Skip to main content
Log in

Chromium substitution induced effects on the structure optical and electrical properties of yttrium oxide

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The CrxY2-xO3 (x = 0.0, 0.025, 0.05, and 0.075) nanomaterials were synthesized for the first time through the solvothermal method in the presence of polyethylene glycol, followed by an annealing process at 700 °C. The partial substitution effects of the “Y3+” by the “Cr3+” on the structural, optical, and electrical properties of the CrxY2-xO3 nanomaterials are studied and discussed. The increase of the Cr content has a small effect on the structural and crystallite size of the CrxY2-xO3 nanomaterials. UV-vis spectroscopic results showed an apparent decrease in the direct band gap energies. The obtained results show a decrease in the electrical conductivity when the Cr amount increases. The ac-conductivity was studied as a function of frequency and temperature. The plots of exponent (n) versus temperature suggest that the conduction mechanism can be described using the correlated barrier hopping model. The improved optical properties make this material a promising candidate for photocatalytic and photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Waite, C., Mann, R., Diaz, A.L.: Measurement of host-to-activator transfer efficiency in nano-crystalline Y2O3:Eu3+ under VUV excitation. J Solid State Chem. 198, 357–363 (2013)

    Article  Google Scholar 

  2. Hari Krishna, R., Nagabhushana, B.M., Nagabhushana, H., Suriya Murthy, N., Sharma, S.C., Shivakumara, C., Chakradhar, R.P.S.: Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor. J Phys Chem C. 117, 1915–1924 (2013)

    Article  Google Scholar 

  3. Blasse, G., Grabmaier, B.C.: Energy transfer, luminescent materials, pp. 91–107. Springer, New York (1994)

    Book  Google Scholar 

  4. Blasse, G., Katai, A.H.: Phosphors for other applications, solid state luminescence, p. 349. Chapman and Hall, London (1993)

    Book  Google Scholar 

  5. Wang, J.W., Chang, Y.M., Chang, H.C., Lin, S.H., Huang, L.C.L., Kong, X.L., Kang, M.W.: Local structure dependence of the charge transfer band in nanocrystalline Y2O3:Eu3+. Chem Phys Lett. 405, 314–317 (2005)

    Article  Google Scholar 

  6. Huang, H., Nakamura, M., Fasching, R., Saito, Y., Prinz, F.B.: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J Electrochem Soc. 154, B20–B24 (2007)

    Article  Google Scholar 

  7. Wang, L.M., Zhu, S., Ewing, R.C.: Am Nucl Soc. 84, 103 (2001)

    Google Scholar 

  8. Zhu, S., Zu, X.T., Wang, L.M., Ewing, R.C.: Nanodomains of pyrochlore formed by Ti ion implantation in yttria-stabilized zirconia. Appl Phys Lett. 80, 4327 (2002)

    Article  Google Scholar 

  9. Shionoya, S., Yen, W.M.: Phosphor handbook. CRC Press, New York (1999)

    Google Scholar 

  10. Guo, B., Yim, H., Hwang, W., Nowell, M., Luo, Z.: Crystalline phase of Y2O3:Eu particles generated in a substrate-free flame process. Particuology. 9, 24–31 (2011)

    Article  Google Scholar 

  11. Qiu, X., Li, L., Zheng, J., Liu, J., Sun, X., Li, G.: Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO doped with Mg2+. J Phys Chem. C112, 12242–12248 (2008)

    Google Scholar 

  12. Cao, Y.Q., He, T., Chen, Y.M., Cao, Y.A.: Fabrication of rutile TiO2−Sn/Anatase TiO2−N Heterostructure and its application in visible-light Photocatalysis. J Phys Chem. C114, 3627–3633 (2010)

    Google Scholar 

  13. Huang, Z., Guo, W., Liu, Y., Huang, Q., Tang, F., Cao, Y.: Synthesis of Nd:Y2O3 nanopowders leading to transparent ceramics. Mater Chem Phys. 28, 44–49 (2011)

    Article  Google Scholar 

  14. Luitel, H.N., Watari, T., Torikai, T., Yada, M.: Opt Mater. 31, 1200–1204 (2009)

    Article  Google Scholar 

  15. Zhong, R., Zhang, J., Zhang, X., Lu, S., Wang, X.-J.: J Lumin. 119–120, 327–331 (2006)

    Article  Google Scholar 

  16. Wang, B., Iqbal, J., Shan, X., Huang, G., Fu, H., Yu, R., Yu, D.: Effects of Cr-doping on the photoluminescence and ferromagnetism at room temperature in ZnO nanomaterials prepared by soft chemistry route. Mater Chem Phys. 113, 103–106 (2009)

