Skip to main content

Advertisement

Log in

Fabrication, characterization, and properties of hydroxyapatite ceramics derived from cockle shell

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) powder was synthesized through a precipitation method using waste cockle shell as a calcium source. HAp powder had a single phase of Ca5(PO4)3OH with a Ca/P ratio of 1.77. The crystals were rod-like, 80–110 nm long, and 20–30 nm wide. HAp ceramics sintered below 1350 °C in air resulted in ceramics with a stable HAp phase. The formation of β-tricalcium phosphate impaired the flexural strength of the specimen. The microhardness increased with sintering temperature due to the modification of density and porosity. The chemical solubility in acetic acid was related to density, porosity, and grain size. HAp ceramic sintered at 1250 °C provided appropriate properties for medical and dental applications. This ceramic had a grain size of 1.44 ± 0.37 µm, a density of 2.85 ± 0.01 g/cm3, a microhardness of 4.17 ± 2.37 GPa, a porosity of 10.3 ± 0.71%, a flexural strength of 46.13 ± 4.53 MPa, and a chemical solubility of 2.64 ± 0.10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sotiropoulou, P., Fountos, G., Martini, N., Koukou, V., Michail, C., Kandarakis, I., Nikiforidis, G.: Bone calcium/phosphorus ratio determination using dual energy X-ray method. Phys. Med. 31, 307–313 (2015)

    Article  CAS  Google Scholar 

  2. Ozawa, M., Hattori, M., Satake, K.: Waste management and application of fish bone hydroxyapatite for waste water treatment. Proceeding of International Symposium on EcoTopia Science, 957–958 (2007)

  3. Wu, S.C., Hsu, H.C., Hsu, S.K., Chang, Y.C., Ho, W.F.: Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment. J. Asian Ceram. Soc. 4, 85–90 (2016)

    Article  Google Scholar 

  4. Ozturk, S., Yetmez, M.: Studies on characterization of bovine hydroxyapatite/CaTiObiocomposites. Adv. Mater. Sci. Eng. 2016, Article ID 6987218, 1–7, (2016)

  5. Yeon, K.C., Wang, J., Ng, S.C.: Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22(10), 2705–2712 (2001)

    Article  CAS  Google Scholar 

  6. Oktar, F.N., Kesenci, K., Piskin, E.: Characterization of processed tooth hydroxy-apatite for potential biomedical implant applications. Art Cells Blood Subs Biotech. 27(4), 367–379 (1999)

    Article  CAS  Google Scholar 

  7. Guo, X., Yan, H., Zhao, S., Zhang, L., Li, Y., Liang, X.: Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24(6), 1034–1038 (2013)

    Article  CAS  Google Scholar 

  8. Pal, M., Dubey, A.K., Basu, B., Guo, R., Bhalla, A.: Electrical properties of calcium titanate: hydroxyapatite composites. Ceram. Trans. 235, 191–198 (2012)

    Article  CAS  Google Scholar 

  9. Dubey, A.K., Tripathi, G., Basu, B.: Characterization of hydroxyapatite-perovskite (CaTiO3) composites: phase evaluation and cellular response. J. Biomed. Mater. Res. B. 95B(2), 320–329 (2010)

    Article  CAS  Google Scholar 

  10. Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., Zakeri, M.: Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 430(1–2), 330–333 (2007)

    Article  CAS  Google Scholar 

  11. Mousavi, G., Sarraf-Mamoory, R.: In situ formation of hydroxyapatite during powder metallurgy preparation of porous Ti/HA nano composite: a candidate for dental implants. Mat. Res. 21(4), e20170967 (2018)

    Article  CAS  Google Scholar 

  12. Inthong, S., Kamnoy, M., Intatha, U., Intawin, P., Pengpat, K., Tunkasiri, T., Eitssayeam, S.: Phase, mechanical and bioactivity properties of hydroxyapatite-calcium titanate composite. Mater. Res. Express. 6(2), 025405 (2018)

