Skip to main content
Log in

Influence of silica phase transformation on synthesis of cordierite ceramic

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Silica phase widely existed in the process of synthesis of cordierite. In order to study the influence of silica phase on synthesis of cordierite, the reaction of quartz-alumina-magnesia system has been researched. The complex reaction process and mechanism of synthesis are elucidated by means of scanning electron microscope, X-ray diffraction, and thermoanalysis. The relationship between sintering properties and reaction process has been researched. Formation of cordierite is a multiple-step process of five stages with different reaction rates, which are controlled by the transformation of silica phase. At different stages, prevailing reactions of cordierite synthesis are as follows: (i) reaction of quartz and alumina-magnesia, (ii) reaction of quartz and MgAl2O4 spinel, and (iii) reaction of cristobalite and MgAl2O4 spinel. Each stage is correlated with different synthesis quantity of cordierite and has a great impact on sintering properties. The presence of cristobalite increases the synthesis temperature of cordierite and reduces the purity of cordierite ceramic. Therefore, the improvement of cordierite properties is possible by inhibiting quartz transformation into cristobalite in process of synthesis of cordierite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kuscer, D., Bantan, I., Hrovat, M., et al.: The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J Eur Ceram Soc. 37, 739–746 (2016)

    Article  Google Scholar 

  2. Janković-Častvan, I., Lazarević, S., Jordović, B., et al.: Electrical properties of cordierite obtained by non-hydrolytic sol–gel method. J Eur Ceram Soc. 27, 3659–3661 (2016)

    Article  Google Scholar 

  3. Wu, J., Hu, C., Xu, X., et al.: Preparation and thermal shock resistance of cordierite-spodumene composite ceramics for solar heat transmission pipeline. Ceram Int. 42, 13547–13554 (2016)

    Article  Google Scholar 

  4. Malachevsky, M.T., Fiscina, J.E., Esparza, D.A.: Preparation of synthetic cordierite by solid-state reaction via bismuth oxide flux. J Am Ceram Soc. 84, 1575–1577 (2001)

    Article  Google Scholar 

  5. Ismail, M.G.M.U., Tsunatori, H., Nakai, Z.: Preparation of mullite cordierite composite powders by the sol-gel method: its characteristics and sintering. J Am Ceram Soc. 73, 537–543 (1990)

    Article  Google Scholar 

  6. Wang, W., Xiaodong, W., Weng, D., et al.: Cordierite honeycomb ceramics used for purification of vehicle exhaust. Science & Technology Review. 29, 70–74 (2011)

    Google Scholar 

  7. Labrincha, J.A., Albuquerque, C.M., Ferreira, J.M., et al.: Electrical characterisation of cordierite bodies containing Al-rich anodising sludge. J Eur Ceram Soc. 26, 825–830 (2006)

    Article  Google Scholar 

  8. Wu, J., Hu, C., Xu, X., et al.: Effect of andalusite and zircon on the performances of cordierite-spodumene composite ceramics for solar heat transmission pipeline. Ceram Int. 42, 17858–17865 (2016)

    Article  Google Scholar 

  9. Guo, X., Nakanishi, K., Kanamori, K., et al.: Preparation of macroporous cordierite monoliths via the sol-gel process accompanied by phase separation. J Eur Ceram Soc. 34, 817–823 (2014)

    Article  Google Scholar 

  10. Petrović, R., Janaćković, D., Zec, S., et al.: Crystallization behavior of alkoxy-derived cordierite gels. J Sol–Gel Sci Techn. 28, 111–118 (2003)

    Article  Google Scholar 

  11. Ghitulica, C., Andronescu, E., Nicola, O., et al.: Preparation and characterization of cordierite powders. J Eur Ceram Soc. 27, 711–713 (2007)

    Article  Google Scholar 

  12. Cai, S., Xu, M., Zhou, C., et al.: Fabrication of cordierite powder from magnesium-aluminum hydroxide and sodium silicate: its characteristics and sintering. Mater Res Bull. 37, 1333–1340 (2002)

    Article  Google Scholar 

  13. Banjuraizah, J., Mohamad, H., Ahmad, Z.A.: Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin. J Alloy Compd. 482, 429–436 (2009)

    Article  Google Scholar 

  14. Nakahara, M., Hashizuka, Y., Kondo, Y., et al.: Behavior of talc in formation of cordierite ceramics. J Ceram Soc Jpn. 102, 18–22 (1994)

    Article  Google Scholar 

  15. Goren, R., Gocmez, H., Ozgur, C.: Synthesis of cordierite powder from talc, diatomite and alumina. Ceram Int. 32, 407–409 (2006)

    Article  Google Scholar 

  16. Gökçe, H., Ağaoğulları, D., Öveçoğlu, M.L., Boyraz, T., et al.: Characterization of microstructural and thermal properties of steatite/cordierite ceramics prepared by using natural raw materials. J Eur Ceram Soc. 31, 2741–2747 (2011)