    Article  Google Scholar 

  17. Yang, L., et al.: Structural, magnetic and electrical properties of double-doped manganites Y0.5+ySr0.5−yMn1−yCryO3 (0≤y≤0.5). J Magn Magn Mater. 341, 30–35 (2013)

    Article  Google Scholar 

  18. Zhang, L., Feng, J., Pan, W.: Vacuum sintering of transparent Cr:Y2O3 ceramics. Ceram Int. 41, 8755–8760 (2015)

    Article  Google Scholar 

  19. Hamdi, S., Amami, M., Hlil, E.K., Ben Hassen, R.: An X-ray diffraction, magnetic susceptibility and spectroscopic studies of Yb2-xCrxO3. J Solid State Chem. 184, 1828–1833 (2011)

    Article  Google Scholar 

  20. Crispin, K.L., Van Orman, J.A.: Influence of the crystal field effect on chemical transport in earth’s mantle: Cr3+ and Ga3+ diffusion in periclase. Phys Earth Planet Inter. 180, 159–171 (2010)

    Article  Google Scholar 

  21. Shannon, R.D., Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Cryst B. 25, 925–946 (1969)

    Article  Google Scholar 

  22. deBiasi, R.S., MLN, G.: Electron spin resonance of chromia-yttria solid solutions. J Phys Chem Solids. 66, 1806–1809 (2005)

    Article  Google Scholar 

  23. Atabaev, T.S., Thi Vu, H.-H., Kim, Y.-D., Lee, J.-H., Kim, H.-K., Hwang, Y.-H.: Synthesis and luminescence properties of Ho3+ doped Y2O3 submicron particles. J Phys Chem Solids. 73, 176–181 (2012)

    Google Scholar 

  24. Duran, A., Meza, F.C.: Hydroxide precursors to produce nanometric YCrO3: characterization and conductivity analysis. Mater Res Bull. 47, 1442–1447 (2012)

    Article  Google Scholar 

  25. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.R.: Scanning electron microscopy and X-ray microanalysis. Springer, Berlin (2003)

    Book  Google Scholar 

  26. Wang, X., Zheng, R., Liu, Z., Ho, H., Xu, J., Ringer, S.P.: Structural, optical and magnetic properties of co-doped ZnO nanorods with hidden secondary phases. J Nanotech. 19, 455702 (2008)

    Article  Google Scholar 

  27. Cullity, B.D.: Elements of X-ray diffraction, 2nd edn. Addition-Weasley, London (1978)

    Google Scholar 

  28. Jayanthi, K., Chawla, S., Sood, K.N., Chhibara, M., Singh, S.: Dopant induced morphology changes in ZnO nanocrystals. Appl Surf Sci. 255, 5869–5875 (2009)

    Article  Google Scholar 

  29. Lin, H., Huang, C.P., Li, W., Ni, C., Shah, S.I., Tseng, Y.H.: Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ. 68, 1–11 (2006)

    Article  Google Scholar 

  30. Koseŏglu, Y., Bay, M., Tan, M., Baykal, A., Sozeri, H., Topkaya, R., Akdogan, N.: Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J Nanopart Res. 13, 2235–2244 (2011)

    Article  Google Scholar 

  31. Wang, H., Xu, J.Z., Zhu, J.J., Chen, H.Y.: Preparation of CuO nanoparticles by microwave irradiation. JCrystGrowth. 244, 88–94 (2002)

    Google Scholar 

  32. Nyquist, R.A., Kagel, R.O.: Handbook of infrared and Raman spectra of inorganic compound and organic salts. Academic press Tokyo. 4, 223 (1997)

    Google Scholar 

  33. Mc, D., Baun, W.L.: Infrared absorption study of metal oxides in the low frequency region (700-240 cm−1). Spectrochim Acta. 20, 799–808 (1964)

    Article  Google Scholar 

  34. Chen, G.Y., Liu, H.C., Somesfalean, G., Sheng, Y.Q., Liang, H.J., Zhang, Z.G., Sun, Q., Wang, F.P.: Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions. Appl Phys Lett. 92, 113–114 (2008)

