Nigam, V.K., Balani, K.: Multi-length scale tribology of hydroxyapatite reinforced with ceria and silver. Wear 404–405, 12–21 (2018)

    Google Scholar 

  40. Kokubo, T., Yamamuro, T., Hench, L.L., Wilson, J.: Handbook on bioactive ceramics: bioactive glasses and glass-ceramics. Boca Raton (1990)

  41. Ooi, C.Y., Hamdi, M., Ramesh, S.: Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33, 1171–1177 (2007)

    CAS  Google Scholar 

  42. Brzezínska-Miecznik, J., Haberko, K., Búcko, M.M., Grabowski, G., Sitarz, M.: Hydroxyapatite of natural origin-zirconia composites, preparation and reactions within the system. Process Appl Ceram 10(4), 219–225 (2016)

    Google Scholar 

  43. The British Standards Institution 2018, ISBN 978 0 580 86939–6

  44. Barros, B.S., de Oliveira, R.S., Kulesza, J., Melo, V.R.M., Melo, D.M.A., Alves, S.: Ca3-xAl2O6:xEu3+ nanophosphors: fast synthesis and photophysical properties. J Phys Chem Solids 78, 90–94 (2015)

    CAS  Google Scholar 

  45. Chen, X., Yang, L., Zhou, Z., Chengi, Z.: Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming. Chem Eng Sci 163, 114–122 (2017)

    CAS  Google Scholar 

  46. López, F.A., Martín, M.I., Alguacil, F.J., Ramírez, M.S., González, J.R.: Synthesis of calcium aluminates from non-saline aluminum dross. Mater 12, 1837–1849 (2019)

    Google Scholar 

  47. Konar, B., Jung, I.H.: A coupled phase diagram experimental study and thermodynamic optimization of the Li2O-CaO-Al2O3 and Li2O-CaO-SiO2 systems, and prediction of the phase diagrams of the Li2O-CaO-Al2O3-SiO2 system. J Eur Ceram Soc 40, 2185–2199 (2020)

    CAS  Google Scholar 

  48. Evis, Z., Doremus, R.H.: Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater Res Bull 43, 2643–2651 (2008)

    CAS  Google Scholar 

  49. Yuan, X., Xu, Y., He, Y.: Synthesis of CaAl4O7 via citric acid precursor. J. Alloys Compd. 441, 251–254 (2007)

    CAS  Google Scholar 

  50. Palchesko, R.N., McGowan, K.A., Gawalt, E.S.: Surface immobilization of active vancomycin on calcium aluminum oxide. Mater Sci Eng C 31, 637–642 (2011)

    CAS  Google Scholar 

  51. Yuan, X., Xu, Y.B., He, Y.: Synthesis of Ca3Al2O6 via citric acid precursor. Mater Sci Eng A 447, 142–145 (2007)

    Google Scholar 

  52. Kahlenberg, V., Fischer, R.X., Shaw, C.S.J.: High-pressure Ca4Al6O13: an example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am Mineral 85, 1492–1496 (2000)

    CAS  Google Scholar 

  53. Danek, V., Tarniowy, M., Suski, L.: Kinetics of the α → γ phase transformation in LiAlO2 under various atmospheres within the 1073–1173 K temperatures range. J Mater Sci 39, 2429–2435 (2004)

    CAS  Google Scholar 

  54. Li, X., Wang, X., Hu, R., Li, Y., Yao, X.: Modulating trap levels via co-doping Ca2+/Si4+ in LiTaO3:Pr3+ to improve both the intensity and threshold of mechanoluminescence. J Alloys Compd 896, 1628772 (2021)

