Skip to main content
Log in

Crystallization behavior and properties of cordierite synthesized by sol-gel technique and hydrothermal treatment

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Cordierite gels have been synthesized by sol-gel and hydrothermal treatment starting from silicon tetrachloride (SiCl4), aluminum hydroxide (Al(OH)3), and magnesium chloride (MgCl2–6H2O). The phase transformation occurring in the temperature range 900–1300 °C was characterized by the differential thermal and thermogravimetric analysis (DTA, TGA), X-ray diffraction technique (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and laser granulometry. The properties of uniaxial pressed and sintered specimens as porosity, density, and mechanical strength were measured. The results show that metastable μ-cordierite was crystallized in the temperature range 900–1200 °C and then transformed into α-cordierite at 1300 °C for both methods. The crystallization of α-cordierite took place with a small amount of cristobalite, enstatite, and spinel. The particle size distribution of the powders obtained by both methods progressed as a function of formed phases. The mechanical properties and the density of sintered materials for both methods increased as a function of sintering temperature up to 1200 °C and decreased at 1300 °C due to high porosity generated by α-cordierite crystallization. The sol-gel method has demonstrated better advantages comparing with hydrothermal treatment in terms of phase transformations and the properties of sintered specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu, Y., Hao, X., Song, L., Li, Z., Song, L.: Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. J Non-Cryst Solids. 448, 36–42 (2016)

    Article  Google Scholar 

  2. Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., Sebayang, K.: Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes. Ceram Int. 42, 8431–8437 (2016)

    Article  Google Scholar 

  3. Kumar, S., Singh, K.K., Ramachandrarao, P.: Synthesis of cordierite from fly ash and its refractory properties. J Mater Sci Lett. 19, 1263–1265 (2000)

    Article  Google Scholar 

  4. Janković-Častvan, I., Lazarević, S., Jordović, B., Petrović, R., Tanasković, D., Janaćković, D.: Electrical properties of cordierite obtained by non-hydrolytic sol–gel method. J Eur Ceram Soc. 27, 3659–3661 (2007)

    Article  Google Scholar 

  5. Fang, J., Qin, G., Wei, W., Zhao, X.: Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep Purif Technol. 80, 585–591 (2011)

    Article  Google Scholar 

  6. Dong, Y., Liu, X., Ma, Q., Meng, G.: Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. J Membr Sci. 285, 173–181 (2006)

    Article  Google Scholar 

  7. Bras, W., Clark, S.M., Greaves, G.N., Kunz, M., Van Beek, W., Radmilovic, V.: Nanocrystal growth in cordierite glass ceramics studied with X-ray scattering. Cryst Growth Des. 9, 1297–1305 (2009)

    Article  Google Scholar 

  8. Benito, J.M., Turrillas, X., Cuello, G.J., De Aza, A.H., De Aza, S., Rodríguez, M.A.: Cordierite synthesis. A time-resolved neutron diffraction study. J Eur Ceram Soc. 32, 371–379 (2012)

    Google Scholar 

  9. Naskar, M.K., Chatterjee, M.: A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J Eur Ceram Soc. 24, 3499–3508 (2004)

    Article  Google Scholar 

  10. Hao, X., Hu, X., Luo, Z., Liu, T., Li, Z., Wu, T., Lu, A., Tang, Y.: Preparation and properties of transparent cordierite-based glass-ceramics with high crystallinity. Ceram Int. 41, 14130–14136 (2015)

    Article  Google Scholar 

  11. Janković-Častvan, I., Lazarević, S., Tanasković, D., Orlović, A., Petrović, R., Janaćković, D.: Phase transformation in cordierite gel synthesized by non-hydrolytic sol–gel route. Ceram Int. 33, 1263–1268 (2007)

    Article  Google Scholar 

  12. El-Buaishi, N.M., Janković-Častvan, I., Jokić, B., Veljović, D., Janaćković, D., Petrović, R.: Crystallization behavior and sintering of cordierite synthesized by an aqueous sol-gel route. Ceram Int. 38, 1835–1841 (2012)

    Article  Google Scholar 

  13. Bruno, G., Vogel, S.C.: Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite. J Appl Crystallogr. 50, 749–762 (2017)

    Article  Google Scholar 

  14. Schreyer, W., Schairer, J.F.: Compositions and structural states of anhydrous Mg-cordierites: a re-investigation of the central part of the system MgO-Al2O3-SiO2. J Petrol. 2, 324–406 (1961)

    Article  Google Scholar 

  15. Predecki, P.: J.H.J.F.R.L.H.: structural aspects of the lattice thermal expansion of hexagonal cordierite. J Am Ceram Soc. 70, 175–182 (1987)

    Article  Google Scholar 

  16. Eskandari, M., Jahantigh, F., Malekfar, R.: Synthesis and characterization of nanosized pure α -cordierite glass-ceramic powders. J Aust Ceram Soc. 54, 243–249 (2018)

    Article  Google Scholar 

  17. Wu, J., Lu, C., Xu, X., Wang, D., Sang, Y., Zhang, C.: Influence of silica phase transformation on synthesis of cordierite ceramic. J Aust Ceram Soc. 53, 499–510 (2017)

    Article  Google Scholar 

  18. Srivastava, A., Singh, V.K., Kumar, V., Hemanth Kumar, P., Tripathi, H., Chaudhary, A., Asiwal, K., Pandey, R., Suman, S.K.: Some studies on ceria–zirconia reinforced solvothermally synthesized cordierite nano-composites. J Alloys Compd. 586, 581–587 (2014)

    Article  Google Scholar 

  19. Bejjaoui, R., Benhammou, A., Nibou, L., Tanouti, B., Bonnet, J.P., Yaacoubi, A., Ammar, A.: Synthesis and characterization of cordierite ceramic from Moroccan stevensite and andalusite. Appl Clay Sci. 49, 336–340 (2010)

