Skip to main content
Log in

Hydrothermal synthesis of mesoporous cobalt ferrite by ionic liquid-assisted process; catalytic performance, morphology, and magnetic studies

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The CoFe2O4 with various morphologies has been successfully synthesized via ionic liquid-assisted hydrothermal synthetic process and was used as a catalyst to form imidazo[1,2-a]pyridines. The structural and magnetic properties of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), nitrogen sorption techniques (BET), and vibrating sample magnetometer (VSM). The results indicate that the samples are nanoparticles, nanorods, and nanosheets which clearly shows the effect of octyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide ([C8dabco]Br) ionic liquid on the morphology of final products. According to the SEM and magnetic hysteresis measurements, different ratios of [C8dabco]Br resulted in different morphologies and crystalline sizes and hence different magnetic properties in the synthesized materials. Textural analysis by N2 sorption revealed that the total BET surface areas of CoFe2O4 nano powders were 23.5–48.6 m2/g. It was found that the values of remanent magnetization (Mr) and saturation magnetization (Ms) increase with increment of IL ratio. Moreover, the reaction of aldehydes, 2-aminopyridines, and isocyanide was carried out under solvent-free conditions by cobalt ferrite as a suitable catalyst, and all desired products were formed in good yields. The ultraviolet (UV) spectrum has been used to calculate the absorption coefficient (α) as a function of photon energy (hυ), and the obtained results indicate that the optical band gaps are estimated to be 1.23–1.38 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. Tho, N.T., Thi, C.M., Van Hieu, L., et al.: Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: a case of black TiO2 nanotube arrays. J. Aust. Ceram. Soc. 56, 849–857 (2020). https://doi.org/10.1007/s41779-019-00405-8

    Article  CAS  Google Scholar 

  2. Arul, E., Sivaji, K., Manohar, P.: Effect of bismuth on copper zinc ferrites for photocatalytic applications. J. Aust. Ceram. Soc. 56, 811–817 (2020). https://doi.org/10.1007/s41779-019-00400-z

    Article  CAS  Google Scholar 

  3. Yavaş, A., Güler, S., Erol, M.: Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties. J. Aust. Ceram. Soc. 56, 995–1003 (2020). https://doi.org/10.1007/s41779-019-00440-5

    Article  CAS  Google Scholar 

  4. A, S.P., Devi, K.R.S., NJ, V.: Role of Sm3+ and Ce4+ on mesoporous rice husk silica for selective oxidation of benzyl alcohol to benzaldehyde. J. Aust. Ceram. Soc. 56, 217–225 (2020). https://doi.org/10.1007/s41779-019-00342-6

    Article  CAS  Google Scholar 

  5. Prozorov, T., Bazylinski, D.A., Mallapragada, S.K., Prozorov, R.: Novel magnetic nanomaterials inspired by magnetotactic bacteria: topical review. Mater. Sci. Eng. 74, 133–172 (2013)

    Article  Google Scholar 

  6. Li, X., Zhang, F., Zhao, D.: Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 44, 1346–1378 (2015)

    Article  CAS  Google Scholar 

  7. Zaera, F.: Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 42, 2746–2762 (2013)

    Article  CAS  Google Scholar 

  8. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)

    Article  CAS  Google Scholar 

  9. Freemantle, M.: Designer solvents: ionic liquids may boost clean technology development. Chem. Eng. News. 76, 32–37 (1998)

    Article  Google Scholar 

  10. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014)

    Article  CAS  Google Scholar 

  11. Hojniak, S.D., Silverwood, I.P., Khan, A.L., Vankelecom, H.F.J., Dehaen, W., Kazarian, S.G., Binnemans: Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes. K. J Phys Chem B. 118, 7440–7449 (2014)

    Article  CAS  Google Scholar 

  12. Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  Google Scholar 

  13. Sanaeishoar, H., Sabbaghan, M., Mohave, F.: Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous Mesoporous Mater. 217, 219–224 (2015)

    Article  CAS  Google Scholar 

  14. Sun, C., Lee, J.S.H., Zhang, M.: Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 60, 1252–1265 (2008)

    Article  CAS  Google Scholar 

  15. Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)

    Article  CAS  Google Scholar 

  16. Rocha-Santos, T.A.P.: Sensors and biosensors based on magnetic nanoparticles. Trac-Trend Anal Chem. 62, 28–36 (2014)

    Article  CAS  Google Scholar 

  17. Rossi, L.M., Costa, N.J.S., Silva, F.P., Wojcieszak, R.: Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 16, 2906–2933 (2014)

    Article  CAS  Google Scholar 

  18. Takeda, E., Todoroki, N., Kitamoto, Y., Abe, M.: Faraday effect enhancement in Co-ferrite layer incorporated into one-dimensional photonic crystal working as a Fabry-Perot resonator. J. Appl. Phys. 87, 6782–6784 (2000)

    Article  CAS  Google Scholar 

  19. Gu, B.X.: Magnetic properties and magneto-optical effect of Co0.5Fe2.5O4 nanostructured films. Appl. Phys. Lett. 82, 3707–3709 (2003)

