Skip to main content

Advertisement

Log in

Spatial Variations in Element Concentrations in Saudi Arabian Red Sea Mangrove and Seagrass Ecosystems: A Comparative Analysis for Bioindicator Selection

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The Red Sea supports a diverse array of macrophyte species, including mangroves and seagrasses. Our study quantified the concentrations of 22 common elements, including trace metals, in mangrove and seagrass leaves and sediments to investigate the current pollution level in the Saudi Arabian Red Sea blue carbon habitat. Mangrove leaves were found to contain higher mean concentrations of total organic carbon (TOC), total nitrogen (TN), strontium (Sr), and tin (Sn) than seagrass leaves, which contained lower levels of sodium (Na), magnesium (Mg), phosphorus (P), sulfur (S), potassium (K), calcium (Ca), chromium (Cr), nickle (Ni), zinc (Zn), arsenic (As), molybdenum (Mo), cadmium (Cd), antimony (Sb), and lead (Pb) (p < 0.05). Concentrations of 16 elements were significantly higher in mangrove sediments, whereas higher levels of S, Ca, and Sn were found in seagrass sediments (p < 0.05). A positive correlation was identified between P and Cd concentrations in both mangrove and seagrass leaves (R > 0.35, p < 0.05), with a negative correlation to latitude (R <  − 0.30). Certain leaves of Halophila decipiens (5.42 mg kg−1) and Halophila ovalis (5.08 mg kg−1) exhibited Cr concentrations exceeding known toxicity levels for plants. Cr (127 mg kg−1), Ni (60.0 mg kg−1), Cu (24.7 mg kg−1), Zn (263 mg kg−1), and Cd (1.50 mg kg−1) concentrations in certain Avicennia marina, Enhalus acoroides, Halodule uninervis, and Thalassia hemprichii sediments exceeded the sediment quality guideline levels, revealing the exposure of both ecosystems to varying degrees of trace metal pollution. Our study underscored the criticality of including both ecosystems in assessments to accurately evaluate the impact of pollution on coastal environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

I have shared the original research data in the Supplementary data (Excel) file.

References

  • Abohassan RA (2013) Heavy metal pollution in Avicennia marina mangrove systems on the Red Sea coast of Saudi Arabia. JKAU Met Env Arid Land Agric Sci 24(1):35–53

    Article  Google Scholar 

  • Aladesanmi OT, Oroboade JG, Osisiogu CP, Osewole AO (2019) Bioaccumulation factor of selected heavy metals in Zea mays. J Health Pollut 9(24):191207

    Article  Google Scholar 

  • Alharbi OM, Khattab RA, Ali I, Binnaser YS, Aqeel A (2019) Assessment of heavy metals contamination in the sediments and mangroves (Avicennia marina) at Yanbu coast, Red Sea. Saudi Arab Mar Pollut Bull 149:110669

    Article  CAS  Google Scholar 

  • Alhassan AB, Aljahdali MO (2021) Sediment metal contamination, bioavailability, and oxidative stress response in mangrove Avicennia marina in central Red Sea. Front Environ Sci 9:691257

    Article  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  • Aljahdali MO, Molla MHR (2022) Population dynamics and fecundity estimates of Long-spined Black Sea Urchin Diadema savignyi (Audouin, 1890) from the Red Sea, Saudi Arabia. Saudi J Biol Sci 29(9):103395

    Article  Google Scholar 

  • Almahasheer H, Aljowair A, Duarte CM, Irigoien X (2016a) Decadal stability of Red Sea mangroves. Estuar Coast Shelf Sci 169:164–172

    Article  Google Scholar 

  • Almahasheer H, Duarte CM, Irigoien X (2016b) Nutrient limitation in central Red Sea mangroves. Front Mar Sci 3:271

    Article  Google Scholar 

  • Almahasheer H, Serrano O, Duarte CM, Arias-Ortiz A, Masque P, Irigoien X (2017) Low carbon sink capacity of Red Sea mangroves. Sci Rep 7(1):9700

    Article  Google Scholar 

  • Almahasheer H, Serrano O, Duarte CM, Irigoien X (2018) Remobilization of heavy metals by mangrove leaves. Front Mar Sci 5:484

