Skip to main content

Advertisement

Log in

Pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films for photovoltaic applications

  • Original Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A titanium-based heterobimetallic single-source precursor [Y2Ti4(μ3-O)4(μ2-O)3(H2O)(TFA)8(THF)5].3(THF) (1) (where TFA = trifluoroacetato and THF = tetrahydrofuran) was successfully used to fabricate pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films on fluorine-doped tin oxide (FTO) substrates using the aerosol-assisted chemical vapor deposition technique (AACVD). The precursor complex (1), isolated in crystalline form by reacting yttrium (III) acetate monohydrate with titanium (IV) isopropoxide and trifluroacetic acid in THF solution, was characterized by physicochemical methods such as melting point, microanalysis, FT-IR, 1H-NMR, thermogravimetric analyses (TGA/DTG), and single-crystal X-ray diffraction. Thin films prepared at 550 °C were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission gun-scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDX) which demonstrated the development of mesoporous structured microballs of Y2Ti2O7–2TiO2 with precise stoichiometry. The optical analysis showed that Y2Ti2O7–2TiO2 has a direct optical band gap of 1.8 eV. Photo-oxidation of water via Y2Ti2O7–2TiO2 thin films was carried out under simulated solar irradiation of AM 1.5 G (100 mW cm−2) using three-electrode photoelectrochemical cell in of in three separate 0.5 M electrolyte solutions of NaOH (pH = 13.5), Na2SO4 (pH = 7.2), and citrate buffer (pH = 4). A best photocurrent density of ~ 60 μA cm−2 at + 0.8 V vs. SCE was observed at pH of 13.5. These observations were further validated by electrochemical impedance spectroscopy (EIS) studies in terms of charge transportation and its recombination time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, T., Yu, K., Gao, L., Chen, H., Wang, N., Hao, L., Li, T., He, H., Guo, Z.: A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A. 5(34), 17848–17855 (2017)

    CAS  Google Scholar 

  2. Hou, Q., Ren, J., Chen, H., Yang, P., Shao, Q., Zhao, M., Zhao, X., He, H., Wang, N., Luo, Q.: Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells. ChemElectroChem. 5(5), 726–731 (2018)

    CAS  Google Scholar 

  3. Luo, Q., Ma, H., Hou, Q., Li, Y., Ren, J., Dai, X., Yao, Z., Zhou, Y., Xiang, L., Du, H.: All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018)

    Google Scholar 

  4. Song, B., Wang, T., Sun, H., Shao, Q., Zhao, J., Song, K., Hao, L., Wang, L., Guo, Z.: Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46(45), 15769–15777 (2017)

    CAS  Google Scholar 

  5. Lou, X., Lin, C., Luo, Q., Zhao, J., Wang, B., Li, J., Shao, Q., Guo, X., Wang, N., Guo, Z.: Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem. 4(12), 3171–3180 (2017)

    CAS  Google Scholar 

  6. Zhang, L., Yu, W., Han, C., Guo, J., Zhang, Q., Xie, H., Shao, Q., Sun, Z., Guo, Z.: Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164(9), H651–H656 (2017)

    CAS  Google Scholar 

  7. Zhang, L., Qin, M., Yu, W., Zhang, Q., Xie, H., Sun, Z., Shao, Q., Guo, X., Hao, L., Zheng, Y.: Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164(14), H1086–H1090 (2017)

    CAS  Google Scholar 

  8. Du, H.-Y., An, Y.-L., Wei, Y.-H., Hou, L.-F., Liu, B.-S., Liu, H., Ma, Y., Zhang, J.-X., Wang, N., Umar, A.: Nickel powders modified nanocoating strengthened iron plates by surface mechanical attrition alloy and heat treatment. Sci. Adv. Mater. 10(7), 1063–1072 (2018)

    CAS  Google Scholar 

  9. Wessels, W.B.: Metal-organic chemical vapour deposition of ferroelectric oxide thin films for elcetronics and optical applications. Annu. Rev. Mater. Sci. 25, 525–546 (1995)

