Skip to main content

Advertisement

Log in

Development of carboxylated multi-walled carbon nanotubes and bovine serum albumin reinforced hydroxyapatite for bone substitute applications

  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The similarity of the chemical composition of hydroxyapatite (HA) to the mineral phase of bone and their excellent biocompatibility meets the requirement of materials designed for bone repair and augmentation purposes. However, the application of HA in load-bearing devices is limited by its poor mechanical properties. Carbon nanotubes (CNTs), with their outstanding stiffness and strength, have good potential applications in tissue engineering. These properties, combined with their small size and large interfacial area, suggest that they may have great potential as a reinforcing agent for HA. The hydroxyapatite/multi-walled carbon nanotubes/bovine serum albumin (HA/MWCNTs-COOH/BSA) with particle size in the range 20 to 25 nm composites was successfully produced using precipitation technique. The compressive strength of heat-treated composites at 600 to 1000 °C is in the range between 27 and 37 MPa. The cytotoxic effect of the composites with different concentrations was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT assay) against normal human colon fibroblast. The developed composites were found to be non-cytotoxic when treated to the human fibroblast cells and imply a proliferative effect on cells. The developed composites are possibly a good choice to use as non-toxic material for bone substitution at the level of the trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Legeros, R.Z.: Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 14, 65–88 (1993)

    Article  Google Scholar 

  2. Lu, X.Y., Zhang, N.Y., Wei, L., Wei, J.W., Deng, Q.Y., Lu, X., Duan, K., Weng, J.: Fabrication of carbon nanotubes/hydroxyapatite nanocomposites via an in situ process. Appl Surf Sci. 262, 110–113 (2012)

    Article  Google Scholar 

  3. Dhivya, S., Saravanan, S., Sastry, T.P., Selvamurugan, N.: Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of nanobiotechnology. 13, 1–40 (2015)

    Article  Google Scholar 

  4. White, A.A., Best, S.M., Kinloch, I.A.: Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int J Appl Ceram Technol. 4, 1–13 (2007)

    Article  Google Scholar 

  5. Gu, Y., Khor, K., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials. 25, 4127–4134 (2004)

    Article  Google Scholar 

  6. Li, X., Wang, L., Fan, Y., Feng, Q., Cui, F.Z., Watari, F.: Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 101(8), 2424–2435 (2013)

    Article  Google Scholar 

  7. K. Pielichowska, S. Blazewicz. Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. Biopolymers. Springer. (2010)

  8. Balani, K., Chen, Y., Harimkar, S.P., Dahotre, N.B., Agarwal, A.: Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomater. 3, 944–951 (2007)

    Article  Google Scholar 

  9. Chen, Y., Zhang, T., Gan, C., Yu, G.: Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes. Carbon. 45, 998–1004 (2007)

    Article  Google Scholar 

  10. Singh, S., Pei, Y., Miller, R., Sundararajan, P.R.: Entangled carbon nanotube networks in polycarbonate. Adv Funct Mater. 13, 868–872 (2003)

    Article  Google Scholar 

  11. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287, 637–640 (2000)

    Article  Google Scholar 

  12. Tjong, S.C.: Carbon nanotube–metal nanocomposites. Carbon Nanotube Reinforced Composites: Metal and Ceramic Matrices. 43, 87 (2009)

    Google Scholar 

  13. V. Mittal. Synthesis and properties of PVA/carbon nanotube nanocomposites. Polymer Nanotube Nanocomposites. John Wiley & Sons, Inc. (2010)

  14. Kalbacova, M., Kalbac, M., Dunsch, L., Hempel, U.: Influence of single-walled carbon nanotube films on metabolic activity and adherence of human osteoblasts. Carbon. 45, 2266–2272 (2007)

    Article  Google Scholar 

  15. Usui, Y., Aoki, K., Narita, N., Murakami, N., Nakamura, I., Nakamura, K., Ishigaki, N., Yamazaki, H., Horiuchi, H., Kato, H.: Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small. 4, 240–246 (2008)

    Article  Google Scholar 

  16. Hussain, M., Kabir, M., Sood, A.: On the cytotoxicity of carbon nanotubes. Curr Sci. 96, 664–673 (2009)

    Google Scholar 

  17. Akasaka, T., Yokoyama, A., Matsuoka, M., Hashimoto, T., Watari, F.: Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Mater Sci Eng C. 30, 391–399 (2010)

