Skip to main content

Advertisement

Log in

Physicochemical changes of hydroxyapatite, V2O5, and graphene oxide composites for medical usages

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAP), vanadium pentoxide (V2O5), and graphene oxide (GO) are three biocompatible materials. The antibacterial is the main characteristics of the produced TNC. Furthermore, the structural investigation was done by x-ray diffraction patterns (XRD). The investigation showed inhibition in the growth of V2O5 and in contrast with HAP, where high growth was noticed. According to XRD data, the crystallite size of HAP was grown from 6 to 8.2 nm starting with the HAP composition to TNC. The nanorod shapes of HAP reached an average of 141 and 30 nm for length and diameter. In addition, the roughness average parameter (Ra) reached 47.5 nm. The microhardness has been evaluated. It started from 3.3 ± 0.2 GPa for pure HAP and decreased to 2.9 ± 0.3 GPa for the dual composite of HAP/V2O5, and improved to 4.1 ± 0.2 GPa for the ternary combination of HAP/V2O5/GO. The biological response was represented in the cell viability measurements which increased from 96.5 ± 4 to 99.7 ± 5% at the final NC (TNC). In addition, the measurements were done toward the human osteoblast cell line in vitro. Furthermore, the antibacterial activity was measured against negative gram and positive gram strains. The inhibition zone reached 17.1 ± 1.5 and 16.3 ± 1.4 mm against E. coli and S. aureus. The results refer to the ability to be suggested TNC for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zou, Z., Wang, L., Zhou, Z., Sun, Q., Liu, D., Chen, Y., et al.: Simultaneous incorporation of PTH(1–34) and nano-hydroxyapatite into chitosan/alginate hydrogels for efficient bone regeneration. Bioactive materials 6, 1839–1851 (2021)

    Article  CAS  Google Scholar 

  2. Ho-Shui-Ling, A., Bolander, J., Rustom, L.E., Johnson, A.W., Luyten, F.P., Picart, C.: Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180, 143–162 (2018)

    Article  CAS  Google Scholar 

  3. Holmes D.: Non-union bone fracture: a quicker fix. Nature 550:S193-S (2017)

  4. Holmes, D.: Closing the gap. Nature 550, S194–S195 (2017)

    Article  CAS  Google Scholar 

  5. Sadowska JM, Genoud KJ, Kelly DJ, O'Brien FJ.: Bone biomaterials for overcoming antimicrobial resistance: advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Mater Today (2021)

  6. Kurella, A., Dahotre, N.B.: Surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl. 20, 5–50 (2005)

    Article  Google Scholar 

  7. Aronov D, Molotskii M, Rosenman G.: Charge-induced wettability modification. Appl. Phys. Lett. 90:104104 (2007)

  8. Dias, M., Fernandes, P., Guedes, J., Hollister, S.: Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45, 938–944 (2012)

    Article  CAS  Google Scholar 

  9. Prasadh, S., Wong, R.C.W.: Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Science International 15, 48–55 (2018)

    Article  Google Scholar 

  10. Kang, Y., Chang, J.: Channels in a porous scaffold: a new player for vascularization. Regen. Med. 13, 705–715 (2018)

    Article  CAS  Google Scholar 

  11. Zhu, J., Thompson, C.B.: Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019)

    Article  CAS  Google Scholar 

  12. Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., et al.: Mechanical properties evaluation of sisal fibre reinforced polymer composites: a review. Constr. Build. Mater. 174, 713–729 (2018)

    Article  CAS  Google Scholar 

  13. Wang, L., Wang, C., Wu, S., Fan, Y., Li, X.: Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomaterials science 8, 2714–2733 (2020)

    Article  CAS  Google Scholar 

  14. Kumar S, Roy DN, Dey V. A.: comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling. Colloid Interface Sci. Commun. 43:100464 (2021)

  15. Ghanavati, Z., Neisi, N., Bayati, V., Makvandi, M.: The influence of substrate topography and biomaterial substance on skin wound healing. Anat. Cell. Biol. 48, 251–257 (2015)

    Article  Google Scholar 

  16. Sharma, P., Pandey, P.M.: Morphological and mechanical characterization of topologically ordered open cell porous iron foam fabricated using 3D printing and pressureless microwave sintering. Mater. Des. 160, 442–454 (2018)

    Article  CAS  Google Scholar 

  17. Fathi, A.M., Ahmed, M.K., Afifi, M., Menazea, A.A., Uskoković, V.: Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomater. Sci. Eng. 7, 360–372 (2021)