    CAS  Google Scholar 

  10. Chen, X., Shen, S., Guo, L., Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    CAS  Google Scholar 

  11. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38(1), 253–278 (2009)

    CAS  Google Scholar 

  12. Reddy, B.M., Khan, A.: Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal. Rev. 47(2), 257–296 (2005)

    CAS  Google Scholar 

  13. Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., Mcevoy, A.J., Mogensen, M., Singhal, S.C., Vohs, J.: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)

    CAS  Google Scholar 

  14. Ehsan, M.A., Khaledi, H., Pandikumar, A., Huang, N.M., Arifin, Z., Mazhar, M.: Dye sensitized solar cell applications of CdTiO3–TiO2 composite thin films deposited from single molecular complex. J. Solid State Chem. 230, 155–162 (2015)

    CAS  Google Scholar 

  15. Rao, C.N.R., Raveau, B.: Transition metal oxides. Adv. Mater. Opt. Electron. 5, 286 (1995)

    Google Scholar 

  16. Cai, Z., Xing, X., Yu, R., Sun, X., Liu, G.: Morphology-controlled synthesis of lead titante powders. Inorg. Chem. 46, 7423–7427 (2007)

    CAS  Google Scholar 

  17. Izyumskaya, N., Alivov, Y., Morkoç, H.: Oxides, oxides, and more oxides: high-κ oxides, ferroelectrics, ferromagnetics, and multiferroics. Crit. Rev. Solid State Mater. Sci. 34, 89–179 (2009)

    CAS  Google Scholar 

  18. Guo, S., Liu, J., Qiu, S., Liu, W., Wang, Y., Wu, N., Guo, J., Guo, Z.: Porous ternary TiO2/MnTiO3@C hybrid microspheres as anode materials with enhanced electrochemical performances. J. Mater. Chem. A. 3(47), 23895–23904 (2015)

    CAS  Google Scholar 

  19. Bavykin, D.V., Walsh, F.C.: Elongated titanate nanostructures and their applications. Eur. J. Inorg. Chem. 2009, 977–997 (2009)

    Google Scholar 

  20. Zhang, J., Bang, J.H., Tang, C., Kamat, P.V.: Tailored TiO2− SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano. 4(1), 387–395 (2009)

    Google Scholar 

  21. Hassan, M.S., Amna, T., Kim, H.Y., Khil, M.-S.: Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof. Compos. Part B. 45, 904–910 (2013)

    CAS  Google Scholar 

  22. Zhang, Y., Jiang, Z., Huang, J., Lim, L.L., Li, W., Deng, J., Gong, D., Tang, Y., Lai, Y., Chen, Z.: Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015)

    CAS  Google Scholar 

  23. Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of differenr shapes. Chem. Rev. 105, 1025–1102 (2005)

    CAS  Google Scholar 

  24. Logar, M., Jancar, B., Sturm, S., Suvorov, D.: Weak polyion multilayer-assisted in situ synthesis as a route toward a plasmonic Ag/TiO2 photocatalyst. Langmuir. 26(14), 12215–12224 (2010)

    CAS  Google Scholar 

  25. Stanca, S.E., Müller, R., Urban, M., Csaki, A., Froehlich, F., Krafft, C., Popp, J., Fritzsche, W.: Photocatalyst activation by intrinsic stimulation in TiO2–BaTiO3. Catal Sci Technol. 2, 1472–1479 (2012)

    CAS  Google Scholar 

  26. Zhang, H., Liu, X., Li, Y., Sun, Q., Wang, Y., Wood, B.J., Liu, P., Yang, D., Zhao, H.: Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties. J. Mater. Chem. 22(6), 2465–2472 (2012)

    CAS  Google Scholar 

  27. Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43(15), 5234–5244 (2014)

    CAS  Google Scholar 

  28. Subramanian, M.A., Aravamudan, G., Rao, G.V.S.: Oxide pyrochlores-a review. Prog. Solid State Chem. 15, 55–143 (1983)