    Google Scholar 

  35. Som, S., Sharma, S.K.: Eu3+/Tb3+-codoped Y2O3 nanophosphors: Rietveld refinement, bandgap and photoluminescence optimization. J Phys D Appl Phys. 45, 415102–415108 (2012)

    Article  Google Scholar 

  36. Fu, Y.P.: Preparation and characterization of Y2O3:Eu phosphors by combustion process. J Mater Sci. 42(13), 5165–5169 (2007)

    Article  Google Scholar 

  37. Guo, H., Qiao, Y.M.: Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+, Yb3+ microspheres. Optical Mater. 31, 583–589 (2008)

    Article  Google Scholar 

  38. Beck, C., Ehses, K.H., Hempelmann, R.: Gradients in structure and dynamics of Y2O3 nanoparticles as revealed by X-ray and Raman scattering. Bruch Ch Scripta Mater. 44, 2127–2131 (2001)

    Article  Google Scholar 

  39. Kosacki, I., Suzuki, T., Anderson, H.U., Colomban, P.: Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ionics. 149, 99–105 (2002)

    Google Scholar 

  40. Du, L.Y., Chen, G., Zhang, M.S.: Grain size effects in Bi4Ti3O12 nanocrystals investigated by Raman spectroscopy. Solid State Commun. 132, 175 (2004)

    Article  Google Scholar 

  41. Gomonnai, A.V., Voynarovych, I.M., Solomon, A.M., Azhniuk, Y.M., Kikineshi, A.A., Pinzenik, V.P., Kis-Varga, M., Daroczy, L., Lopushansky, V.V.: X-ray diffraction and Raman scattering in SbSI nanocrystals. Mater Res Bull. 38, 1767–1772 (2003)

    Article  Google Scholar 

  42. Meng, J.F., Katiyar, R.S., Zou, G.T.: Grain size effect on ferroelectric phase transition inPb 1 − x Ba x TiO 3 ceramics. J Phys Chem Solids. 59, 1161–1167 (1998)

    Article  Google Scholar 

  43. Ubaldini, A., Carnasciali, M.M.: Raman characterisation of powder of cubic RE2O3 (RE = Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J Alloys Compd. 45, 374–378 (2008)

    Article  Google Scholar 

  44. Fuji, M., Hayashi, S., Yamamoto, K.: Raman scattering from quantum dots of Ge embedded in SiO2 thin films. Appl Phys Lett. 57, 2692–2694 (1990)

    Article  Google Scholar 

  45. Parayanthal, P., Pollak, F.H.: Raman scattering in alloy semiconductors: “spatial correlation” model. Phys Rev Lett. 52(20), 1822–1825 (1984)

    Article  Google Scholar 

  46. Tauc, J., Menth, A.: States in the gap. J Non-Cryst Solids. 8-10, 569–585 (1972)

    Article  Google Scholar 

  47. Bhatt, R., Kar, S., Bartwal, K.S., Wadhawan, V.K.: The effect of Cr doping on optical and photoluminescence properties of LiNbO3 crystals. Solid State Commu. 127, 457–462 (2003)

    Article  Google Scholar 

  48. Kesavulu, C.R., Chakradhar, R.P.S., Muralidhara, R.S., Rao, J.L., Anavecar, R.V.: EPR, optical absorption and photoluminescence properties of Cr3+ ions in lithium borophosphate glasses. J Alloys Comp. 496, 75–80 (2010)

    Article  Google Scholar 

  49. Lakshminarasappa, B.N., Jayaramaiah, J.R., Nagabhushana, B.M.: Thermoluminescence of combustion synthesized yttrium oxide. Powder Technol. 217, 7–10 (2012)

    Article  Google Scholar 

  50. Hari Krishna, R., Nagabhushana, B.M., Nagabhushana, H., Chakradhar, R.P.S., Sivaramakrishna, R., Shivakumara, C., Thomas, T.: J Alloys Compd. 585, 129–137 (2014)

    Article  Google Scholar 

  51. Andrews, L.J., Lempicki, A., McCollum, B.C., Giunta, C.J.: Thermal quenching of chromium photoluminescence in ordered perovskites. I. Temperature dependence of spectra and lifetimes. Phs Rev B. 34, 2735 (1986)