    Article  CAS  Google Scholar 

  20. Sun, Y., Ji, G., Zheng, M., Chang, X., Lib, S., Zhang, Y.: Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J. Mater. Chem. 20, 945–952 (2010)

    Article  CAS  Google Scholar 

  21. Desai, S.S., Pawar, R.A., Jadhav, S.S., Shirsath, S.E., Patange, S.M.: Role of coupling divalent and tetravalent metal ions on the elastic and electric properties of CoFe2O4 ferrites prepared by sol–gel method. J. Supercond. Nov. Magn. 29, 2635–2640 (2016)

    Article  CAS  Google Scholar 

  22. Pervaiz, E., Gul, I.H., Anwar, H.: Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods. J. Supercond. Nov. Magn. 26, 415–424 (2013)

    Article  CAS  Google Scholar 

  23. He, G., Ding, J., Zhang, J., Hao, Q., Chen, H.: One-step ball-milling preparation of highly photocatalytic active cofe2o4–reduced graphene oxide heterojunctions for organic dye removal. Ind. Eng. Chem. Res. 54, 2862–2867 (2015)

    Article  CAS  Google Scholar 

  24. Lu, X., Yang, L., Bian, X., Chao, D., Wang, C.: Rapid, microwave-assisted, and one-pot synthesis of magnetic palladium–CoFe2O4–graphene composite nanosheets and their applications as recyclable catalysts. Part. Part. Syst. Charact. 31, 245–251 (2014)

    Article  CAS  Google Scholar 

  25. Gandha, K., Elkins, K., Poudyal, N., Liu, J.P.: Synthesis and characterization of CoFe2O4 nanoparticles with high coercivity. J. Appl. Phys. 117, 17A736 (2015)

    Article  CAS  Google Scholar 

  26. Antonel, P.S., Oliveira, C.L.P., Jorge, G.A., Perez, O.E., Leyva, A.G., Negri, R.M.: Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods. J. Nanopart. Res. 17, 1–14 (2015)

    Article  CAS  Google Scholar 

  27. Yao, X., Kong, J., Tang, X., Zhou, D., Zhao, C., Zhou, R., Lu, X.: Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. RSC Adv. 4, 27488–27492 (2014)

    Article  CAS  Google Scholar 

  28. Jing, P., Du, J., Jin, C., Wang, J., Pan, L., Li, J., Liu, Q.: Improved coercivity and considerable saturation magnetization of cobalt ferrite (CoFe2O4) nanoribbons synthesized by electrospinning. J. Mater. Sci. 51, 885–892 (2016)

    Article  CAS  Google Scholar 

  29. Ji, G.B., Tang, S.L., Ren, S.K., Zhang, F.M., Gu, B.X., Du, Y.W.: Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process. J. Cryst. Growth. 270, 156–161 (2004)

    Article  CAS  Google Scholar 

  30. Menchaca-Nal, S., Londoño-Calderón, C.L., Cerrutti, P., Foresti, M.L., Pampillo, L., Bilovol, V., Candal, R., Martínez-García, R.: Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template. Carbohydr. Polym. 137, 726–731 (2016)

    Article  CAS  Google Scholar 

  31. Devi, N., Rawal, R., Singh, V.: Diversity-oriented synthesis of fused-imidazole derivatives via Groebke–Blackburn–Bienayme reaction: a review. Tetrahedron. 71, 183–232 (2015)

    Article  CAS  Google Scholar 

  32. Shaoyong, L., Shuai, L., Zhang, J.: Harnessing allostery: a novel approach to drug discovery. Med. Res. Rev. 34, 1242–1285 (2014)

    Article  CAS  Google Scholar 

  33. Yadav, J.S., Reddy, B.V.S., Rao, Y.G., Srinivas, M., Narsaiah, A.V.: Cu(OTf)2-catalyzed synthesis of imidazo[1,2-a]pyridines from α-diazoketones and 2-aminopyridines. Tetrahedron Lett. 48, 7717–7720 (2007)

    Article  CAS  Google Scholar 

  34. Wu, Z., Pan, Y., Zhou, X.: Synthesis of 3-arylimidazo[1,2-a]pyridines by a catalyst-free cascade process. Synthesis. 2011, 2255–2260 (2011)

    Article  CAS  Google Scholar 

  35. Groebke, K., Weber, L., Mehlin, F.: Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett. 1998, 661–663 (1998)

    Article  Google Scholar 

  36. Bienayme, H., Bouzid, K.: A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed. 37, 2234–2237 (1998)

    Article  CAS  Google Scholar 

  37. Blackburn, C., Guan, B., Fleming, P., Shiosaki, K., Tsai, S.: Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett. 39, 3635–3638 (1998)

    Article  CAS  Google Scholar 

  38. Lu, J., Li, X.T., Ma, E.Q., Mo, L.P., Zhang, Z.H.: Superparamagnetic CuFeO2 nanoparticles in deep eutectic solvent: an efficient and recyclable catalytic system for the synthesis of imidazo[1,2-a]pyridines. Chem. Cat. Chem. 6, 2854–2859 (2014)