    CAS  Google Scholar 

  29. Aleshin, E., Roy, R.: Crystal chemistry of pyrochlore. J. Am. Ceram. Soc. 45, 18–25 (1962)

    CAS  Google Scholar 

  30. Kim, N., Grey, C.P.: Solid-state NMR study of anionic conductor Ca- doped Y2Ti2O7. Dalton Trans. 19, 3048–3052 (2004)

    Google Scholar 

  31. Greedan, J.E.: Frustrated rare earth magnetism: spin glasses, spin liquids and spin ices in pyrochlore oxides. J. Alloys Compd. 408-412, 444–455 (2006)

    CAS  Google Scholar 

  32. Lei, H., Sun, Y., Zhu, X., Song, W., Yang, J., Gu, H.: Chemical solution deposition of Y2Ti2O7-La2Zr2O7 composite buffer layers. IEEE Trans. Appl. Supercond. 17, 3819–3823 (2007)

    CAS  Google Scholar 

  33. Pavitra, E., Raju, G.S.R., Yu, J.S.: Solvothermal synthesis and luminescent properties of Y2Ti2O7:Eu3+ spheres. Phys Status Solidi Rapid Res Lett. 7, 224–227 (2013)

    CAS  Google Scholar 

  34. Chen, Z., Chen, T., Gong, W., Xu, W., Wang, D., Wang, Q.: Effect of Li+ ions doping on microstructure and upconversion emission of Y2Ti2O7:Er3+/Yb3+ nanophosphors synthesized via a sol-gel method. J. Am. Ceram. Soc. 96(6), 1857–1862 (2013)

    CAS  Google Scholar 

  35. Ishida, S., Ren, F., Takeuchi, N.: New yellow ceramic pigment based on codoping pyrochlore-type Y2Ti2O7 with V5+ and Ca2+. J. Am. Ceram. Soc. 76(10), 2644–2648 (1993)

    CAS  Google Scholar 

  36. Chen, Z.S., Gong, W.P., Chen, T.F., Li, S.L.: Synthesis and characterization of pyrochlore-type yttrium titanate nanoparticles by modified sol-gel method. Bull. Mater. Sci. 34, 429–434 (2011)

    CAS  Google Scholar 

  37. Higashi, M., Abe, R., Sugihara, H., Domen, K.: Photocatalytic water splitting into H2 and O2 over titanate pyrochlores Ln2Ti2O7(Ln=Lanthanoid: Eu–Lu). Bull. Chem. Soc. Jpn. 81(10), 1315–1321 (2008)

    CAS  Google Scholar 

  38. Abe, R., Higashi, M., Sayama, K., Abe, Y., Sugihara, H.: Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb,Ta) for water splitting into H2 and O2. J. Phys. Chem. B. 110, 2219–2226 (2006)

    CAS  Google Scholar 

  39. Higashi, M., Abe, R., Sayama, K., Sugihara, H., Abe, Y.: Improvement of photocatalytic activity of titanate pyrochlore Y2Ti2O7 by addition of excess Y. Chem. Lett. 34(8), 1122–1123 (2005)

    CAS  Google Scholar 

  40. Terki, R., Bertrand, G., Aourag, H., Coddet, C.: Ab initio calculations of structural and electronic properties of Y2Ti2O7 and Cd2Nb2O7. Physica B. 392, 341–347 (2007)

    CAS  Google Scholar 

  41. Kakihana, M., Milanova, M.M., Arima, M., Toru, O., Yashima, M., Yoshimura, M.: Polymerized complex route to synthesis of pure Y2Ti2O7 at 750 °C using yttrium-titanium mixed-metal citric acid complex. J. Am. Ceram. Soc. 79, 1673–1676 (1996)

    CAS  Google Scholar 

  42. Modeshia, D.R., Walton, R.I.: Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions. Chem. Soc. Rev. 39(11), 4303–4325 (2010)