    Article  CAS  Google Scholar 

  18. Ahmed, M., Al-Wafi, R., Mansour, S., El-Dek, S., Uskoković, V.: Physical and biological changes associated with the doping of carbonated hydroxyapatite/polycaprolactone core-shell nanofibers dually, with rubidium and selenite. J. Market. Res. 9, 3710–3723 (2020)

    CAS  Google Scholar 

  19. Afifi M, Ahmed MK, Fathi AM, Uskoković V.: Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Int. J. Pharm. 585 (2020)

  20. Riaz, M., Zia, R., Ijaz, A., Hussain, T., Mohsin, M., Malik, A.: Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater. Sci. Eng., C 90, 308–313 (2018)

    Article  CAS  Google Scholar 

  21. Bhowmick, A., Jana, P., Pramanik, N., Mitra, T., Banerjee, S.L., Gnanamani, A., et al.: Multifunctional zirconium oxide doped chitosan based hybrid nanocomposites as bone tissue engineering materials. Carbohyd. Polym. 151, 879–888 (2016)

    Article  CAS  Google Scholar 

  22. Balagangadharan, K., Chandran, S.V., Arumugam, B., Saravanan, S., Venkatasubbu, G.D., Selvamurugan, N.: Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int. J. Biol. Macromol. 111, 953–958 (2018)

    Article  CAS  Google Scholar 

  23. SM Z, S A S, T Ebrahimi S, S A S. A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering 2011(2011)

  24. Díaz M, Barba F, Miranda M, Guitián F, Torrecillas R, Moya JS.: Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J. Nanomater. 2009 (2009)

  25. Ashraf, S., Ahmed, M., Ibrahium, H.A., Awwad, N.S., Abdel-Fattah, E., Ghoniem, M.: Nanofibers of polycaprolactone containing hydroxyapatite doped with aluminum/vanadate ions for wound healing applications. New J. Chem. 45, 22610–22620 (2021)

    Article  CAS  Google Scholar 

  26. Sarkar, N., Bose, S.: Controlled delivery of curcumin and vitamin K2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration. ACS Appl. Mater. Interfaces. 12, 13644–13656 (2020)

    Article  CAS  Google Scholar 

  27. Samadian, H., Salehi, M., Farzamfar, S., Vaez, A., Ehterami, A., Sahrapeyma, H., et al.: In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif. Cells Nanomed Biotechnol. 46, 964–974 (2018)

    Article  CAS  Google Scholar 

  28. Namasivayam, S., Venkatachalam, G., Bharani, R.: Noteworthy enhancement of wound-healing activity of triphala biomass metabolite-loaded hydroxyapatite nanocomposite. Appl. Nanosci. 11, 1511–1530 (2021)

    Article  CAS  Google Scholar 

  29. Larcher, D., Tarascon, J.-M.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015)

    Article  CAS  Google Scholar 

  30. Sarraf M, Nasiri-Tabrizi B, Yeong CH, Hosseini HRM, Saber-Samandari S, Basirun WJ. Mixed oxide nanotubes in nanomedicine: a dead-end or a bridge to the future? Ceram. Int. (2020)

  31. Kim, Y.S., Song, M.Y., Park, E.S., Chin, S., Bae, G.-N., Jurng, J.: Visible-light-induced bactericidal activity of vanadium-pentoxide (V 2 O 5)-loaded TiO 2 nanoparticles. Appl. Biochem. Biotechnol. 168, 1143–1152 (2012)

    Article  CAS  Google Scholar 

  32. Sun, H., Yang, Z., Pu, Y., Dou, W., Wang, C., Wang, W., et al.: Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J. Colloid Interface Sci. 547, 40–49 (2019)

    Article  CAS  Google Scholar 

  33. Bergerud AJ.: Phase Stability and Transformations in Vanadium Oxide Nanocrystals: University of California, Berkeley (2016)

  34. Anicic, N., Vukomanovic, M., Suvorov, D.: Design of a multifunctional vanadium pentoxide/polymer biocomposite for implant-coating applications. RSC Adv. 7, 38647–38658 (2017)

    Article  CAS  Google Scholar 

  35. Yuvakkumar, R., Hong, S.: Structural and toxic effect investigation of vanadium pentoxide. Mater. Sci. Eng., C 65, 419–424 (2016)

    Article  CAS  Google Scholar 

  36. Das, S., Roy, A., Barui, A.K., Alabbasi, M.M.A., Kuncha, M., Sistla, R., et al.: Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale 12, 7604–7621 (2020)