    Article  Google Scholar 

  • Al-Mur BA (2021) Assessment of heavy metal contamination in water, sediments, and Mangrove plant of Al-Budhai region, Red Sea Coast, Kingdom of Saudi Arabia. J Taibah Univ Sci 15(1):423–441

    Article  Google Scholar 

  • Al-Mur BA, Quicksall AN, Al-Ansari AM (2017) Spatial and temporal distribution of heavy metals in coastal core sediments from the Red Sea. Saudi Arab Oceanol 59(3):262–270

    Article  Google Scholar 

  • Alzahrani DA, Selim EMM, El-Sherbiny MM (2018) Ecological assessment of heavy metals in the grey mangrove (Avicennia marina) and associated sediments along the Red Sea coast of Saudi Arabia. Oceanologia 60(4):513–526

    Article  Google Scholar 

  • Anton A, Almahasheer H, Delgado A, Garcias-Bonet N, Carrillo-de-Albornoz P, Marbà N, Duarte CM (2020a) Stunted mangrove trees in the oligotrophic central Red Sea relate to nitrogen limitation. Front Mar Sci 7:597

    Article  Google Scholar 

  • Anton A, Baldry K, Coker DJ, Duarte CM (2020b) Drivers of the low metabolic rates of seagrass meadows in the Red Sea. Front Mar Sci 7:69

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2004) Geochemistry, groundwater and pollution. CRC Press

    Book  Google Scholar 

  • Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Sivaraman B, Surya T (2021) Heavy metal concentrations in the macroalgae, seagrasses, mangroves, and crabs collected from the Tuticorin coast (Hare Island), Gulf of Mannar. South India Mar Pollut Bull 163:111971

    Article  CAS  Google Scholar 

  • Badarudeen, A., Sajan, K., Srinivas, R., Maya, K., & Padmalal, D. (2014). Environmental significance of heavy metals in leaves and stems of Kerala mangroves, SW coast of India.

  • Barbieri M (2016) The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geology Geophys 5(1):1–4

    Article  Google Scholar 

  • Besley CH, Birch GF (2021) Comparison of mangrove (Avicennia marina) metal tissue concentrations to ambient sediment with an extensive range of contaminant levels in a highly-modified estuary (Sydney estuary, Australia). Mar Pollut Bull 171:112680

    Article  CAS  Google Scholar 

  • Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. Coastal Gis14.

  • Cai C, Wang WX (2019) Inter-species difference of copper accumulation in three species of marine mussels: Implication for biomonitoring. Sci Total Environ 692:1029–1036

    Article  CAS  Google Scholar 

  • Cai C, Devassy RP, El-Sherbiny MM, Agusti S (2022) Cement and oil refining industries as the predominant sources of trace metal pollution in the Red Sea: A systematic study of element concentrations in the Red Sea zooplankton. Mar Pollut Bull 174:113221

    Article  CAS  Google Scholar 

  • Cai C, Huertas AD, Agusti S (2023) Declining nutrient availability and metal pollution in the Red Sea. Commun Earth Environ 4(1):424

    Article  Google Scholar 

  • Cai, C., Hammerman, N. M., Pandolfi, J. M., Duarte, C. M., & Agusti, S. (2024). Influence of global warming and industrialization on coral reefs: A 600-year record of elemental changes in the Eastern Red Sea. Science of The Total Environment, 169984.

  • Castro E, Pinedo J, Marrugo J, León I (2022) Retention and vertical distribution of heavy metals in mangrove sediments of the protected area swamp of Mallorquin, Colombian Caribbean. Reg Stud Mar Sci 49:102072

    Google Scholar 

  • Charpy-Roubaud C, Sournia A (1990) The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar Microb Food Webs 4(1):31–57

    Google Scholar 

  • Churchill JH, Bower AS, McCorkle DC, Abualnaja Y (2014) The transport of nutrient-rich Indian Ocean water through the Red Sea and into coastal reef systems. J Mar Res 72(3):165–181

    Article  Google Scholar 

  • Cullen-Unsworth LC, Unsworth R (2018) A call for seagrass protection. Science 361(6401):446–448

    Article  CAS  Google Scholar 

  • Cusack M, Arrieta JM, Duarte CM (2020) Source Apportionment and elemental composition of atmospheric total suspended particulates (TSP) over the red sea coast of Saudi Arabia. Earth Syst Environ 4:777–788