    Article  Google Scholar 

  17. Li, J., Li, J., Lin, S.: A study on synthesis cordierite from Haicheng chlorite. China Ceramics. 5, 1–6 (1990)

    Google Scholar 

  18. Naskar, M.K., Chatterjee, M.: A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. J Eur Ceram Soc. 24, 3499–3508 (2004)

    Article  Google Scholar 

  19. Kiyoshi, O., et al.: Crystallization behavior and cordierite formation in rapidly quenched MgAl2O4–SiO2 glasses of various chemical compositions. J Mater Res. 13, 1351–1357 (1998)

    Article  Google Scholar 

  20. Sang, O.Y., Jo, T.H., Kim, K.S., et al.: Phase formation in the Al2O3-, quartz-, and cordierite-zinc borosilicate glass composites. Ceram Int. 34, 2155–2157 (2008)

    Article  Google Scholar 

  21. Shi, Z.M., Pan, F., Liu, D.Y., et al.: Effect of Ce4+-modified amorphous SiO2, on phase transformation towards α-cordierite. Mater Lett. 57, 409–413 (2002)

    Article  Google Scholar 

  22. González-Velasco, J.R., Ferret, R., López-Fonseca, R., et al.: Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction. Powder Technol. 153, 34–42 (2005)

    Article  Google Scholar 

  23. Sorrell, C.A.: Reaction sequence and structural changes in cordierite refractories. J Am Ceram Soc. 43, 337–343 (1960)

    Article  Google Scholar 

  24. Albhilil, A.A., Kozánková, J., Palou, M.: Thermal and microstructure stability of cordierite-mullite ceramics prepared from natural raw materials. Arab J Sci Eng. 40, 151–161 (2015)

    Article  Google Scholar 

  25. Chotard, T., Soro, J., Lemercier, H., et al.: High temperature characterisation of cordierite-mullite refractory by ultrasonic means. J Eur Ceram Soc. 28, 2129–2135 (2008)

    Article  Google Scholar 

  26. Wang, W., Shi, Z., Wang, X., et al.: The phase transformation and thermal expansion properties of cordierite ceramics prepared using drift sands to replace pure quartz. Ceram Int. 42, 4477–4485 (2016)

    Article  Google Scholar 

  27. Yang, D., Zhu, K., Juan, W.U., et al.: Approaches to decrease thermal expansion coefficients of cordierite. Materials Review. 23, 200–202 (2009)

    Google Scholar 

  28. Obradović, N., Đorđević, N., Filipović, S., et al.: Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive. Powder Technol. 218, 157–161 (2012)

    Article  Google Scholar 

  29. Yalamaç, E., Akkurt, S.: Additive and intensive grinding effects on the synthesis of cordierite. Ceram Int. 32, 825–832 (2006)

    Article  Google Scholar 

  30. Tang, X., Guo, L., Chen, C., et al.: The analysis of magnesium oxide hydration in three-phase reaction system. J Solid State Chem. 213, 32–37 (2014)

    Article  Google Scholar 

  31. Wang, F., Ye, J., He, G., et al.: Preparation and characterization of porous MgAl2O4, spinel ceramic supports from bauxite and magnesite. Ceram Int. 41, 7374–7380 (2015)

    Article  Google Scholar 

  32. Shi, Z.M., Liang, K.M., Gu, S.R.: Effects of CeO2 on phase transformation towards cordierite in MgO-Al2O3-SiO2 system. Mater Lett. 51, 68–72 (2001)

    Article  Google Scholar 

  33. Shi, Z.M.: Sintering additives to eliminate interphases in cordierite ceramics. J Am Ceram Soc. 88, 1297–1301 (2005)

    Article  Google Scholar 

  34. Schneider, H., Komarneni, S.: Mullite. In: Komarneni, S., Schneider, H. (eds.) Processing of mullite ceramics, pp. 292–294. Wiley-Vch, Germany (2006)

    Google Scholar 

  35. Nurishi, Y., Pask, J.A.: Sintering of α-Al2O3-amorphous silica compacts. Ceram Int. 8, 57–59 (1982)

    Article  Google Scholar 

  36. Pagliari, L., Dapiaggi, M., Pavese, A., et al.: A kinetic study of the quartz–cristobalite phase transition. J Eur Ceram Soc. 33, 3403–3410 (2013)

    Article  Google Scholar 

  37. Benito, J.M., Turrillas, X., Cuello, G.J., et al.: Cordierite synthesis. A time-resolved neutron diffraction study. J Eur Ceram Soc. 32, 371–379 (2012)

    Google Scholar 

  38. Kobayashi, Y., Sumi, K., Kato, E.: Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives. Ceram Int. 26, 739–743 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the financial support from the “973 Program (2010CB227105),” P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenglong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Lu, C., Xu, X. et al. Influence of silica phase transformation on synthesis of cordierite ceramic. J Aust Ceram Soc 53, 499–510 (2017). https://doi.org/10.1007/s41779-017-0060-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0060-8

Keywords

Navigation