Skip to main content
Log in

Production of Zn-doped TiO2 film with enhanced photocatalytic activity

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, zinc (Zn)-doped titanium dioxide (TiO2) films were prepared using the two steps: anodic oxidation method and heat treatment process. The crystal structure, morphology and elemental composition of the Zn-doped TiO2 films were investigated. These films were characterized by scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the TiO2 films with clear, uniform and short nanopores had a high surface area and high degree of crystallinity. The results showed that the as-anodized TiO2 film was successfully obtained as anatase phase at 450 °C. The results of XPS analysis confirmed the presence of Zn in the lattice of TiO2 as dopant, and thermal diffusion technique was successfully done as doping method. The photocatalytic performances of the Zn-doped TiO2 films were evaluated in terms of their photodegradation rate of methylene blue (MB) in an aqueous solution under UV light irradiation. The results revealed that the Zn-doped TiO2 film had a higher photocatalytic activity in comparison with the undoped sample. This study inspired that Zn-doped TiO2 films are a great potential material to treat wastewater in industrial field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Otero-González, L., García-Saucedo, C., Field, J.A., Sierra-Álvarez, R.: Chemosphere 93, 1201–1206 (2013)

    Article  Google Scholar 

  2. Wang, H., Lewis, J.P.: J. Phys.: Condens. Matter 17, L209 (2005)

    CAS  Google Scholar 

  3. Matsui, M., Akaogi, M.: Mol. Simul. 6, 239–244 (1991)

    Article  Google Scholar 

  4. Reed, P.J., Mehrabi, H., Schichtl, Z.G., Coridan, R.H.: ACS Appl. Mater. Interfaces. 10, 43691–43698 (2018)

    Article  CAS  Google Scholar 

  5. Xie, Y., Zhao, X., Chen, Y., Zhao, Q., Yuan, Q.: J. Solid State Chem. 180, 3576–3582 (2007)

    Article  CAS  Google Scholar 

  6. Li, D., Haneda, H., Hishita, S., Ohashi, N.: Chem. Mater. 17, 2596–2602 (2005)

    Article  CAS  Google Scholar 

  7. Romeas, V., Pichat, P., Guillard, C., Chopin, T., Lehaut, C.: Ind. Eng. Chem. Res. 38, 3878–3885 (1999)

    Article  CAS  Google Scholar 

  8. Chen, J.S., Tan, Y.L., Li, C.M., Cheah, Y.L., Luan, D., Madhavi, S., Boey, F.Y.C., Archer, L.A., Lou, X.W.: J. Am. Chem. Soc. 132, 6124–6130 (2010)

    Article  CAS  Google Scholar 

  9. Kumar, M., Gupta, A.K., Kumar, D.: Ceram. Int. 42, 405–410 (2016)

    Article  CAS  Google Scholar 

  10. Gultekin, S., Yildirim, S., Celik, E., Alicikus, L.Z.A.: J. Aust. Ceram. Soc. 54, 523–531 (2018)

    Article  CAS  Google Scholar 

  11. Park, N.-G., Van de Lagemaat, J.: Frank, AJ. J. Phys. Chem. B 104, 8989–8994 (2000)

    Article  CAS  Google Scholar 

  12. Dargahi, Z., Asgharzadeh, H., Maleki-Ghaleh, H.: Ceram. Int. 44, 13015–13023 (2018)

    Article  CAS  Google Scholar 

  13. Demirci, S., Dikici, T., Yurddaskal, M., Gultekin, S., Toparli, M., Celik, E.: Appl. Surf. Sci. 390, 591–601 (2016)

    Article  CAS  Google Scholar 

  14. Umebayashi, T., Yamaki, T., Tanaka, S., Asai, K.: Chem. Lett. 32, 330–331 (2003)

    Article  CAS  Google Scholar 

  15. Sakthivel, S., Shankar, M., Palanichamy, M., Arabindoo, B., Bahnemann, D., Murugesan, V.: Water Res. 38, 3001–3008 (2004)