    Article  Google Scholar 

  • Denton GRW, Morrison RJ, Bearden BG, Houk P, Starmer JA, Wood HR (2009) Impact of a coastal dump in a tropical lagoon on trace metal concentrations in surrounding marine biota: A case study from Saipan, Commonwealth of the Northern Mariana Islands (CNMI). Mar Pollut Bull 58(3):424–431

    Article  CAS  Google Scholar 

  • Denton GR, Emborski CA, Habana NC, Starmer JA (2014) Influence of urban runoff, inappropriate waste disposal practices and World War II on the heavy metal status of sediments in the southern half of Saipan Lagoon, Saipan. CNMI Mar Pollut Bull 81(1):276–281

    Article  CAS  Google Scholar 

  • Denton, G. R., Gawel, M. J., Mills, J. S., & Brookins, K. G. (2018). HEAVY METAL ASSESSMENT OF SEDIMENTS AND SELECTED BIOTA FROM AMERICAN MEMORIAL PARK NEARSHORE WATERS, SAIPAN, COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS (CNMI). Water and Environmental Research Institute (WERI) of the Western Pacific Technical Report, (162).

  • DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Berumen ML (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43(3):423–439

    Article  Google Scholar 

  • Dight, I. J., & Gladstone, W. (1993). Torres Strait baseline study: pilot study final report June 1993: trace metal concentrations in sediments and selected marine biota as indicator organisms and food items in the diet of Torres Strait Islanders and coastal Papuans. Great Barrier Reef Marine Park Authority.

  • Divito GA, Sadras VO (2014) How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A meta-analysis. Field Crop Res 156:161–171

    Article  Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37(4):882–889

    Article  CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1):1–8

    Article  CAS  Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3(11):961–968

    Article  CAS  Google Scholar 

  • Duarte CM, Delgado-Huertas A, Anton A, Carrillo-de-Albornoz P, López-Sandoval DC, Agustí S, Garcias-Bonet N (2018) Stable isotope (δ13C, δ15N, δ18O, δD) composition and nutrient concentration of Red Sea primary producers. Front Mar Sci 5:298

    Article  Google Scholar 

  • Dudani SN, Lakhmapurkar J, Gavali D, Patel T (2017) Heavy metal accumulation in the mangrove ecosystem of south Gujarat coast, India. Turk J Fish Aquat Sci 17(4):755–766

    Google Scholar 

  • El Ashmawy AA, Masoud MS, Yoshimura C, Dilini K, Abdel-Halim AM (2021) Accumulation of heavy metals by Avicennia marina in the highly saline Red Sea coast. Environ Sci Pollut Res 28(44):62703–62715

    Article  Google Scholar 

  • El-Sorogy AS, Youssef M, Al-Kahtany K (2021) Evaluation of coastal sediments for heavy metal contamination, Yanbu area, Red Sea coast. Saudi Arab Mar Pollut Bull 163:111966

    Article  CAS  Google Scholar 

  • Gambrell RP, Wiesepape JB, Patrick WH, Duff MC (1991) The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water Air Soil Pollut 57:359–367

    Article  Google Scholar 

  • Garcias-Bonet N, Delgado-Huertas A, Carrillo-de-Albornoz P, Anton A, Almahasheer H, Marbà N, Duarte CM (2019) Carbon and nitrogen concentrations, stocks, and isotopic compositions in Red Sea seagrass and mangrove sediments. Front Mar Sci 6:267

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20(1):154–159

    Article  Google Scholar 

  • Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25(6):729–738

    Article  Google Scholar 

  • Hamza-Chaffai A (2014) Usefulness of bioindicators and biomarkers in pollution biomonitoring. Int J Biotechnol Wellness Ind 3(1):19

    Article  Google Scholar 

  • Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A (2009) Cadmium: toxicity and tolerance in plants. J Environ Biol 30(2):165–174

    CAS  Google Scholar 

  • Herzog H (2001) What future for carbon capture and sequestration? Environmental Science and Technology-Columbus 35(7):148A

    Article  CAS  Google Scholar 

  • Hogarth PJ (2015) The biology of mangroves and seagrasses. Oxford University Press