    Google Scholar 

  55. Jerebtsov, D.A., Mikhailov, G.G.: Phase diagram of CaO-Al2O3 system. Ceram Int 27, 25–28 (2001)

    CAS  Google Scholar 

  56. Moseke, C., Gbureck, U.: Tetracalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater 6, 3815–3823 (2010)

    CAS  Google Scholar 

  57. Nizara, M.S., Sofiyaningsih, N., Manullang, R.J., Wijayanti, R.B., Rosmayanti, I., Sumardan, D.: Novel fast firing method to synthesize tetracalcium phosphate. AIP Conf Proc (2021). https://doi.org/10.1063/5.0051750

    Article  Google Scholar 

  58. Behnamghader, A., Bagheri, N., Raissi, B., Moztarzadeh, F.: Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass. J. Mater Sci: Mater Med 19, 197–201 (2008)

    CAS  Google Scholar 

  59. Ozturk, S., Yetmez, M.: Studies on characterization of bovine hydroxyapatite/CaTiO3 biocomposites. Adv Mater Sci Eng (2016). https://doi.org/10.1155/2016/6987218

    Article  Google Scholar 

  60. Pazarlioglu, S.S., Salman, S.: The effect of alumina additive and sintering temperature on the microstructural, physical, mechanical, and bioactivity properties of hydroxyapatite-alumina composites. J Aust Ceram Soc 56, 413–431 (2020)

    CAS  Google Scholar 

  61. Rincón-López, J.A., Hermann-Muñoz, J.A., Fernández-Benavides, D.A., Giraldo-Betancur, A.L., Alvarado-Orozco, J.M., Muñoz-Saldaña, J.: Isothermal phase transformations of bovine-derived hydroxyapatite/bioactive glass: a study by design of experiments. J Eur Ceram Soc 39, 1613–1624 (2019)

    Google Scholar 

  62. Göller, G., Oktar, F.N.: Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Materi Lett 56, 142–147 (2002)

    Google Scholar 

  63. Miao, X., Chen, Y., Guo, H., Khor, K.A.: Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram Int 30, 1793–1796 (2004)

    CAS  Google Scholar 

  64. Pazarlioglu, S.: Hydroxyapatite/cerium oxide composites: sintering, microstructural, mechanical and in-vitro bioactivity properties. Int. J Adv Eng Pure Sci 4, 295–304 (2019)

    Google Scholar 

  65. Halouanı, R., Bernache-Assolant, D., Champion, E., Ababou, A.: Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics. J Mater Sci: Mater Med 5, 563–568 (1994)

    Google Scholar 

  66. Hoepfner, T.P., Case, E.D.: An estimate of the critical grain size for microcracks induced in hydroxyapatite by thermal expansion anisotropy. Mater Lett 58, 489–492 (2004)

    CAS  Google Scholar 

  67. Es-saddik, M., Laasri, S., Taha, M., Laghzizil, A., Guidara, A., Chaari, K., Bouaziz, J., Hajjaji, A., Nunzi, J.M.: Effect of the surface chemistry on the stability and mechanical properties of the Zirconia-Hydroxyapatite bioceramic. Surf Interfaces 23, 100980 (2021)

    CAS  Google Scholar 

  68. Wang, C.K., Ju, C.P., Chem Lin, J.H.: Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite. Mater Chem Phys 53, 138–149 (1998)

    CAS  Google Scholar 

  69. Kantana, W., Jarupoom, P., Pengpat, K., Eitssayeam, S., Tunkasiri, T., Rujijanagul, G.: Properties of hydroxyapatite/zirconium oxide nanocomposites. Ceram Int 39, 379–382 (2013)

    Google Scholar 

  70. Farzin, A., Ahmadian, M., Fathi, M.H.: Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites. Mater Sci Eng C 33, 2251–2257 (2013)

    CAS  Google Scholar 

  71. Mobasherpour, I., Salahi, E.: Effect of heat treatment on grain growth of nanocrystalline hydroxyapatite powder. J Ceram Sci Tech 02(02), 119–124 (2011)

    Google Scholar 

  72. Xuebin, Z., Yunfei, D., Songlin, W., Jie, X., Yi, F.: Sintering behavior and kinetic evaluation of hydroxyapatite bio-ceramics from bovine bone. Ceram. 54(3), 248–252 (2010)