    Article  Google Scholar 

  52. Wood, D.L., Imbusch, E.T.: Optical spectrum of Cr3+ ions in spinels. J Chem Phys. 48(11), 5255–5263 (1968)

    Article  Google Scholar 

  53. Bharti, C., Sinha, T.P.: Structural and ac electrical properties of a newly synthesized single phase rare earth double perovskite oxide: Ba2CeNbO6. Physica B. 406, 1827–1832 (2011)

    Article  Google Scholar 

  54. Dutta, A., Bharti, C., Sinha, T.P.: Dielectric relaxation in Sr(Mg1/3Nb2/3)O3. Physica B. 403, 3389 (2008)

    Article  Google Scholar 

  55. Gutiérrez, D., Pena, O., Ghanimi, K., Duran, P., Moure, C.: Electrical and magnetic features in the perovskite-type system Y(Co, Mn)O3. J Phy Chem Solids. 63, 1975–1982 (2002)

    Article  Google Scholar 

  56. Rahman, M.T., Ramana, C.V.: Gadolinium-substitution induced effects on the structure and AC electrical properties of cobalt ferrite. Ceram Int. 40, 14533–14536 (2014)

    Article  Google Scholar 

  57. Molak, A., Paluch, M., Pawlus, S., Klimontko, J., Ujma, Z., Gruszka, I.: Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics. J Phys D Appl Phys. 38, 1450–1460 (2005)

    Article  Google Scholar 

  58. Omri, A., Bejar, M., Dhahri, E., Es-Souni, M., Valente, M.A., Graça, M.P.F., Costa, L.C.: Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J Alloys Compd. 536, 173–178 (2012)

    Article  Google Scholar 

  59. Fadhalaoui, A., Dhaouadi, H., Marouani, H., Kouki, A., Madani, A., Rzaigui, M.: Mater Res Bull. 73, 153–163 (2016)

    Article  Google Scholar 

  60. Paramesh, G., Vaish, R., Varma, K.B.R.: Electrical transport properties of 0.5Li2O–0.5M2O–2B2O3 (M = Li, Na and K) glasses. J Non-Cryst Solids. 357, 1479–1484 (2011)

    Article  Google Scholar 

  61. Mariappan, C., Govindaraj, G.: Conductivity and ion dynamic studies in the Na4.7+x Ti1.3−x (PO4)3.3−x (0≤x≤0.6) NASICON material. Solid State Ionics. 176, 1311–1318 (2005)

    Article  Google Scholar 

  62. Adnan, S.B.R., Mohamd, N.S.: Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci. 7, 9844 (2012)

    Google Scholar 

  63. Lanfredi, S., Saia, P.S., Lebullenger, R., Hernandes, A.C.: Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy. Solid State Ionics. 146, 329–339 (2002)

    Article  Google Scholar 

  64. Jonscher, A.K.: Universal relaxation law. Chelsea Dielectric Press, London (1996)

    Google Scholar 

  65. Jonscher, A.K.: Dielectric relaxation in solids. Chelsea Dielectric Press, London (1983)

    Google Scholar 

  66. Dhahri, A., Rhou, F.I.H., Dhahri, J., Dhahri, E., Valente, M.A.: Structural and electrical characteristics of rare earth simple perovskite oxide La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3. Solid State Commun. 151, 738 (2011)

    Article  Google Scholar 

  67. Mollah, S., Som, K.K., Bose, K., Chaudri, B.K.: Ac conductivity in Bi4Sr3Ca3Cu y O x (y=0–5) and Bi4Sr3Ca3−z Li z Cu4O x (z=0.1–1.0) semiconducting oxide glasses. J Appl Phys. 74, 931 (1993)

    Article  Google Scholar 

  68. Darwish, A.A.A., El-Nahass, M.M., Bekheet, A.E.: Ac electrical properties and dielectric relaxation of the new mixed crystal (Na0.8Ag0.2)2PbP2O7. J Alloys Compd. 586, 142–147 (2014)

    Article  Google Scholar 

  69. Sassi, M., Bettaibi, A., Oueslati, A., Khirouni, K., Gargouri, M.: Electrical conduction mechanism and transport properties of LiCrP2O7 compound. J Alloys Compd. 649, 642–648 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Kouass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kouass, S., Sahbani, S., Dhaouadi, H. et al. Chromium substitution induced effects on the structure optical and electrical properties of yttrium oxide. J Aust Ceram Soc 53, 403–413 (2017). https://doi.org/10.1007/s41779-017-0049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0049-3

Keywords

Navigation