    Article  CAS  Google Scholar 

  13. Chaudhuri, B., Mondal, B., Modak, D.K., Pramanik, K., Chaudhuri, B.K.: Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K2HPO4 solution. Mater. Lett. 97, 148–150 (2013)

    Article  CAS  Google Scholar 

  14. Baba, A.A., Oduwole, I.T., Salami, F.O., Adekola, F.A., Adeboye, S.E.: Synthesis of hydroxyapatite from waste egg-shell by precipitation method. Ife J. Sci. 15(3), 435–443 (2013)

    Google Scholar 

  15. Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522–532 (2013)

    Article  CAS  Google Scholar 

  16. Hoque, M.E., Shehryar, M., MdNurul Islam, K.: Processing and characterization of cockle shell calcium carbonate (CaCO3) bioceramic for potential application in bone tissue engineering. J. Material Sci. Eng. 2(4), 1000132 (2013)

    Article  CAS  Google Scholar 

  17. Mailafiya, M.M., Abubakar, K., Danmaigoro, A., Chiroma, S.M., Abdul Rahim, E.B., Mohd Moklas, M.A., Bakar Zakaria, Z.A.: Cockle shell-derived calcium carbonate (aragonite) nanoparticles: a dynamite to nanomedicine. Appl. Sci. 9, 2897 (2019)

    Article  CAS  Google Scholar 

  18. Mahmood, S.K., Abu Bakar Zakaria, M.Z., Binti Abdul Razak, I.S., Yusof, L.M., Jaji, A.Z., Tijani, I., Hammadi, N.I.: Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochem Biophys Rep. 10, 237–251 (2017)

    Google Scholar 

  19. Suchanek, K., Perzanowski, M., Lekki, J., Strag, M., Marszałek, M.: Ammonium hydroxide mediated hydrothermal crystallization of hydroxyapatite coatings on titanium substrate. Ceramics. 2, 180–189 (2019)

    Article  CAS  Google Scholar 

  20. Anwar, A., Kanwal, Q., Akbar, S., Munawar, A., Durrani, A., Farooq, M.H.: Synthesis and characterization of pure and nanosized hydroxyapatite bioceramics. Nanotechnol. Rev. 6(2), 149–157 (2017)

    Article  CAS  Google Scholar 

  21. Chadchom, S., Rattanaphan, T., Chanadee, T.: Calcium titanate from food waste: combustion synthesis, sintering, characterization, and properties. Adv. Mater. Sci. Eng. 2019, Article ID 9639016, 1–9 (2019)

  22. Landek, D., Curkovic, L., Gabelica, I., Mustafa, M.K., Žmak, I.: Optimization of sintering process of alumina ceramics using response surface methodology. Sustainability. 13, 6739 (2021)

    Article  Google Scholar 

  23. Dowling, N.E., Prasad, K.S., Narayanasamy, R.: Mechanical behavior of materials, 4th edn. Pearson Education Limited, London (2013)

  24. Esquivel-Upshaw, J.F., Chai, J., Sansano, S., Shonberg, D.: Resistance to staining, flexural strength, and chemical solubility of core porcelains for all-ceramic crowns. Int. J. Prosthodont. 14(3), 284–288 (2001)

    CAS  Google Scholar 

  25. Palaniandy, S., Jamil, N.H.: Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. J. Alloys Compd. 476, 894–902 (2007)

    Article  CAS  Google Scholar 

  26. Tangwongsan, C.: Biomaterials science and the body’s response to biomaterials (in Thai). Chulalongkorn University Printing House, Bangkok (2017)

  27. Vukotić, V.M., Radojević, N., Živković, L., Vuković, Z., Stojanović, B.D.: Mechanically activated synthesis of CaTiO3 from mixture of CaO and TiO2. Mater. Sci. Forum. 494, 393–398 (2005)