    Article  CAS  Google Scholar 

  16. Fujishima, A., Honda, K.: Nature 238, 37–38 (1972)

  17. Siemon, U., Bahnemann, D., Testa, J.J., Rodrı́guez, D., Litter, M.I., Bruno, N.: J. Photochem. Photobiol. A: Chem. 148, 247–255 (2002)

  18. Gao, Y., Lee, W., Trehan, R., Kershaw, R., Dwight, K., Wold, A.: Mater. Res. Bull. 26, 1247–1254 (1991)

    Article  CAS  Google Scholar 

  19. Marci, G., Augugliaro, V., Lopez-Munoz, M.J., Martin, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R.J., Venezia, A.M.: J. Phys. Chem. B 105, 1033–1040 (2001)

    Article  CAS  Google Scholar 

  20. Jing, L., Xin, B., Yuan, F., Xue, L., Wang, B., Fu, H.: J. Phys. Chem. B 110, 17860–17865 (2006)

    Article  CAS  Google Scholar 

  21. Zhang, W., Zhu, S., Li, Y., Wang, F.: Vacuum 82, 328–335 (2007)

    Article  CAS  Google Scholar 

  22. Seo, J.-H., Wu, H., Mikael, S., Mi, H., Blanchard, J.P., Venkataramanan, G., Zhou, W., Gong, S., Morgan, D., Ma, Z.: J. Appl. Physics. 119, 205703 (2016)

  23. George, P., Sanchez, A., Nair, P., Nair, M.: Appl. Phys. Lett. 66, 3624–3626 (1995)

    Article  CAS  Google Scholar 

  24. Satta, A., Janssens, T., Clarysse, T., Simoen, E., Meuris, M., Benedetti, A., Hoflijk, I., De Jaeger, B., Demeurisse, C., Vandervorst, W.: J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measure. Phenom. 24, 494-498 (2006)

  25. Huet, K., Mazzamuto, F., Tabata, T., Toque-Tresonne, I., Mori, Y.: Mater. Sci. Semicond. Process. 62, 92–102 (2017)

    Article  CAS  Google Scholar 

  26. Gültekin, S., Yıldırım, S., Yılmaz, O., Keskin, İÇ., Katı, M.İ, Çelik, E.: J. Lumin. 206, 59–69 (2019)

    Article  Google Scholar 

  27. Yildirim, S., Yurddaskal, M., Dikici, T., Aritman, I., Ertekin, K., Celik, E.: Ceram. Int. 42, 10579–10586 (2016)

    Article  CAS  Google Scholar 

  28. Niaki, A.G., Bakhshayesh, A., Mohammadi, M.: Sol. Energy 103, 210–222 (2014)

    Article  Google Scholar 

  29. Pang, S., Huang, J.g., Su, Y., Geng,B., Lei, S.y., Huang, Y.t., Lyu, C., Liu, X.j.: Photochem. Photobiol. 92, 651–657 (2016)

  30. Zhao, Y., Li, C., Liu, X., Gu, F., Du, H., Shi, L.: Appl. Catal. B 79, 208–215 (2008)

    Article  CAS  Google Scholar 

  31. Nair, R.G., Mazumdar, S., Modak, B., Bapat, R., Ayyub, P., Bhattacharyya, K.: J. Photochem. Photobiol., A 345, 36–53 (2017)

    Article  CAS  Google Scholar 

  32. Zhang, Y., Wang, L., Liu, B., Zhai, J., Fan, H., Wang, D., Lin, Y., Xie, T.: Electrochim. Acta 56, 6517–6523 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Gültekin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikici, T., Yılmaz, O., Akalın, A. et al. Production of Zn-doped TiO2 film with enhanced photocatalytic activity. J Aust Ceram Soc 58, 1415–1421 (2022). https://doi.org/10.1007/s41779-022-00712-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00712-7

Keywords

Navigation