    CAS  Google Scholar 

  43. Kumar, B.V., Velchuri, R., Devi, V.R., Prasad, G., Sreedhar, B., Bansal, C., Vithal, M.: Preparation, characterization, emission (Eu3+), and electron spin resonance (Gd3+) studies of Y2− x LnxTi2O7 (Ln= Eu and Gd, x= 0.0, 0.05). J. Appl. Phys. 108(4), 044906 (2010)

    Google Scholar 

  44. Singh, M., Gill, J.K., Kumar, S., Singh, K.: Preparation of Y2Ti2O7 pyrochlore using high-energy ball milling and their structural, thermal and conducting properties. Ionics. 18, 479–486 (2011)

    Google Scholar 

  45. Dai, P., Zhang, X., Zhou, M., Li, X., Yang, J., Sun, P., Xu, C., Liu, Y.: Thermally stable pyrochlore Y2Ti2O7:Eu3+ orange-red emitting phosphors. J. Am. Ceram. Soc. 95, 658–662 (2012)

    CAS  Google Scholar 

  46. Mandal, B.P., Garg, N., Sharma, S.M., Tyagi, A.K.: Preparation, XRD and raman spectroscopic studies on new compounds RE2Hf2O7 (RE=Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite. J. Solid State Chem. 179(7), 1990–1994 (2006)

    CAS  Google Scholar 

  47. Knapp, C.E., Carmalt, C.J.: Solution based CVD of main group materials. Chem. Soc. Rev. 45(4), 1036–1064 (2016)

    CAS  Google Scholar 

  48. Marchand, P., Hassan, I.H., Parkin, I.P., Carmalt, C.J.: Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication. Dalton Trans. 42, 9406–9422 (2013)

    CAS  Google Scholar 

  49. Deng, Y., Lv, Q., Wu, S., Zhan, S.: Heterobimetallic peroxo-titanium (IV) nitrilotriacetate complexes as single source precursors for preparation of MTiO3 (M=Co, Ni and Zn). Dalton Trans. 39(10), 2497–2503 (2010)

    CAS  Google Scholar 

  50. Hill, M.R., Jensen, P., Russell, J.J., Lamb, R.N.: Synthesis and properties of Zn-Mg heterobimetallic carbamates. Crystal structures of the first reported single source precursors for Zn(x)mg(1-x) O thin films. Dalton Trans. 2008(20), 2751–2758 (2008)

  51. Ahmed, S., Mansoor, M.A., Basirun, W.J., Sookhakian, M., Huang, N.M., Mun, L.K., Söhnel, T., Arifin, Z., Mazhar, M.: Synthesis and characterization of a hexanuclear copper–yttrium complex for deposition of semiconducting CuYO2–0.5Cu2O composite thin films. New J. Chem. 39(2), 1031–1037 (2015)

    CAS  Google Scholar 

  52. Mansoor, M.A., Mazhar, M., Pandikumar, A., Khaledi, H., Ming, H.N., Arifin, Z.: Photoelectrocatalytic activity of Mn2O3–TiO2 composite thin films engendered from a trinuclear molecular complex. Int. J. Hydrog. Energy. 41, 9267–9275 (2016)

    CAS  Google Scholar 

  53. Hubbard, C.R., Evans, E.H., Smith, D.K.: The reference intensity ratio, I/Ic, for computer simulated powder patterns. J. Appl. Crystallogr. 9, 169–174 (1976)

    Google Scholar 

  54. Hubbard, C.R., Snyder, R.L.: RIR-measurement and use in quantitative XRD. Powder Diffract. 3, 74–77 (1988)

    CAS  Google Scholar 

  55. Ehsan, M.A., Mansoor, M.A., Mazhar, M., Tahir, A.A., Hamid, M., Upul Wijayantha, K.G.: Cobalt titanate-cobalt oxide composite thin films deposited from heterobimetallic precursor. Appl. Organomet. Chem. 26, 493–498 (2012)