    Article  Google Scholar 

  28. Rhee, S.H.: Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23, 1147–1152 (2002)

    Article  CAS  Google Scholar 

  29. Li, J., Fartash, B., Hermansson, L.: Hydroxyapatite-alumina composites and bone-bonding. Biomaterials 16, 417–422 (1995)

    Article  CAS  Google Scholar 

  30. Mi, G., Murakami, Y., Shindo, D., Saito, F.: Microstructural investigation of CaTiO3 formed mechanochemically by dry grinding of a CaO-TiO2 mixture. Powder Technol. 104, 75–79 (1999)

    Article  CAS  Google Scholar 

  31. Minh, D.P., Rio, S., Sharrock, P., Sebei, H., Lyczko, N., Tran, N.D., Raii, M., Nzihou, A.: Hydroxyapatite starting from calcium carbonate and orthophosphoric acid: synthesis, characterization, and applications. J. Mater. Sci. 49(12), 4261–4269 (2014)

    Article  CAS  Google Scholar 

  32. Correa-Pina, B.A., Gomez-Vazquez, O.M., Londono-Restrepo, S.M., Zubieta-Otero, L.F., Millan-Malo, B.M., Rodriguez-García, M.E.: Synthesis and characterization of nano-hydroxyapatite added with magnesium obtained by wet chemical precipitation. Prog. Nat. Sci.: Mater. Int. 31, 575–582 (2021)

    CAS  Google Scholar 

  33. Bianco, A., Cacciotti, I., Lombardi, M., Montanaro, L., Gusmano, G.: Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J. Therm. Anal. Calorim. 88, 237–243 (2007)

    Article  CAS  Google Scholar 

  34. Moreira, M.L., Paris, E.C., do Nascimento, G.S., Longo, V.M., Sambrano, J.R., Mastelaro, V.R., Bernardi, M.I.B., Andrés, J., Varela, J.A., Longo, E.: Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: an experimental and theoretical insight. Acta Mater. 57(11), 5174–5185 (2009)

    Article  CAS  Google Scholar 

  35. Gheisari, H., Karamian, E., Abdellahi, M.: A novel hydroxyapatite-hardystonite nanocomposite ceramic. Ceram. Int. 41, 5967–5975 (2015)

    Article  CAS  Google Scholar 

  36. Ahmed, Y.M.Z., El-Sheikh, S.M., Zaki, Z.I.: Changes in hydroxyapatite powder properties via heat treatment. Bull. Mater. Sci. 38(7), 1807–1819 (2015)

    Article  CAS  Google Scholar 

  37. Santos Horta, M., Moura, F., Aguilar, M., Westin, C., Campos, J., Peripoll, S., Ramos, V., Navarro, M., Archanjo, B.: Nanostructured hydroxyapatite from hen’s eggshells using sucrose as a template. Mater. Res. 23(6), e20200266 (2020)

    Article  CAS  Google Scholar 

  38. Wang, H., Lee, J.K., Moursi, A., Lannutti, J.J.: Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater. Res. A. 67(2), 599–608 (2003)

    Article  CAS  Google Scholar 

  39. Dubey, A.K., Mallik, P.K., Kundu, S., Basu, B.: Dielectric and electrical conductivity properties of multi-stage spark plasma sintered HA-CaTiO3 composites and comparison with conventionally sintered materials. J. Eur. Ceram. Soc. 33, 3445–3453 (2013)

    Article  CAS  Google Scholar 

  40. Evis, Z., Doremus, R.H.: Hot-pressed hydroxylapatite/monoclinic zirconia composites with improved mechanical properties. J. Mater. Sci. 42, 2426–2431 (2007)

    Article  CAS  Google Scholar 

  41. Ramesh, S., Tan, C.Y., Yeo, W.H., Tolouei, R., Amiriyan, M., Sopyan, I., Teng, W.D.: Effects of bismuth oxide on the sinterability of hydroxyapatite. Ceram. Int. 37, 599–606 (2011)