    Book  Google Scholar 

  • Holt EA, Miller SW (2011) Bioindicators: Using organisms to measure. Nature 3:8–13

    Google Scholar 

  • Jarrell WM, Beverly RB (1981) The dilution effect in plant nutrition studies. Adv Agron 34:197–224

    Article  CAS  Google Scholar 

  • Jeong H, Ra K (2022) Seagrass and green macroalgae Halimeda as biomonitoring tools for metal contamination in Chuuk, Micronesia: Pollution assessment and bioaccumulation. Mar Pollut Bull 178:113625

    Article  CAS  Google Scholar 

  • Jeong H, Choi JY, Choi DH, Noh JH, Ra K (2021) Heavy metal pollution assessment in coastal sediments and bioaccumulation on seagrass (Enhalus acoroides) of Palau. Mar Pollut Bull 163:111912

    Article  CAS  Google Scholar 

  • Jones, D. S., Suter, I. I., & Hull, R. N. (1996). Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1996 revision (No. ES/ER/TM-95/R2). Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).

  • Jónsson, S., & Xu, W. (2015). Volcanic eruptions in the southern Red Sea during 2007–2013. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin, 175–186.

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC Press

    Book  Google Scholar 

  • Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29(1):78–107

    Article  Google Scholar 

  • Khalil, A. S. (2015). Mangroves of the red sea. The Red Sea: The formation, morphology, oceanography and environment of a young ocean basin, 585–597.

  • Kiewiet AT, Ma WC (1991) Effect of pH and calcium on lead and cadmium uptake by earthworms in water. Ecotoxicol Environ Saf 21(1):32–37

    Article  CAS  Google Scholar 

  • Kilminster K (2013) Trace element content of seagrasses in the Leschenault Estuary. West Aust Mar Pollut Bull 73(1):381–388

    Article  CAS  Google Scholar 

  • Kostianaia, E. A., Kostianoy, A., Lavrova, O. Y., & Soloviev, D. M. (2020). Oil pollution in the Northern Red Sea: a threat to the marine environment and tourism development. Environmental Remote Sensing in Egypt, 329–362.

  • Kottuparambil S, Ashok A, Barozzi A, Michoud G, Cai C, Daffonchio D, Agusti S (2023) Tracking the early signals of crude oil in seawater and plankton after a major oil spill in the Red Sea. Environ Sci Pollut Res 30(26):69150–69164

    Article  CAS  Google Scholar 

  • Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi É (2015) Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol Biochem 96:38–44

    Article  Google Scholar 

  • Liu J, Ma K, Qu L (2015) Ecological risk assessments and context-dependence analysis of heavy metal contamination in the sediments of mangrove swamp in Leizhou Peninsula. China Mar Pollut Bull 100(1):224–230

    Article  CAS  Google Scholar 

  • López-Sandoval DC, Duarte CM, Agustí S (2021) Nutrient and temperature constraints on primary production and net phytoplankton growth in a tropical ecosystem. Limnol Oceanogr 66(7):2923–2935

    Article  Google Scholar 

  • Mahmud, N. S. A. (2016). Water Quality Assessment of Downstream Penang River and Heavy Metals Accumulation in Seagrass. IRC.

  • Mielke, J. E. (1979). Composition of the Earth's crust and distribution of the elements.

  • Mishra AK, Khadanga MK, Patro S, Apte D, Farooq SH (2021) Population structure of a newly recorded (Halodule uninervis) and native seagrass (Halophila ovalis) species from an intertidal creek ecosystem. Lakes Reserv Res Manag 26(3):e12376

    Article  Google Scholar 

  • Moir CM (2002) Uptake and Homeostasis of Heavy Metals by Seagrass Species in the Gulf of Carpentaria. Charles Darwin University (Australia), Australia

    Google Scholar 

  • Müller G, Gastner MANFRED (1971) The’Karbonat-Bombe’, a simple device for the determination of carbonate content in sediment, soils, and other materials. Neues Jahrbuch Für Mineralogie-Monatshefte 10:466–469

    Google Scholar 

  • Nath B, Chaudhuri P, Birch G (2014) Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicol Environ Saf 107:284–290