    Article  Google Scholar 

  18. Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., Vlasova, I.I., Belikova, N.A., Yanamala, N., Kapralov, A.: Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 5, 354–359 (2010)

    Article  Google Scholar 

  19. Matsuoka, M., Akasaka, T., Totsuka, Y., Watari, F.: Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes. Mater Sci Eng B. 173, 182–186 (2010)

    Article  Google Scholar 

  20. Ren, H.X., Chen, X., Liu, J.H., Gu, N., Huang, X.J.: Toxicity of single-walled carbon nanotube: how we were wrong? Materials today. 13, 6–8 (2010)

    Article  Google Scholar 

  21. Lahiri, D., Benaduce, A.P., Rouzaud, F., Solomon, J., Keshri, A.K., Kos, L., Agarwal, A.: Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite–carbon nanotube composite coating. J Biomed Mater Res A. 96, 1–12 (2011)

    Article  Google Scholar 

  22. D. Lahiri, S. Ghosh, A. Agarwal. Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review. Materials Science and Engineering: C, 1727–1758. (2012)

  23. Kaya, C., Singh, I., Boccaccini, A.R.: Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv Eng Mater. 10, 131–138 (2008)

    Article  Google Scholar 

  24. Lin, C., Han, H., Zhang, F., Li, A.: Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications. J Mater Sci Mater Med. 19, 2569–2574 (2008)

    Article  Google Scholar 

  25. Hahn, B.D., Lee, J.M., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Lee, B.K., Shin, D.S., Kim, H.E.: Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5, 3205–3214 (2009)

    Article  Google Scholar 

  26. S.H.S. Zein, F. Gholami. Cytocompatibility and mechanical strength of hydroxyapatite reinforced with multi-walled carbon nanotubes. J Bioengineer & Biomedical Sci (2012), 2–111.

  27. Gholami, F., Zein, S.H.S., LC, G., KL, L., SH, T., McPhail, D.S., Grover, L.M., Boccaccini, A.R.: Cytocompatibility, bioactivity and mechanical strength of calcium phosphate cement reinforced with multi-walled carbon nanotubes and bovine serum albumin. Ceram Int. 39, 4975–4983 (2013)

    Article  Google Scholar 

  28. Meng, Y., Tang, C.Y., Tsui, C.P.: Fabrication and characterization of needle-like nano-HA and HA/MWNT composites. J Mater Sci Mater Med. 19, 75–81 (2008)

    Article  Google Scholar 

  29. Low, K.L., Tan, S.H., Zein, S.H.S., Mcphail, D.S., Boccaccini, A.R.: Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Des. 32, 3312–3319 (2011)

    Article  Google Scholar 

  30. Chew, K.K., Low, K.L., Sharif Zein, S.H., Mcphail, D.S., Gerhardt, L.C., Roether, J.A., Boccaccini, A.R.: Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications. J Mech Behav Biomed Mater. 4, 331–339 (2011)

    Article  Google Scholar 

  31. Han, Y., Shipu, L., Xinyu, W., Xianying, C., Li, J., Jianhua, L.: Preparation and characterization of calcium phosphate–albumin colloidal particles by high ultrasonic irradiation. Colloid Polym Sci. 284(2), 203–207 (2005)

    Article  Google Scholar 

  32. Bernards, M.T., Qin, C., Jiang, S.: MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf B: Biointerfaces. 64(2), 236–247 (2008)

    Article  Google Scholar 

  33. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006)

    Article  Google Scholar 

  34. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 65, 55–63 (1983)

    Article  Google Scholar 

  35. Wang, Q., Huang, W., Wang, D., Darvell, B.W., Day, D.E., Rahaman, M.N.: Preparation of hollow hydroxyapatite microspheres. J Mater Sci Mater Med. 17, 641–646 (2006)

    Article  Google Scholar 

  36. Xiao, Y., Gong, T., Zhou, S.: The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials. 31, 5182–5190 (2010)

    Article  Google Scholar 

  37. Li, H., Khor, K.A., Chow, V., Cheang, P.: Nanostructural characteristics, mechanical properties, and osteoblast response of spark plasma sintered hydroxyapatite. J Biomed Mater Res A. 82, 296–303 (2007)