    Article  CAS  Google Scholar 

  42. Raksujarit, A., Pengpat, K., Rujijanagul, G., Tunkasiri, T.: Processing and properties of nanoporous hydroxyapatite ceramics. Mater. Des. 31, 1658–1660 (2010)

    Article  CAS  Google Scholar 

  43. Mostafa, N.Y.: Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phys. 94, 333–341 (2005)

    Article  CAS  Google Scholar 

  44. SuyaPremAnand, P., Arunachalam, N., Vijayaraghavan, L.: Effect of grinding on subsurface modifications of pre-sintered zirconia under different cooling and lubrication conditions. J. Mech. Behav. Biomed. Mater. 86, 122–130 (2018)

    Article  CAS  Google Scholar 

  45. Khandelwal, H., Prakash, S.: Synthesis and characterization of hydroxyapatite powder by eggshell. JMMCE. 4, 119–126 (2016)

    Article  CAS  Google Scholar 

  46. Young Park, M., Jung Kim, Y., Mun Choi, S., Ha Oh, S., Jun Kim, Y., Taik Lim, W., An, J., Young Choi, S.: Synthesis and characterization of hydroxyapatite using ammonium hydroxide and ethylenediaminetetraacetic acid. Bull. Korean Chem. Soc. 36, 1806–1811 (2015)

    Article  CAS  Google Scholar 

  47. Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., Baino, F.: Hydroxyapatite for biomedical applications: a short overview. Ceramics. 4, 542–563 (2021)

    Article  CAS  Google Scholar 

  48. Prokopiev, O., Sevostianov, I.: Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng. A. 431, 218–227 (2006)

    Article  CAS  Google Scholar 

  49. Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthome, B.K.: Sintering effects on the strength of hydroxyapatite. Biomaterials 16, 409–415 (1995)

    Article  CAS  Google Scholar 

  50. Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998)

    Article  CAS  Google Scholar 

  51. Murray, M.G.S., Wang, J., Ponton, C.B., Marquis, P.M.: An improvement in processing of hydroxyapatite ceramics. J. Mater. Sci. 30, 3061–3074 (1995)

    Article  CAS  Google Scholar 

  52. Kothapalli, C., Wei, M., Vasiliev, A., Shaw, M.T.: Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater. 52, 5655–5663 (2004)

    Article  CAS  Google Scholar 

  53. Metsger, D.S., Rieger, M.R., Foreman, D.W.: Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. J. Mater. Sci. 10, 9–17 (1999)

    CAS  Google Scholar 

  54. Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J. Sol-Gel Sci. Techn. 37, 111–115 (2006)

  55. Goller, G., Oktar, F.N.: Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Mater. Lett. 56, 142–147 (2002)

    Article  CAS  Google Scholar 

  56. Porter, A.E.: Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 37, 681–688 (2006)

    Article  CAS  Google Scholar 

  57. Mikeskab, K.R., Bennison, S.J., Grise, S.L.: Corrosion of ceramics in aqueous hydrofluoric acid. J. Am. Ceram. Soc. 83(5), 1160–1164 (2000)

    Article  Google Scholar 

  58. Klemm, A., Gomez-Florit, M., Carvalho, P.A., Wachendörfer, M., Gomes, M.E., Haugen, H.J., Tiainen, H.: Grain boundary corrosion in TiO2 bone scaffolds doped with group II cations. J. Eur. Ceram. Soc. 39(4), 1577–1585 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Thomas Duncan Coyne for editing the English text.

Funding

This work was financially supported by a Basic Research Grant from the Prince of Songkla University under the contract no. SCI6302056S and the Faculty of Science Research Fund, Prince of Songkla University, under the contract no.1–2564-02–005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawat Chanadee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sri-o-sot, S., Vepulanont, K., Kamkit, C. et al. Fabrication, characterization, and properties of hydroxyapatite ceramics derived from cockle shell. J Aust Ceram Soc 58, 1081–1093 (2022). https://doi.org/10.1007/s41779-022-00757-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00757-8

Keywords

Navigation