    Google Scholar 

  73. Sych, O., Pinchuk, N., Ivanchenko, L.: Structure evolution and properties of biogenic hydroxyapatite-based biocomposite. Process App Ceram 3(3), 157–160 (2009)

    CAS  Google Scholar 

  74. Majling, J., Zńaik, P., Palová, A., Svetík, S.: Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J Mater Res 12(1), 198–202 (1997)

    CAS  Google Scholar 

  75. Tabero, P., Frąckowiak, A., Dąbrowska, G.: Reinvestigations of the Li2O-Al2O3 system Part I: LiAlO2 and Li3AlO3. Pol J Chem Technol 23(3), 30–36 (2021)

    CAS  Google Scholar 

  76. Mahdi, M.T., Kara, I.H.: Thermophysical characteristic of nano-TiO2 paraffin wax composite material. J Mech Eng Res Dev 44(6), 48–58 (2021)

    Google Scholar 

  77. Schneider, S.J., McDaniel, C.L.: Effect of environment upon the melting point of Al2O3. J Res Nat Bureau Stand A Phys Chem 71(4), 317–333 (1967)

    CAS  Google Scholar 

  78. Kondo, T., Muta, H., Kurosaki, K., Kargl, F., Yamaji, A., Furuya, M., Ohishi, Y.: Density and viscosity of liquid ZrO2 measured by aerodynamic levitation technique. Heliyon 5, e02049 (2019)

    Google Scholar 

  79. Ronchi, C., Sheindlin, M.: Melting point of MgO. J Appl Phys 90, 3325–3331 (2001)

    CAS  Google Scholar 

  80. Li, T.K., Dickon, H.L., Ng: Formation of γ-LiAlO2 nano-network in an Al-based metal matrix composite. Mater Lett 61, 1109–1113 (2007)

    CAS  Google Scholar 

  81. Jeffery, J.W., Mondal, P.: Zeitschriftfuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie (-144 1977), 73, 17 (1929)

  82. Sallemi, I., Bouaziz, J., Ayed, F.B.: Elaboration and characterization of bioceramic based on tricalcium phosphate and zirconia. Int J Curr Eng Technol 3(5), 1691–1700 (2013)

    Google Scholar 

  83. Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S.: Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci: Mater Med 18, 2137–2143 (2007)

    CAS  Google Scholar 

  84. Ramesh, S., Jeffrey, C.K.L., Tan, C.Y., Wong, Y.H., Ganesan, P., Ramesh, S., Kutty, M.G., Chandran, H., Devaraj, P.: Sintering behaviour and properties of magnesium orthosilicate hydroxyapatite ceramic. Ceram Int 42, 15756–15761 (2016)

    CAS  Google Scholar 

  85. Hoepfner, T.P., Case, E.D.: The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram Int 29, 699–706 (2003)

    CAS  Google Scholar 

  86. Lopes, M.A., Monteiro, F.J., Jose, H., Santos, D.: Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 20, 2085–2090 (1999)

    CAS  Google Scholar 

  87. Wang, J., Shaw, L.L.: Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30, 6565–6572 (2009)

    CAS  Google Scholar 

  88. Fakhraei, O., Hesaraki, S., Alizadeh, M.: Fracture toughness and R-curve behavior of BCP/YTZP nanocomposites produced using the spark plasma sintering process. J Alloys Compd 725, 623–631 (2017)

    CAS  Google Scholar 

  89. Evis, Z., Doremus, R.H.: A study of phase stability and mechanical properties of hydroxylapatite-nanosize α-alumina composites. Mater Sci Eng C 27, 421–442 (2007)

    CAS  Google Scholar 

  90. Pal, A., Metya, A.K., Chowdhury, A.R., Sinha, A.: Structural and mechanical behavior of mechanochemically synthesized nanocrystalline hydroxyapatite from mercenaria clam shells. Trans Ind Ceram Soc 79(4), 175–181 (2020)