    Article  Google Scholar 

  38. Balakrishnan, A., Lee, B.C., Kim, T.N., Panigrahi, B.B.: Hydroxyapatite coatings on NaOH treated Ti–6Al–4V alloy using sol–gel precursor. Mater Sci Technol. 23, 1005–1007 (2007)

    Article  Google Scholar 

  39. Meza, D., Figueroa, I.A., Flores-Morales, C., Piña-Barba, M.C.: Nano hydroxyapatite crystals obtained by colloidal solution. Revista mexicana de física. 57, 471–474 (2011)

    Google Scholar 

  40. Kealley, C., Elcombe, M., Van Riessen, A., Ben-Nissan, B.: Development of carbon nanotube-reinforced hydroxyapatite bioceramics. Phys B Condens Matter. 385, 496–498 (2006)

    Article  Google Scholar 

  41. Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B., Khairnar, R.S.: Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci. 28, 535–545 (2005)

    Article  Google Scholar 

  42. Janusz, W., Skwarek, E., Pasieczna-Patkowska, S., Slosarczyk, A., Paszkiewicz, Z., Rapacz-Kmita, A.: A study of surface properties of calcium phosphate by means of photoacoustic spectroscopy (FT-IR/PAS), potentiometric titration and electrophoretic measurements. The European Physical Journal Special Topics. 154, 329–333 (2008)

    Article  Google Scholar 

  43. Victor, S.P., Kumar, T.S.: Processing and properties of injectable porous apatitic cements. J Ceram Soc Jpn. 116, 105–107 (2008)

    Article  Google Scholar 

  44. Ungureanu, D.N., Angelescu, N., Bacinschi, Z., Stoian, E.V., Rizescu, C.Z.: Thermal stability of chemically precipitated hydroxyapatite nanopowders. Int J Biol Biomed Eng. 5, 57–64 (2011)

    Google Scholar 

  45. Vasilescu, C., Drob, P., Vasilescu, E., Demetrescu, I., Ionita, D., Prodana, M., Drob, S.I.: Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros Sci. 53(3), 992–999 (2011)

    Article  Google Scholar 

  46. Shin, U.S., Yoon, I.K., Lee, G.S., Jang, W.C., Knowles, J.C., Kim, H.W.: Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. Journal of tissue engineering. 2, 1 (2011)

    Google Scholar 

  47. Pan, D., Wang, Y., Chen, Z., Yin, T., Qin, W.: Fabrication and characterization of carbon nanotube-hydroxyapatite nanocomposite: application to anodic stripping voltammetric determination of cadmium. Electroanalysis. 21, 944–952 (2009)

    Article  Google Scholar 

  48. Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., Zakeri, M.: Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloys Compd. 430, 330–333 (2007)

    Article  Google Scholar 

  49. H. Oudadesse, A. Mostafa, X.V. Bui, Y. Le Gal, G. Cathelineau. Studies of doped biomimetic nano-hydroxyapatite/polymer matrix composites for applications in biomedical field. In Recent Researches in Modern Medicine, 368–374. (2011)

  50. Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D., Stupp, S.I.: Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 108(11), 4754–4783 (2008)

    Article  Google Scholar 

  51. Pezzatini, S., Solito, R., Morbidelli, L., Lamponi, S., Boanini, E., Bigi, A., Ziche, M.: The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res A. 76, 656–663 (2006)

    Article  Google Scholar 

  52. Rouahi, M., Champion, E., Gallet, O., Jada, A., Anselme, K.: Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf B: Biointerfaces. 47, 10–19 (2006)

    Article  Google Scholar 

  53. Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Tang, R.: Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem. 17, 3780–3787 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

A research university grant from Universiti Sains Malaysia (USM-RU grant) to support this research work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzylawati Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, F., Ismail, S. & Noor, A.F.M. Development of carboxylated multi-walled carbon nanotubes and bovine serum albumin reinforced hydroxyapatite for bone substitute applications. J Aust Ceram Soc 53, 117–127 (2017). https://doi.org/10.1007/s41779-016-0016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-016-0016-4

Keywords

Navigation