    Article  CAS  Google Scholar 

  37. Knöller, A., Lampa, C.P., von Cube, F., Zeng, T.H., Bell, D.C., Dresselhaus, M.S., et al.: Strengthening of ceramic-based artificial nacre via synergistic interactions of 1D vanadium pentoxide and 2D graphene oxide building blocks. Sci. Rep. 7, 1–9 (2017)

    Article  CAS  Google Scholar 

  38. Zaaba, N., Foo, K., Hashim, U., Tan, S., Liu, W.-W., Voon, C.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017)

    Article  CAS  Google Scholar 

  39. El-Kader MFHA, Ahmed MK, Elabbasy MT, Afifi M, Menazea AA.: Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf. Coat. Technol. 409 (2021)

  40. Phiri, J., Johansson, L.-S., Gane, P., Maloney, T.: A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide-and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos. B Eng. 147, 104–113 (2018)

    Article  CAS  Google Scholar 

  41. Zeng, H., Qu, S., Qin, Y.: Microstructure and transport properties of cement-based material enhanced by graphene oxide. Mag. Concr. Res. 73, 1011–1024 (2021)

    Article  Google Scholar 

  42. Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C., Bouchard, D.: Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Environ. Sci. Technol. 48, 961–969 (2014)

    Article  CAS  Google Scholar 

  43. Agarwalla, S.V., Ellepola, K., da Costa, M.C.F., Fechine, G.J.M., Morin, J.L.P., Neto, A.C., et al.: Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent. Mater. 35, 403–413 (2019)

    Article  CAS  Google Scholar 

  44. Plachá, D., Jampilek, J.: Graphenic materials for biomedical applications. Nanomaterials 9, 1758 (2019)

    Article  CAS  Google Scholar 

  45. Szunerits, S., Boukherroub, R.: Antibacterial activity of graphene-based materials. J. Mater. Chem. B 4, 6892–6912 (2016)

    Article  CAS  Google Scholar 

  46. Li, J., Wang, G., Zhu, H., Zhang, M., Zheng, X., Di, Z., et al.: Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  47. Mustapha S, Ndamitso M, Abdulkareem A, Tijani J, Shuaib D, Mohammed A, et al.: Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 10, 045013 (2019)

  48. Abdelbar MF, El-Sheshtawy HS, Shoueir KR, El-Mehasseb I, Ebeid E-Zeiny M, El-Kemary M.: Halogen bond triggered aggregation induced emission in an iodinated cyanine dye for ultra sensitive detection of Ag nanoparticles in tap water and agricultural wastewater. RSC Adv. 8:24617–26 (2018)

  49. Zakria MA, Menazea AA, Mostafa AM, Al-Ashkar EA.: Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surf. Interfaces 100438 (2020)

  50. Abdelghany AM, Menazea AA, Ismail AM.: Synthesis, characterization and antimicrobial activity of chitosan/polyvinyl alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 1197:603–9 (2019)

  51. Ismail, A.M., Menazea, A.A., Kabary, H.A., El-Sherbiny, A.E., Samy, A.: The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol-Gel method. J. Mol. Struct. 1196, 332–337 (2019)

    Article  CAS  Google Scholar 

  52. Menazea AA.: Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat. Phys. Chem. 108616 (2019)

  53. Lukić, M.J., Veselinović, L., Stevanović, M., Nunić, J., Dražič, G., Marković, S., et al.: Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  CAS  Google Scholar 

  54. Gopi D, Rajeswari D, Ramya S, Sekar M, R P, Dwivedi J, et al. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl. Surf. Sci. 286, 83–90 (2013)

  55. Hiromoto, S., Inoue, M., Taguchi, T., Yamane, M., Ohtsu, N.: In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater. 11, 520–530 (2015)

    Article  CAS  Google Scholar 

  56. Mansour, S.F., El-Dek, S.I., Ahmed, M.K.: Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    Article  CAS  Google Scholar 

  57. Kaygili, O., Keser, S., Bulut, N., Ates, T.: Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B 537, 63–67 (2018)

    Article  CAS  Google Scholar 

  58. Surekha G, Krishnaiah KV, Ravi N, Suvarna RP.: FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series: IOP Publishing, p. 012012  (2020) 

  59. Mishra, V.K., Bhattacharjee, B.N., Parkash, O., Kumar, D., Rai, S.B.: Mg-doped hydroxyapatite nanoplates for biomedical applications: a surfactant assisted microwave synthesis and spectroscopic investigations. J. Alloy. Compd. 614, 283–288 (2014)