    Article  Google Scholar 

  20. Benhammou, A., El Hafiane, Y., Abourriche, A., Abouliatim, Y., Nibou, L., Yaacoubi, A., Tessier-Doyen, N., Smith, A., Tanouti, B.: Influence of sintering temperature on the microstructural and mechanical properties of cordierite synthesized from andalusite and talc. Mater Lett. 172, 198–201 (2016)

    Article  Google Scholar 

  21. de Almeida, E.P., de Brito, I.P., Ferreira, H.C., de Lucena, H.L., de Lima Santana, L.N., de Araújo Neves, G.: Cordierite obtained from compositions containing kaolin waste, talc and magnesium oxide. Ceram Int. 44, 1719–1725 (2018)

    Article  Google Scholar 

  22. Misrar, W., Loutou, M., Saadi, L., Mansori, M., Waqif, M., Favotto, C.: Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents. J Asian Ceram Soc. 5, 199–208 (2017)

    Article  Google Scholar 

  23. Hajjou, H., Saâdi, L., Waqif, M.: Synthesis of cordierite using industrial waste fly ash. Arab J Geosci. 10, 359–457 (2017)

    Article  Google Scholar 

  24. Liu, C., Liu, L., Tan, K., Zhang, L., Tang, K., Shi, X.: Fabrication and characterization of porous cordierite ceramics prepared from ferrochromium slag. Ceram Int. 42, 734–742 (2016)

    Article  Google Scholar 

  25. Bertran, C.A., Silva, N.T.D., Thim, G.P.: Citric acid effect on aqueous sol–gel cordierite synthesis. J Non-Cryst Solids. 273, 140–144 (2000)

    Article  Google Scholar 

  26. Hajjou, H., Saâdi, L., Waqif, M., Fatah, N.: Effect of silicon source on the crystallization temperature of the cordierite. J Mater Environ Sci. 7, 176–186 (2016)

    Google Scholar 

  27. Menchi, A.M., Scian, A.N.: Mechanism of cordierite formation obtained by the sol-gel technique. Mater Lett. 59, 2664–2667 (2005)

    Article  Google Scholar 

  28. Al-Harbi, O.A., Özgür, C., Khan, M.M.: Fabrication and characterization of single phase cordierite honeycomb monolith with porous wall from natural raw materials as catalyst support. Ceram Int. 41, 3526–3532 (2015)

    Article  Google Scholar 

  29. Petrović, R., Janaćković, D., Zec, S., Drmanić, S., Kostić-Gvozdenović, L.: Crystallization behavior of alkoxy-derived cordierite gels. J Sol-Gel Sci Technol. 28, 111–118 (2003)

    Article  Google Scholar 

  30. Radev, L., Samuneva, B., Mihailova, I., Pavlova, L., Kashchieva, E.: Sol-gel synthesis and structure of cordierite/tialite glass-ceramics. Process Appl Ceram. 3, 125–130 (2009)

  31. Saksena, B.D.: Infra-red absorption studies of some silicate structure. Trans Faraday Soc. 57, 242–258 (1961)

    Article  Google Scholar 

  32. Unsalan, O., Yilmaz, A., Bolukbasi, O., Ozturk, B., Esenoglu, H.H., Ildiz, G.O., Ornek, C.Y., Micro-Raman, F.T.I.R.: SEM-EDX and structural analysis of the Canakkale meteorite. Spectrochim Acta A Mol Biomol Spectrosc. 92, 250–255 (2012)

    Article  Google Scholar 

  33. Sitarz, M., Handke, M., Mozgawa, W.: Identification of silicooxygen rings in SiO 2 based on IR spectra. Spectrochim Acta A. 56, 1819–1823 (2000)

    Article  Google Scholar 

  34. Ghitulica, C., Andronescu, E., Nicola, O., Dicea, A., Birsan, M.: Preparation and characterization of cordierite powders. J Eur Ceram Soc. 27, 711–713 (2007)

    Article  Google Scholar 

  35. Sedghi, A., Rahmani, A., Moradi, Z.: A new method for synthesis of cordierite nanopowder. Adv Mater Process Technol. 1, 404–410 (2015)

  36. Ogiwara, T., Noda, Y., Kimura, O.: Fabrication of high density cordierite ceramics using a coal fly ash. J Ceram Soc Jpn. 118, 231–235 (2010)

    Article  Google Scholar 

  37. Njoya, D., Elimbi, A., Fouejio, D., Hajjaji, M.: Effects of two mixtures of kaolin-talc-bauxite and firing temperatures on the characteristics of cordierite- based ceramics. J Build Eng . 8, 99–106 (2016)

  38. Kumta, P.N., Hackenberg, R.E., McMichael, P., Johnson, W.C.: Solution sol-gel synthesis and phase evolution studies of cordierite xerogels, aerogels and thin films. Mater Lett. 20, 355–362 (1994)

    Article  Google Scholar 

  39. Benhammou, A., El Hafiane, Y., Nibou, L., Yaacoubi, A., Soro, J., Smith, A., Bonnet, J.P., Tanouti, B.: Mechanical behavior and ultrasonic non-destructive characterization of elastic properties of cordierite-based ceramics. Ceram Int. 39, 21–27 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the center of analysis and characterization (CAC) of Cadi Ayyad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Tabit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabit, K., Waqif, M. & Saâdi, L. Crystallization behavior and properties of cordierite synthesized by sol-gel technique and hydrothermal treatment. J Aust Ceram Soc 55, 469–477 (2019). https://doi.org/10.1007/s41779-018-0253-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0253-9

Keywords

Navigation