    CAS  Google Scholar 

  39. Shaabani, A., Hooshmand, S.E.: Choline chloride/urea as a deep eutectic solvent/organocatalyst promoted three-component synthesis of 3-aminoimidazo-fused heterocycles via Groebke–Blackburn–Bienayme process. Tetrahedron Lett. 57, 310–313 (2016)

    Article  CAS  Google Scholar 

  40. Tavakkoli, H., Yazdanbakhsh, M.: Fabrication of two perovskite-type oxide nanoparticles as the new adsorbents in efficient removal of a pesticide from aqueous solutions: kinetic, thermodynamic, and adsorption studies. Microporous Mesoporous Mater. 176, 86–94 (2013)

    Article  CAS  Google Scholar 

  41. Tabari, T., Tavakkoli, H.: Fabrication and characterization of perovskite-type oxide LaFe0.9Co0.1O3 nanoparticles and its performance in aerobic oxidation of thiols to disulfide. Chin. J. Catal. 33, 1791–1796 (2012)

    Article  CAS  Google Scholar 

  42. Tavakkoli, H., Hamedi, F.: Synthesis of Gd0.5Sr0.5FeO3 perovskite-type nanopowders for adsorptive removal of MB dye from water. Res. Chem. Intermed. 42, 3005–3027 (2016)

    Article  CAS  Google Scholar 

  43. Sanaeishoar, H., Sabbaghan, M., Mohave, F., Nazarpour, R.: Disordered mesoporous KIT-1 synthesized by DABCO-based ionic liquid and its characterization. Microporous Mesoporous Mater. 228, 305–309 (2016)

    Article  CAS  Google Scholar 

  44. Chiappe, C., Melai, B., Sanzone, A., Valentini, G.: Basic ionic liquids based on monoquaternized 1,4-diazobicyclo[2.2.2]octane (dabco) and dicyanamide anion: physicochemical and solvent properties. Pure Appl. Chem. 81, 2035–2043 (2009)

    Article  CAS  Google Scholar 

  45. Bertaut, E.F.: Sur quelques progress recents dans la crystallographic des spinelles, en particulier des ferrites (Recent progress in the crystallography of spinels, in particular the ferrites). J Phys Rad. 12, 252–255 (1951)

    Article  CAS  Google Scholar 

  46. Shirsath, S.E., Liu, X., Yasukawa, Y., Li, S., Morisako, A.: Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6, 1–11 (2016)

    Article  CAS  Google Scholar 

  47. Jia, Z., Ren, D., Zhu, R.: Synthesis, characterization and magnetic properties of CoFe2O4 nanorods. Mater. Lett. 66, 128–131 (2012)

    Article  CAS  Google Scholar 

  48. Slonczewski, J.C.: Origin of magnetic anisotropy in cobalt-substituted magnetite. Phys. Rev. 110, 1341–1348 (1958). https://doi.org/10.1103/PhysRev.110.1341

    Article  CAS  Google Scholar 

  49. Kumar, Y., Sharma, A., Shirage, P.M.: Impact of different morphologies of CoFe2O4 nanoparticles for tuning of structural, optical and magnetic properties. J. Alloys Compd. 778, 398–409 (2019)

    Article  CAS  Google Scholar 

  50. Burns, R.G.: Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  51. Sharma, D., Khare, N.: Tuning of optical bandgap and magnetization of CoFe2O4 thin films. Appl. Phys. Lett. 105, 032404 (2014). https://doi.org/10.1063/1.4890863

    Article  CAS  Google Scholar 

  52. Varma, R.S., Kumar, D.: Microwave-accelerated three-component condensation reaction on clay: solvent-free synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines. Tetrahedron Lett. 40, 7665–7669 (1999)

    Article  CAS  Google Scholar 

  53. Adib, M., Sheikhi, E., Rezaei, N.: One-pot synthesis of imidazo[1,2-a]pyridines from benzyl halides or benzyl tosylates, 2-aminopyridines and isocyanides. Tetrahedron Lett. 52, 3191–3194 (2011)

    Article  CAS  Google Scholar 

  54. Adib, M., Mahdavi, M., Alizadeh, N.M., Mirzaei, P.: Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett. 48, 7263–7265 (2007)

    Article  CAS  Google Scholar 

  55. Shaabani, A., Rezazadeh, F., Soleimani, E.: Ammonium chloride catalyzed one-pot synthesis of imidazo[1,2-a]pyridines. Monatsh. Chem. 139, 931–933 (2008)

    Article  CAS  Google Scholar 

  56. Sanaeishoar, T., Tavakkoli, H., Mohave, F.: A facile and eco-friendly synthesis of imidazo [1, 2-a] pyridines using nano-sized LaMnO3 perovskite-type oxide as an efficient catalyst under solvent-free conditions. Appl Catal A-Gen. 470, 56–62 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haman Tavakkoli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemi, A., Mohave, F., Farhadi, A. et al. Hydrothermal synthesis of mesoporous cobalt ferrite by ionic liquid-assisted process; catalytic performance, morphology, and magnetic studies. J Aust Ceram Soc 57, 1321–1330 (2021). https://doi.org/10.1007/s41779-021-00630-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00630-0

Keywords

Navigation