    Article  CAS  Google Scholar 

  60. Kaygili, O., Tatar, C., Yakuphanoglu, F., Keser, S.: Nano-crystalline aluminum-containing hydroxyapatite based bioceramics: synthesis and characterization. J. Sol-Gel. Sci. Technol. 65, 105–111 (2012)

    Article  CAS  Google Scholar 

  61. Janković, A., Eraković, S., Mitrić, M., Matić, I.Z., Juranić, Z.D., Tsui, G.C.P., et al.: Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid. J. Alloy. Compd. 624, 148–157 (2015)

    Article  CAS  Google Scholar 

  62. Ahmed, M.K., Ramadan, R., El-dek, S.I., Uskoković, V.: Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J. Alloy. Compd. 801, 70–81 (2019)

    Article  CAS  Google Scholar 

  63. Lin, K., Zhou, Y., Zhou, Y., Qu, H., Chen, F., Zhu, Y., et al.: Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J. Mater. Chem. 21, 16558 (2011)

    Article  CAS  Google Scholar 

  64. Kato, A., Kowada, H., Deguchi, M., Hotehama, C., Hayashi, A., Tatsumisago, M.: XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ionics 322, 1–4 (2018)

    Article  CAS  Google Scholar 

  65. Chen, X., Wang, X., Fang, D.: A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes, Nanotubes, Carbon Nanostruct. 28, 1048–1058 (2020)

    Article  CAS  Google Scholar 

  66. Reddy, B.M., Ganesh, I., Reddy, E.P.: Study of dispersion and thermal stability of V2O5/TiO2− SiO2 catalysts by XPS and other techniques. J. Phys. Chem. B 101, 1769–1774 (1997)

    Article  CAS  Google Scholar 

  67. Doveren Hv, Verhoeven JT.: XPS spectra of Ca, Sr, Ba and their oxides. J. Electron Spectros. Relat. Phenom. 21, 265–73 (1980)

  68. Donya H, Darwesh R, Ahmed M.: Morphological features and mechanical properties of nanofibers scaffolds of polylactic acid modified with hydroxyapatite/CdSe for wound healing applications. Int. J. Biol. Macromol (2021)

  69. Negrila CC, Predoi MV, Iconaru SL, Predoi D.: Development of zinc-doped hydroxyapatite by sol-gel method for medical applications. Molecules 23 (2018)

  70. Zavala-Sanchez, L.A., Hirata, G.A., Novitskaya, E., Karandikar, K., Herrera, M., Graeve, O.A.: Distribution of Eu(2+) and Eu(3+) ions in hydroxyapatite: a cathodoluminescence and raman study. ACS Biomater. Sci. Eng. 1, 1306–1313 (2015)

    Article  CAS  Google Scholar 

  71. Wang, M., Liu, Y., Ren, G., Wang, W., Wu, S., Shen, J.: Bioinspired carbon quantum dots for sensitive fluorescent detection of vitamin B12 in cell system. Anal. Chim. Acta 1032, 154–162 (2018)

    Article  CAS  Google Scholar 

  72. Zhen, Q., Li, L., Li, R., Lu, F., Li, Z., Wang, Y.: Morphology controllable preparation and infrared emissivity of vanadium pentoxide. Infrared Phys. Technol. 71, 303–306 (2015)

    Article  CAS  Google Scholar 

  73. El-Ghannam, A.R.: Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J. Biomed. Mater. Res., Part A 69, 490–501 (2004)

    Article  CAS  Google Scholar 

  74. Ahmed MK, Afifi M, Mansour SF, Ibrahium HA, Aldulmani SAA, Awwad NS.: Morphological behaviors of brushite/vivianite nanocomposites and their potency for Se(IV) and Cd(II) removal from aqueous solutions. Mater. Chem. Phys. 259 (2021)

  75. Lutzweiler, G., Ndreu Halili, A., Engin, V.N.: The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics 12, 602 (2020)

    Article  CAS  Google Scholar 

  76. Ahmed MK, Afifi M, Awwad NS, Ibrahium HA.: Pb(II) and Cd(II) removal, mechanical and morphological features of nanofibrous membranes of cellulose acetate containing fillers of hydroxyapatite, graphene oxide, and magnetite. Appl. Phys. A: Mater. Sci. Process. 126 (2020)

  77. Gholami-Shabani M, Sotoodehnejadnematalahi F, Shams-Ghahfarokhi M, Eslamifar A, Razzaghi-Abyaneh M.: Mycosynthesis and physicochemical characterization of vanadium oxide nanoparticles using the cell-free filtrate of fusarium oxysporum and evaluation of their cytotoxic and antifungal activities. J. Nanomater. 2021 (2021)