    CAS  Google Scholar 

  56. Ehsan, M.A., Khaledi, H., Pandikumar, A., Rameshkumar, P., Huang, N.M., Arifin, Z., Mazhar, M.: Nitrite ion sensing properties of ZnTiO3–TiO2 composite thin films deposited from a zinc–titanium molecular complex. New J. Chem. 39(9), 7442–7452 (2015)

    CAS  Google Scholar 

  57. Gaspar, R.D.L., Rodrigues, E.M., Mazali, I.O., Sigoli, F.A.: Luminescent properties of passivated europium (III)-doped rare earth oxide sub-10 nm nanoparticles. RSC Adv. 3, 2794–2801 (2013)

    CAS  Google Scholar 

  58. Nawar, N., Honsy, N.M.: Synthesis, spectral and antimicrobial activity studies of o-aminoacetophenone o-hydroxybenzoylhydrazone complex. Transit. Met. Chem. 25, 1–8 (2000)

    CAS  Google Scholar 

  59. Karle, S., Dang, V.-S., Prenzel, M., Rogalla, D., Becker, H.-W., Devi, A.: Metal-organic CVD of Y2O3 thin films using yttrium tris-amidinates. Chem. Vap. Depos. 21, 1–8 (2015)

    Google Scholar 

  60. Cheng, X., Qi, Z., Zhang, G., Zhou, H., Zhang, W., Yin, M.: Growth and characterization of Y2O3 thin films. Physica B. 404, 146–149 (2009)

    CAS  Google Scholar 

  61. Wang, H., Yuan, X., Wang, H., Chen, X., Wu, Z., Jiang, L., Xiong, W., Zhang, Y., Zeng, G.: One-step calcination method for synthesis of mesoporous g-C3N4/NiTiO3 heterostructure photocatalyst with improved visible light photoactivity. RSC Adv. 5(116), 95643–95648 (2015)

    CAS  Google Scholar 

  62. Yang, G., Chang, W., Yan, W.: Fabrication and characterization of NiTiO3 nanofibers by sol–gel assisted electrospinning. J. Sol-Gel Sci. Technol. 69(3), 473–479 (2013)

    Google Scholar 

  63. Chuang, S.H., Hsieh, M.L., Wu, S.C., Lin, H.C., Chao, T.S., Hou, T.H.: Fabrication and characterization of high-k dielectric nickel titanate thin films using a modified Sol-Gel method. J. Am. Ceram. Soc. 94(1), 250–254 (2011)

    CAS  Google Scholar 

  64. Pei, L., Jiaqi, Z., Yuankun, Z., Chunzhu, J., Xunbo, Y.: Evolution of composition, microstructure and optical properties of yttrium oxide thin films with substrate temperature. Surf. Coat. Technol. 229, 226–230 (2013)

    Google Scholar 

  65. Verma, R., Samdarshi, S.K., Singh, J.: Hexagonal Ceria located at the interface of anatase/rutile TiO2 superstructure optimized for high activity under combined UV and visible-light irradiation. J. Phys. Chem. C. 119(42), 23899–23909 (2015)

    CAS  Google Scholar 

  66. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36(12), 2049–2070 (2015)

    CAS  Google Scholar 

  67. Reddy, K.M., Manorama, S.V., Reddy, A.R.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78(1), 239–245 (2003)

    Google Scholar 

Download references

Funding

The work received financial support from the University of Malaya through FRGS Grant No. FP039-2016 and IPPP Grant No. PG053-2016A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mazhar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

CCDC 1576421 contains the supplementary crystallographic data for complex (1). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223–336-033; or e-mail: deposit@ccdc.cam.ac.uk. Crystallographic details, FT-IR and NMR spectra for compound complex 1, XRD stick pattern matching with standard cards, high resolution FESEM images and EDX of thin films are is available in supplementary data.

ESM 1

(DOCX 1549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, K., Mansoor, M.A., Olmstead, M.M. et al. Pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films for photovoltaic applications. J Aust Ceram Soc 55, 921–932 (2019). https://doi.org/10.1007/s41779-019-00329-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00329-3

Keywords

Navigation