    Article  CAS  Google Scholar 

  • Nazneen S, Mishra AK, Raju NJ, Mehmood G (2022) Coastal macrophytes as bioindicators of trace metals in the Asia’s largest lagoon ecosystem. Mar Pollut Bull 178:113576

    Article  CAS  Google Scholar 

  • Nienhuis PH (1986) Background levels of heavy metals in nine tropical seagrass species in Indonesia. Mar Pollut Bull 17(11):508–511

    Article  CAS  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41(1):199–219

    Article  Google Scholar 

  • Ondo JA, Biyogo RM, Ollui-Mboulou M, Eba F, Omva-Zue J (2012) Macro-nutrients in edible parts of food crops in the region of Moanda. Gabon Agric Sci 3(5):697

    Google Scholar 

  • Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24(2):199–217

    Article  Google Scholar 

  • Pederson CL, Klaus JS, Swart PK, Mcneill DF (2019) Deposition and early diagenesis of microbial mud in the Florida Everglades. Sedimentology 66(6):1989–2010

    Article  Google Scholar 

  • Perraud V, Horne JR, Martinez AS, Kalinowski J, Meinardi S, Dawson ML, Finlayson-Pitts BJ (2015) The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. Proc Natl Acad Sci 112(44):13514–13519

    Article  CAS  Google Scholar 

  • Placek A, Grobelak A, Kacprzak M (2016) Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytorem 18(6):605–618

    Article  CAS  Google Scholar 

  • Praveena B, Prasad TL, Kumar MP, Lakshmanna B, Jayaraju N (2023) Mangrove (Avicennia marina) parts as proxies in marine pollution of Nizampatnam Bay, East Coast of India: An integrated approach. Mar Pollut Bull 187:114594

    Article  CAS  Google Scholar 

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344(6267):658–660

    Article  CAS  Google Scholar 

  • Qiu Q, Wang Y, Yang Z, Yuan J (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49(9):2260–2267

    Article  CAS  Google Scholar 

  • Raitsos DE, Pradhan Y, Brewin RJ, Stenchikov G, Hoteit I (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS ONE 8(6):e64909

    Article  CAS  Google Scholar 

  • Raitsos DE, Yi X, Platt T, Racault MF, Brewin RJ, Pradhan Y, Hoteit I (2015) Monsoon oscillations regulate fertility of the Red Sea. Geophys Res Lett 42(3):855–862

    Article  Google Scholar 

  • Raju KA, Ramakrishna C (2021) The effects of heavy metals on the anatomical structures of Avicennia marina (Forssk.) Vierh. Braz J Bot 44:439–447

    Article  Google Scholar 

  • Sadiq M, Zaidi TH (1994) Sediment composition and metal concentrations in mangrove leaves from the Saudi coast of the Arabian Gulf. Sci Total Environ 155(1):1–8

    Article  CAS  Google Scholar 

  • Salah-Tantawy A, Mahdy A, Dar MA, Young SS, Abdelreheem AM (2022) Assessment of heavy metal pollution in seawater, benthic flora and fauna and their ability to survive under stressors along the northern Red Sea. Egypt Oceanol Hydrobiol Stud 51(4):355–370

    Article  CAS  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities: processes, predictions, prevention. J Geochem Explor 52(1–2):5–23

    Article  CAS  Google Scholar 

  • Sawidis T, Marnasidis A, Zachariadis G, Stratis J (1995) A study of air pollution with heavy metals in Thessaloniki city (Greece) using trees as biological indicators. Arch Environ Contam Toxicol 28:118–124

    Article  CAS  Google Scholar 

  • Scholten, J. C., Staffers, P., Garbe-Schdnberg, D., & Moammar, M. (2017). Hydrothermal mineralization in the Red Sea. In Handbook of marine mineral deposits (pp. 369–395). Routledge.

  • Seyyednejad SM, Niknejad M, Koochak H (2011) A review of some different effects of air pollution on plants. Res J Environ Sci 5(4):302

    Article  CAS  Google Scholar 

  • Shaffai El, A. (2016). Field guide to seagrasses of the Red Sea. International Union for the Conservation of Nature, eds A. Rouphael, and A. Abdulla (Gland: IUCN and Courbevoie: Total Foundation)56.