    CAS  Google Scholar 

  91. Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L., Bemporad, E., Sebastiani, M.: F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int 36, 313–322 (2010)

    CAS  Google Scholar 

  92. Shaly, A.A., Priya, G.H., Linet, J.M.: An exploration on the configurational and mechanical aspects of hydrothermally procured MgO/HA bioceramic nanocomposite. Phys B 617, 413131 (2021)

    Google Scholar 

  93. Saadaldin, S.A., Dixon, S.J., Costa, D.O., Rizkalla, A.S.: Synthesis of bioactive and machinable miserite glass-ceramics for dental implant applications. Dent Mater 29, 645–655 (2013)

    CAS  Google Scholar 

  94. Altintas, S., Gokbayrak, H., Goren, S.: Production of hydroxyapatite from animal bone. Key Eng Mater 264–268, 1949–1952 (2004)

    Google Scholar 

  95. Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., Peker, I.: Sintering effects of temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J Sol-Gel Sci Tech 37, 111–112 (2006)

    CAS  Google Scholar 

  96. Bozkurt, Y., Pazarlioglu, S., Gokce, H., Gurler, I., Salman, S.: Hydroxyapatite lanthanum oxide composites. Acta Phys Pol A 127, 1407–1409 (2015)

    Google Scholar 

  97. Dou, J., Zhang, C., Chen, C., Zhang, X.: Effects of sintering temperature on the properties of alumina/ hydroxyapatite composites. J Sol-Gel Sci Technol 84, 23–27 (2017)

    CAS  Google Scholar 

  98. Nawang, R., Hussein, M.Z., Matoria, K.A., Abdullah, C.A.C., Hashim, M.: Physicochemical properties of hydroxyapatite/montmorillonite nanocomposite prepared by powder sintering. Results Phys 15, 102540 (2019)

    Google Scholar 

  99. Wu, C., Xiao, Y.: Evaluation of the in vitro bioactivity of bioceramics. Bone Tissue Regener Insights 2, 25–29 (2009)

    CAS  Google Scholar 

  100. Horkavcová, D., Rohanová, D., Kuncová, L., Zítková, K., Cílová, Z.Z., Helebrant, A.: Comparison of reactivity of synthetic and bovine hydroxyapatite in vitro under dynamic conditions. Ceram 58(1), 70–78 (2014)

    Google Scholar 

  101. Lin, C., Lin, J.H., Ding, H.J., Ju, C.P.: Characterization of immersed hydroxyapatite-bioactive glass coatings in Hank’s solution. Mater Chem Phys 64, 229–240 (2000)

    Google Scholar 

  102. Zhao, S., Cui, W., Rajendran, N.K., Su, F., Rajan, M.: Investigations of gold nanoparticles-mediated carbon nanotube reinforced hydroxyapatite composite for bone regenerations. J Saudi Chem Soc 25, 101261 (2021)

    CAS  Google Scholar 

  103. Pazarlioglu, S., Salman, S.: Effect of yttria on thermal stability, mechanical and in vitro bioactivity properties of hydroxyapatite/alumina composite. J Ceram Process Res 20(1), 99–112 (2019)

    Google Scholar 

  104. Silva, V.V., Lameiras, F.S., Domingues, R.Z.: Microstructural and mechanical study of zirconia-hydroxyapatite (ZH) composite ceramics for biomedical applications. Compos Sci Technol 61, 301–310 (2001)

    CAS  Google Scholar 

Download references

Funding

The author thanks the economic support of the Scientific Research Centre of Marmara University (Project No: FEN-A-110618–0335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Serdar Pazarlioglu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarlioglu, S.S. The effect of alpha-lithium aluminate incorporation on the properties of bovine bone-derived hydroxyapatite. J Aust Ceram Soc 58, 1585–1601 (2022). https://doi.org/10.1007/s41779-022-00796-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00796-1

Keywords

Navigation