  78. Srivastava, S., Kumar, N., Roy, P.: Role of ERK/NFκB in vanadium (IV) oxide mediated osteoblast differentiation in C3H10t1/2 cells. Biochimie 101, 132–144 (2014)

    Article  CAS  Google Scholar 

  79. Hatamie S, Ahadian MM, Zomorod MS, Torabi S, Babaie A, Hosseinzadeh S, et al.: Antibacterial properties of nanoporous graphene oxide/cobalt metal organic framework. Mater. Sci. Eng.: C 104, 109862 (2019)

  80. Qiu, J., Wang, D., Geng, H., Guo, J., Qian, S., Liu, X.: How oxygen-containing groups on graphene influence the antibacterial behaviors. Adv. Mater. Interfaces 4, 1700228 (2017)

    Article  CAS  Google Scholar 

  81. Slavin, Y.N., Asnis, J., Hafeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of nanobiotechnology 15, 65 (2017)

    Article  CAS  Google Scholar 

  82. Hashemi, E., Akhavan, O., Shamsara, M., Rahighi, R., Esfandiar, A., Tayefeh, A.R.: Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa. RSC Adv. 4, 27213–27223 (2014)

    Article  CAS  Google Scholar 

  83. AlSalem HS, Keshk AA, Ghareeb RY, Ibrahim AA, Abdelsalam NR, Taher MM, et al.: Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization. Mater. Chem. Phys. 283, 125988 (2022)

  84. Mallakpour, S., Okhovat, M.: Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Int. J. Biol. Macromol. 175, 330–340 (2021)

    Article  CAS  Google Scholar 

  85. Citradewi PW, Hidayat H, Purwiandono G, Fatimah I, Sagadevan S.: Clitorea ternatea-mediated silver nanoparticle-doped hydroxyapatite derived from cockle shell as antibacterial material. Chem. Phys. Lett. 769, 138412 (2021)

  86. Awwad, N., Ahmed, M., Afifi, M., Ibrahium, H.A.: Rb (I)/Se (IV) co-dopant into hydroxyapatite; their structural, morphological, and antibacterial effectiveness for biomedical applications. Appl. Phys. A 127, 1–10 (2021)

    Article  CAS  Google Scholar 

  87. Al Jahdaly BA, Khalil AM, Ahmed MK, Shoueir KR.: Tuning the compositional configuration of hydroxyapatite modified with vanadium ions including thermal stability and antibacterial properties. J. Mol. Struct. 1242, 130713 (2021)

  88. Hassan AA, Radwan HA, Abdelaal SA, Al-Radadi NS, Ahmed MK, Shoueir KR, et al.: Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: morphology, cell adhesion, and antibacterial activity. Int. J. Pharmaceutics 593, 120143 (2021)

  89. Mohd Yusoff MF, Abu Kasim NH, Himratul-Aznita WH, Saidin S, Genasan K, Kamarul T, et al.: Physicochemical, antibacterial and biocompatibility assessments of silver incorporated nano-hydroxyapatite synthesized using a novel microwave-assisted wet precipitation technique. Materials Characterization 178, 111169 (2021)

  90. Patty DJ, Nugraheni AD, Ana ID, Yusuf Y.: In vitro bioactivity of 3D microstructure hydroxyapatite/collagen based‐egg white as an antibacterial agent. J. Biomed. Mater. Res. Part B: Appl. Biomater. (2022)

  91. Babaei, P., Safai-Ghomi, J., Rashki, S.: Engineered dual-purpose Ta-doped ZnO/hydroxyapatite nanocomposites: antibacterial activity and robust catalyst in MW-Induced synthesis of chromopyrimidines. Ceram. Int. 48, 8359–8373 (2022)

    Article  CAS  Google Scholar 

  92. El-Naggar, M.E., Abu Ali, O.A., Saleh, D.I., Abu-Saied, M., Ahmed, M., Abdel-Fattah, E., et al.: Microstructure, morphology and physicochemical properties of nanocomposites containing hydroxyapatite/vivianite/graphene oxide for biomedical applications. Luminescence 37, 290–301 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the Deputyship for Research and Innovation, Minsitry of education in Saudi Arabia for funding this research work through the project number : IFP-KKU-2020/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. El-Morsy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, S., El-Morsy, M.A., Awwad, N.S. et al. Physicochemical changes of hydroxyapatite, V2O5, and graphene oxide composites for medical usages. J Aust Ceram Soc 58, 1399–1413 (2022). https://doi.org/10.1007/s41779-022-00735-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00735-0

Keywords

Navigation