  • Shriadah MMA (1999) Heavy metals in mangrove sediments of the United Arab Emirates shoreline (Arabian Gulf). Water Air Soil Pollut 116:523–534

    Article  CAS  Google Scholar 

  • Sidi N, Aris AZ, Yusuff FM, Looi LJ, Mokhtar NF (2018) Tape seagrass (Enhalus acoroides) as a bioindicator of trace metal contamination in Merambong shoal, Johor Strait, Malaysia. Mar Pollut Bull 126:113–118

    Article  CAS  Google Scholar 

  • Sofianos, S., & Johns, W. E. (2015). Water mass formation, overturning circulation, and the exchange of the Red Sea with the adjacent basins. The Red Sea: The Formation, Morphology, Oceanography and Environment of a Young Ocean Basin, 343–353.

  • Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110(2):195–205

    Article  CAS  Google Scholar 

  • Thangaradjou T, Raja S, Subhashini P, Nobi EP, Dilipan E (2013) Heavy metal enrichment in the seagrasses of Lakshadweep group of islands—A multivariate statistical analysis. Environ Monit Assess 185:673–685

    Article  CAS  Google Scholar 

  • Usman AR, Alkredaa RS, Al-Wabel MI (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator. Ecotoxicol Environ Saf 97:263–270

    Article  CAS  Google Scholar 

  • Wahbeh MI (1984) Levels of zinc, manganese, magnesium, iron and cadmium in three species of seagrass from Aqaba (Jordan). Aquat Bot 20(1–2):179–183

    Article  CAS  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106(30):12377–12381

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144(3):307–313

    Article  CAS  Google Scholar 

  • Whitfield AK (2017) The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev Fish Biol Fisheries 27(1):75–110

    Article  Google Scholar 

  • Wilson AMW, Forsyth C (2018) Restoring near-shore marine ecosystems to enhance climate security for island ocean states: aligning international processes and local practices. Mar Policy 93:284–294

    Article  Google Scholar 

  • Yan Z, Sun X, Xu Y, Zhang Q, Li X (2017) Accumulation and tolerance of mangroves to heavy metals: a review. Curr Pollut Rep 3:302–317

    Article  CAS  Google Scholar 

  • Yao Q, Wang X, Jian H, Chen H, Yu Z (2015) Characterization of the particle size fraction associated with heavy metals in suspended sediments of the Yellow River. Int J Environ Res Public Health 12(6):6725–6744

    Article  CAS  Google Scholar 

  • Youssef M, El-Sorogy A (2016) Environmental assessment of heavy metal contamination in bottom sediments of Al-Kharrar lagoon, Rabigh, Red Sea, Saudi Arabia. Arab J Geosci 9:1–10

    Article  CAS  Google Scholar 

  • Zhang L, Ni Z, Cui L, Li J, He J, Jiang Z, Huang X (2021) Heavy metal accumulation and ecological risk on four seagrass species in South China. Mar Pollut Bull 173:113153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research presented in this publication was supported by King Abdullah University of Science and Technology, KAUST, through funding provided to Susana Agusti (BAS/1/1072-01-01). We extend our gratitude to Mohammed K. Khalid and Jingyu Liu from the KAUST Analytical Core Laboratory (ACL) for their ICP-OES training; to Vijayalaxmi Dasari of the KAUST Red Sea Research Center for her invaluable assistance with laboratory analyses; and to Yixin Wang for her insightful suggestions on physical oceanography.

Funding

The research presented in this publication was supported by King Abdullah University of Science and Technology, KAUST, through funding provided to Susana Agusti (BAS/1/1072–01-01) and the Red Sea Research Center.

Author information

Authors and Affiliations

Authors

Contributions

Carlos M. Duarte and Susana Agusti contributed to the study conception and design. Material preparation, sample collection and analysis were performed by Andrea Anton. The first draft of the manuscript was written by Chunzhi Cai and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunzhi Cai.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12632 kb)

Supplementary file2 (XLS 404 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Anton, A., Duarte, C.M. et al. Spatial Variations in Element Concentrations in Saudi Arabian Red Sea Mangrove and Seagrass Ecosystems: A Comparative Analysis for Bioindicator Selection. Earth Syst Environ (2024). https://doi.org/10.1007/s41748-024-00390-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41748-024-00390-4

Keywords

Navigation